Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = elastic optical networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3161 KB  
Article
Multi-Link Fragmentation-Aware Deep Reinforcement Learning RSA Algorithm in Elastic Optical Network
by Jing Jiang, Yushu Su, Jingchi Cheng and Tao Shang
Photonics 2025, 12(7), 634; https://doi.org/10.3390/photonics12070634 - 22 Jun 2025
Viewed by 410
Abstract
Deep reinforcement learning has been extensively applied for resource allocation in elastic optical networks. However, many studies focus on link-level state analysis and rarely discuss the influence between links, which may affect the performance of allocation algorithms. In this paper, we propose a [...] Read more.
Deep reinforcement learning has been extensively applied for resource allocation in elastic optical networks. However, many studies focus on link-level state analysis and rarely discuss the influence between links, which may affect the performance of allocation algorithms. In this paper, we propose a multi-link fragmentation deep reinforcement learning-based routing and spectrum allocation algorithm (MFDRL-RSA). We number the links using a breadth-first numbering algorithm. Based on the numbering results, high-frequency links are selected to construct the network state matrix that reflects the resource distribution. According to the state matrix, we calculate a multi-link fragmentation degree, quantifying resource fragmentation within a representative subset of network. The MFDRL-RSA algorithm enhances the accuracy of the agent’s decision-making by incorporating it into the reward function, thereby improving its performance in routing decisions, which contributes to the overall allocation performance. Simulation results show that MFDRL-RSA achieves lower blocking rates compared to the reference algorithms, with reductions of 16.34%, 13.01%, and 7.42% in the NSFNET network and 19.33%, 15.17%, and 9.95% in the Cost-239 network. It also improves spectrum utilization by 12.28%, 9.83%, and 6.32% in NSFNET and by 13.92%, 11.55%, and 8.26% in Cost-239. Full article
Show Figures

Figure 1

20 pages, 4490 KB  
Article
Research on Key Technologies of Elastic Satellite Optical Network Based on Optical Service Unit
by Wei Zhou, Bingli Guo, Qingsong Luo, Boying Cao and Bitao Pan
Appl. Sci. 2025, 15(13), 7006; https://doi.org/10.3390/app15137006 - 21 Jun 2025
Viewed by 282
Abstract
With the advent of 6G technologies, satellite communication networks are in urgent need of innovative bearer technologies to meet the demands of government and enterprise private lines as well as computing power networks. We propose optical service unit-based optical inter-satellite links (OISL-OSU) as [...] Read more.
With the advent of 6G technologies, satellite communication networks are in urgent need of innovative bearer technologies to meet the demands of government and enterprise private lines as well as computing power networks. We propose optical service unit-based optical inter-satellite links (OISL-OSU) as a solution to address the current limitations in fine-grained service bearing within optical transport networks (OTNs), thereby enhancing the flexibility and efficiency of satellite optical networks. Comparative tests were conducted between OISL-OSU and existing packet-switching technologies in multi-service satellite optical transport networks. Through hardware-in-the-loop simulation verification, key performance indicators such as delay optimization, bandwidth utilization rate, and flexible resource adjustment capability were systematically evaluated. Experimental results demonstrate that OISL-OSU technology exhibits superior performance in delay optimization and fine-grained service bearing. The flexible mapping and multiplexing mechanism of OISL-OSU significantly improves resource utilization efficiency, decreases transmission delay, and strengthens hard-pipe connection capabilities. Full article
(This article belongs to the Special Issue Optical Wireless Communication for 6G Communication Networks)
Show Figures

Figure 1

20 pages, 1305 KB  
Article
Grouping-Based Dynamic Routing, Core, and Spectrum Allocation Method for Avoiding Spectrum Fragmentation and Inter-Core Crosstalk in Multi-Core Fiber Networks
by Funa Fukui, Tomotaka Kimura, Yutaka Fukuchi and Kouji Hirata
Future Internet 2025, 17(6), 232; https://doi.org/10.3390/fi17060232 - 23 May 2025
Viewed by 371
Abstract
In this paper, we propose a grouping-based dynamic routing, core, and spectrum allocation (RCSA) method for preventing spectrum fragmentation and inter-core crosstalk in elastic optical path networks based on multi-core fiber environments. Multi-core fibers enable us to considerably enhance the transmission capacity of [...] Read more.
In this paper, we propose a grouping-based dynamic routing, core, and spectrum allocation (RCSA) method for preventing spectrum fragmentation and inter-core crosstalk in elastic optical path networks based on multi-core fiber environments. Multi-core fibers enable us to considerably enhance the transmission capacity of optical links; however, this induces inter-core crosstalk, which degrades the quality of optical signals. We should thus avoid using the same frequency bands in adjacent cores in order to ensure high-quality communications. However, this simple strategy leads to inefficient use of frequency-spectrum resources, resulting in spectrum fragmentation and a high blocking probability for lightpath establishment. The proposed method allows one to overcome this difficulty by grouping lightpath-setup requests according to their required number of frequency slots. By assigning lightpath-setup requests belonging to the same group to cores according to their priority, the proposed method aims to suppress inter-core crosstalk. Furthermore, the proposed method is designed to mitigate spectrum fragmentation by determining the prioritized frequency bandwidth for lightpath-setup requests according to their required number of frequency slots. We show that the proposed method reduces the blocking of lightpath establishment while suppressing inter-core crosstalk through simulation experiments. Full article
Show Figures

Figure 1

13 pages, 5998 KB  
Article
The Microstructure, Crystallization Behavior, and Mechanical Performance Evolutions of Li2O-Al2O3-SiO2 Glass and Glass–Ceramics with Different Alkaline Earth Oxide Modifications
by Chi Zheng, Danni Li, Mengshuo Guo, Jihong Zhang, Jun Xie and Jianjun Han
Materials 2025, 18(6), 1383; https://doi.org/10.3390/ma18061383 - 20 Mar 2025
Viewed by 776
Abstract
The introduction of alkaline earth oxides into Li2O-Al2O3-SiO2 glass components can improve the mechanical and optical performances of glass and glass–ceramics for various applications. In this research, microstructures, thermal properties, crystallization behavior, and mechanical performance changes [...] Read more.
The introduction of alkaline earth oxides into Li2O-Al2O3-SiO2 glass components can improve the mechanical and optical performances of glass and glass–ceramics for various applications. In this research, microstructures, thermal properties, crystallization behavior, and mechanical performance changes in specific Li2O-Al2O3-SiO2 glass with the introduction of different alkali earth oxides, MgO, CaO, SrO, and BaO, were investigated. From Raman and NMR spectra microstructure analysis, it was confirmed that the addition of MgO could compete with Al as a network former and charge compensator, while increasing the bridging oxygen number with Si and affecting the chemical shift in 29Si. Meanwhile, the glass structures slightly changed due to the introduction of CaO, SrO, and BaO, with larger ionic radii. Meanwhile, the glass transition and first crystallization temperatures increased due to MgO introduction and then decreased with larger-radii alkali earth oxides’ addition, due to different glass network connectivity. After heat treatment, the crystal phases in the glass–ceramics changed with the introduction of alkaline earth oxides. The main crystal phases varied from Li2Si2O5, SiO2, and LiAlSi4O10 in glass without alkali earth oxide introduction; to SiO2, LixAlxSi3−xO6, and MgAl2Si4O12 in glass with MgO addition; to SiO2 and LixAlxSi3−xO6 with CaO addition; to SiO2, LiAlSi4O10, and Li2SiO3 for glass with SrO addition; and further to Li2SiO5, SiO2, and LiAlSi4O10 for glass with BaO addition. Moreover, in the mechanical performance of the glass–ceramics, the Vickers hardness and elastic modulus reached a maximum of 8.61 GPa for glass with MgO and 90.12 GPa for glass with BaO modification, respectively, probably due to different crystal phases. More importantly, the crack resistance values presented a large increase for MgO glass and MgO- or CaO-modified glass–ceramics. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 6339 KB  
Article
Modulation Format Identification Utilizing Polar-Coordinate-System-Based Features for Digital Coherent Receivers
by Shuai Liang, Ming Hao, Ruyue Xiao, Shuang Liang, Wei Jin, Lin Chen and Jianming Tang
Photonics 2025, 12(3), 190; https://doi.org/10.3390/photonics12030190 - 24 Feb 2025
Viewed by 669
Abstract
Modulation format identification (MFI) is one of the most critical functions embedded in digital coherent receivers in elastic optical networks (EONs). In view of inherent amplitude and phase characteristics of received signals, different modulation formats exhibit a set of notable features in the [...] Read more.
Modulation format identification (MFI) is one of the most critical functions embedded in digital coherent receivers in elastic optical networks (EONs). In view of inherent amplitude and phase characteristics of received signals, different modulation formats exhibit a set of notable features in the polar coordinate system, based on which an MFI scheme incorporating the Gaussian weighted k-nearest neighbors (KNN) algorithm was proposed to identify polarization division multiplexed (PDM)-QPSK/-16QAM/-32QAM/-64QAM/-128QAM signals. The performance of the proposed scheme was numerically verified in 28GBaud coherent optical communication systems. The numerical simulation results show that, to achieve 100% correct identification rates for all of the five modulation formats, the required minimum optical signal-to-noise ratios (OSNRs) were less than their relevant thresholds corresponding to the 20% forward error correction (FEC). The tolerable ranges of the residual chromatic dispersion (CD) for QPSK, 16QAM, 32QAM, 64QAM, and 128QAM were −1920 ps/nm~1920 ps/nm, −720 ps/nm~360 ps/nm, −1200 ps/nm~1680 ps/nm, −600 ps/nm~360 ps/nm, and −600 ps/nm~480 ps/nm, respectively. Meanwhile, the results demonstrate the maximum tolerable differential-group delay (DGD) for the QPSK, 16QAM, 32QAM, 64QAM, and 128QAM signals were 34 ps, 16 ps, 20 ps, 6 ps, and 1.2 ps, respectively. In addition, the simulated results also show that the proposed MFI scheme is robust against the fiber nonlinearities, even if the launch power is increased to 4 dBm. Full article
Show Figures

Figure 1

27 pages, 2894 KB  
Article
New Control Algorithms for Rearrangeable Wavelength–Space–Wavelength Switches in Elastic Optical Networks
by Mariusz Żal, Enass Abuelela and Wojciech Kabaciński
Electronics 2025, 14(4), 684; https://doi.org/10.3390/electronics14040684 - 10 Feb 2025
Viewed by 825
Abstract
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of [...] Read more.
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of inter-stage link frequency slots into subsets, which can be utilized for realizing conflict-free connections. Similar algorithms have previously been proposed for switching networks with two, three, or four inputs and outputs. The algorithms proposed in this paper have been adapted to work in switching networks with five inputs and outputs. These algorithms make it possible to reduce the required number of frequency slots in inter-stage links. From the comparison conducted in this work with the switching networks for three and four inputs and outputs, it follows that the new algorithms for networks with five inputs/outputs allow for a reduction in the number of frequency slots by about 20%. Additionally, the approximation of the proposed algorithms for switching networks with a larger number of inputs and outputs also leads to a reduction in the required frequency slots, compared to previously known algorithms. The proposed algorithms allow for reducing the number of frequency slots in inter-stage links, which is associated with reducing the capacity range of wavelength-selective switches and the tunability range of spectrum converters, and therefore also the costs of switching networks. Full article
Show Figures

Figure 1

22 pages, 1378 KB  
Article
Microhardness, Young’s and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(3), 494; https://doi.org/10.3390/ma18030494 - 22 Jan 2025
Cited by 6 | Viewed by 1146
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and [...] Read more.
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials’ use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11c122), bond-stretching α and bond-bending β force constants, Kleinmann’s internal displacement ζ, and Born’s transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young’s modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices. Full article
Show Figures

Figure 1

24 pages, 3621 KB  
Article
Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method
by Er Wang, Tianbao Huang, Zhi Liu, Lei Bao, Binbing Guo, Zhibo Yu, Zihang Feng, Hongbin Luo and Guanglong Ou
Remote Sens. 2024, 16(23), 4497; https://doi.org/10.3390/rs16234497 - 30 Nov 2024
Cited by 9 | Viewed by 3499
Abstract
Estimation of forest above-ground biomass (AGB) using multi-source remote sensing data is an important method to improve the accuracy of the estimate. However, selecting remote sensing factors that can effectively improve the accuracy of forest AGB estimation from a large amount of data [...] Read more.
Estimation of forest above-ground biomass (AGB) using multi-source remote sensing data is an important method to improve the accuracy of the estimate. However, selecting remote sensing factors that can effectively improve the accuracy of forest AGB estimation from a large amount of data is a challenge when the sample size is small. In this regard, the Least Absolute Shrinkage and Selection Operator (Lasso) has advantages for extensive redundant variables but still has some drawbacks. To address this, the study introduces two Least Absolute Shrinkage and Selection Operator Lasso-based variable selection methods: Least Absolute Shrinkage and Selection Operator Genetic Algorithm (Lasso-GA) and Variance Inflation Factor Least Absolute Shrinkage and Selection Operator (VIF-Lasso). Sentinel 2, Sentinel 1, Landsat 8 OLI, ALOS-2 PALSAR-2, Light Detection and Ranging, and Digital Elevation Model (DEM) data were used in this study. In order to explore the variable selection capabilities of Lasso-GA and VIF-Lasso for remote sensing estimation of forest AGB. It compares Lasso-GA and VIF-Lasso with Boruta, Random Forest Importance Selection, Pearson Correlation, and Lasso for selecting remote sensing factors. Additionally, it employs eight machine learning models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Bayesian Regression Neural Network (BRNN), Elastic Net (EN), K-Nearest Neighbors (KNN), Extremely Randomized Trees (ETR), and Stochastic Gradient Boosting (SGBoost)—to estimate forest AGB in Wuyi Village, Zhenyuan County. The results showed that the optimized Lasso variable selection could improve the accuracy of forest biomass estimation. The VIF-Lasso method results in a BRNN model with an R2 of 0.75 and an RMSE of 16.48 Mg/ha. The Lasso-GA method results in an ETR model with an R2 of 0.73 and an RMSE of 16.70 Mg/ha. Compared to the optimal SGBoost model with the Lasso variable selection method (R2 of 0.69, RMSE of 18.63 Mg/ha), the VIF-Lasso method improves R2 by 0.06 and reduces RMSE by 2.15 Mg/ha, while the Lasso-GA method improves R2 by 0.04 and reduces RMSE by 1.93 Mg/ha. From another perspective, they also demonstrated that the RX sample count and sensitivity provided by LiDAR, as well as the Horizontal Transmit, Vertical Receive provided by Microwave Radar, along with the feature variables (Mean, Contrast, and Correlation) calculated from the Green, Red, and NIR bands of optical remote sensing in 7 × 7 and 5 × 5 windows, play an important role in forest AGB estimation. Therefore, the optimized Lasso variable selection method shows strong potential for forest AGB estimation using multi-source remote sensing data. Full article
Show Figures

Figure 1

15 pages, 1154 KB  
Article
Routing Algorithms for SDM Flexible Optical Networks
by Ireneusz Olszewski, Ireneusz Szcześniak and Bożena Woźna-Szcześniak
Entropy 2024, 26(11), 928; https://doi.org/10.3390/e26110928 - 30 Oct 2024
Viewed by 876
Abstract
This paper considers the online routing, modulation, spectrum, and core allocation problem in elastic optical networks. Three algorithms are proposed to minimize the bandwidth blocking probability while taking into account the impact of interference from established lightpaths. These algorithms are based on a [...] Read more.
This paper considers the online routing, modulation, spectrum, and core allocation problem in elastic optical networks. Three algorithms are proposed to minimize the bandwidth blocking probability while taking into account the impact of interference from established lightpaths. These algorithms are based on a sequence of alternative paths, ordered in terms of increasing lengths, determined by Yen’s algorithm. Each of the algorithms for the selected single or dual lightpath enforces the constraints of spectrum continuity, contiguity of the slots, and non-overlapping of the spectra with the established lightpaths, maximizes the number of bits per symbol, and selects a specific core on each link of the path. Simulation studies performed for two sample networks showed that the crosstalk has a significant impact on the bandwidth blocking probability. The best results were obtained by iterating over all paths and all slots, selecting the lightpath with the lowest average crosstalk per slot, consisting of the most loaded cores. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

16 pages, 787 KB  
Article
Novel Application of Quantum Computing for Routing and Spectrum Assignment in Flexi-Grid Optical Networks
by Oumayma Bouchmal, Bruno Cimoli, Ripalta Stabile, Juan Jose Vegas Olmos, Carlos Hernandez, Ricardo Martinez, Ramon Casellas and Idelfonso Tafur Monroy
Photonics 2024, 11(11), 1023; https://doi.org/10.3390/photonics11111023 - 30 Oct 2024
Cited by 2 | Viewed by 2300
Abstract
Flexi-grid technology has revolutionized optical networking by enabling Elastic Optical Networks (EONs) that offer greater flexibility and dynamism compared to traditional fixed-grid systems. As data traffic continues to grow exponentially, the need for efficient and scalable solutions to the routing and spectrum assignment [...] Read more.
Flexi-grid technology has revolutionized optical networking by enabling Elastic Optical Networks (EONs) that offer greater flexibility and dynamism compared to traditional fixed-grid systems. As data traffic continues to grow exponentially, the need for efficient and scalable solutions to the routing and spectrum assignment (RSA) problem in EONs becomes increasingly critical. The RSA problem, being NP-Hard, requires solutions that can simultaneously address both spatial routing and spectrum allocation. This paper proposes a novel quantum-based approach to solving the RSA problem. By formulating the problem as a Quadratic Unconstrained Binary Optimization (QUBO) model, we employ the Quantum Approximate Optimization Algorithm (QAOA) to effectively solve it. Our approach is specifically designed to minimize end-to-end delay while satisfying the continuity and contiguity constraints of frequency slots. Simulations conducted using the Qiskit framework and IBM-QASM simulator validate the effectiveness of our method. We applied the QAOA-based RSA approach to small network topology, where the number of nodes and frequency slots was constrained by the limited qubit count on current quantum simulator. In this small network, the algorithm successfully converged to an optimal solution in less than 30 iterations, with a total runtime of approximately 10.7 s with an accuracy of 78.8%. Additionally, we conducted a comparative analysis between QAOA, integer linear programming, and deep reinforcement learning methods to evaluate the performance of the quantum-based approach relative to classical techniques. This work lays the foundation for future exploration of quantum computing in solving large-scale RSA problems in EONs, with the prospect of achieving quantum advantage as quantum technology continues to advance. Full article
(This article belongs to the Special Issue Optical Communication Networks: Advancements and Future Directions)
Show Figures

Figure 1

16 pages, 6207 KB  
Article
Time-Efficient RSA over Large-Scale Multi-Domain EON
by Tong Xi, Xuehua Li and Xin Wang
Sensors 2024, 24(21), 6802; https://doi.org/10.3390/s24216802 - 23 Oct 2024
Viewed by 943
Abstract
The poor timeliness of routing has always been an urgent problem in practical operator networks, especially in situations with large-scale networks and multiple network domains. In this article, a pruning idea of routing integrated with Dijkstra’s shortest path searching is utilized to accelerate [...] Read more.
The poor timeliness of routing has always been an urgent problem in practical operator networks, especially in situations with large-scale networks and multiple network domains. In this article, a pruning idea of routing integrated with Dijkstra’s shortest path searching is utilized to accelerate the process of routing in large-scale multi-domain elastic optical networks (EONs). The layered-graph approach is adopted in the spectrum allocation stage. To this end, an efficient heuristic algorithm is proposed, called “Branch-and-Bound based Routing and Layered Graph based Spectrum Allocation algorithm (BBR-LGSA)”, which is an integrated RSA algorithm. Notably, the significant reduction in algorithm time complexity is not only reflected in the pruning method used in the routing stage but also in the construction of auxiliary graphs during the spectrum allocation stage utilizing the Branch-and-Bound method. Simulation results show that the proposed BBR-LGSA significantly reduces the average running time by nearly 78% with higher spectrum utilization in large-scale multi-domain EONs, compared with benchmark algorithms. In addition, the impact of key parameters on performance comparisons of different algorithms is evaluated. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 6740 KB  
Article
Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System
by Fangxu Yang, Qinghua Tian, Xiangjun Xin, Yiqun Pan, Fu Wang, José Antonio Lázaro, Josep M. Fàbrega, Sitong Zhou, Yongjun Wang and Qi Zhang
Electronics 2024, 13(19), 3833; https://doi.org/10.3390/electronics13193833 - 28 Sep 2024
Viewed by 1204
Abstract
In this paper, we skillfully utilize the discriminative ability of the discriminator to construct a conditional generative adversarial network, and propose a scheme that uses few symbols to achieve high accuracy recognition of modulation formats under low signal-to-noise ratio conditions in coherent optical [...] Read more.
In this paper, we skillfully utilize the discriminative ability of the discriminator to construct a conditional generative adversarial network, and propose a scheme that uses few symbols to achieve high accuracy recognition of modulation formats under low signal-to-noise ratio conditions in coherent optical communication. In the one thousand kilometres G.654E optical fiber transmission system, transmission experiments are conducted on the PDM-QPSK/-8PSK/-16QAM/-32QAM/-64QAM modulation format at 8G/16G/32G baud rates, and the signal-to-noise ratio parameters are traversed under experimental conditions. As a key technology in the next-generation elastic optical networks, the modulation format recognition scheme proposed in this paper achieves 100% recognition of the above five modulation formats without distinguishing signal transmission rates. The optical signal-to-noise ratio thresholds required to achieve 100% recognition accuracy are 12.4 dB, 14.3 dB, 15.4 dB, 16.2 dB, and 17.3 dB, respectively. Full article
(This article belongs to the Special Issue Advances in Optical Communication and Optical Computing)
Show Figures

Figure 1

17 pages, 11358 KB  
Article
Fiduciary-Free Frame Alignment for Robust Time-Lapse Drift Correction Estimation in Multi-Sample Cell Microscopy
by Stefan Baar, Masahiro Kuragano, Naoki Nishishita, Kiyotaka Tokuraku and Shinya Watanabe
J. Imaging 2024, 10(8), 181; https://doi.org/10.3390/jimaging10080181 - 29 Jul 2024
Viewed by 2095
Abstract
When analyzing microscopic time-lapse observations, frame alignment is an essential task to visually understand the morphological and translation dynamics of cells and tissue. While in traditional single-sample microscopy, the region of interest (RoI) is fixed, multi-sample microscopy often uses a single microscope that [...] Read more.
When analyzing microscopic time-lapse observations, frame alignment is an essential task to visually understand the morphological and translation dynamics of cells and tissue. While in traditional single-sample microscopy, the region of interest (RoI) is fixed, multi-sample microscopy often uses a single microscope that scans multiple samples over a long period of time by laterally relocating the sample stage. Hence, the relocation of the optics induces a statistical RoI offset and can introduce jitter as well as drift, which results in a misaligned RoI for each sample’s time-lapse observation (stage drift). We introduce a robust approach to automatically align all frames within a time-lapse observation and compensate for frame drift. In this study, we present a sub-pixel precise alignment approach based on recurrent all-pairs field transforms (RAFT); a deep network architecture for optical flow. We show that the RAFT model pre-trained on the Sintel dataset performed with near perfect precision for registration tasks on a set of ten contextually unrelated time-lapse observations containing 250 frames each. Our approach is robust for elastically undistorted and translation displaced (x,y) microscopic time-lapse observations and was tested on multiple samples with varying cell density, obtained using different devices. The approach only performed well for registration and not for tracking of the individual image components like cells and contaminants. We provide an open-source command-line application that corrects for stage drift and jitter. Full article
Show Figures

Figure 1

15 pages, 5561 KB  
Article
Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks
by Wojciech Kabaciński and Atyaf Al-Tameemi
Electronics 2024, 13(13), 2544; https://doi.org/10.3390/electronics13132544 - 28 Jun 2024
Viewed by 1110
Abstract
In the literature, three-stage switching networks have been considered for nodes in elastic optical networks, where switches with spectrum conversion capability are placed in the first and third stages (wavelength–space–wavelength—WSW) or only in the second stage (space–wavelength–space—SWS). This paper proposes three-stage switching networks [...] Read more.
In the literature, three-stage switching networks have been considered for nodes in elastic optical networks, where switches with spectrum conversion capability are placed in the first and third stages (wavelength–space–wavelength—WSW) or only in the second stage (space–wavelength–space—SWS). This paper proposes three-stage switching networks where the switches with spectrum conversion functions are located only in the first stage (wavelength–space–space—WSS) or only in the third stage (space–space–wavelength—SSW). For these networks, the strict-sense non-blocking conditions are derived and proved, and the number of elements required for their construction is assessed. It turns out that the proposed networks can be constructed with 50% fewer tunable spectrum converters than in the WSW networks, and this reduction is even greater in the case of the SWS networks. Full article
(This article belongs to the Special Issue Optical Fiber Communication: Prospects and Applications)
Show Figures

Figure 1

12 pages, 1693 KB  
Article
Enhancing the Efficiency of Resilient Multipath-Routed Elastic Optical Networks: A Novel Approach for Coexisting Protected and Unprotected Services with Idle Slot Reuse
by Michael M. L. Cavalcanti, Gabriela W. Teixeira, Henrique A. Dinarte, Raul C. Almeida, Raouf Boutaba and Daniel A. R. Chaves
Sensors 2024, 24(12), 3965; https://doi.org/10.3390/s24123965 - 19 Jun 2024
Cited by 1 | Viewed by 1197
Abstract
In this paper, we investigate a scenario in which protected and unprotected services coexist in an elastic optical network under dynamic traffic. In the investigated scenario, unprotected services can reuse the reserved idle bandwidth to provide protection to the protected services. Under this [...] Read more.
In this paper, we investigate a scenario in which protected and unprotected services coexist in an elastic optical network under dynamic traffic. In the investigated scenario, unprotected services can reuse the reserved idle bandwidth to provide protection to the protected services. Under this scenario, we propose a new heuristic algorithm that enables such reuse as well as define and introduce a new assignment problem in elastic optical networks, named a Transmission Spectrum Assignment (T-SA) problem. In this paper, we consider a scenario in which services may be routed using the multipath routing approach. Additionally, protection using bandwidth squeezing is also considered. We assess our proposal through simulations on three different network topologies and compare our proposal against the classical protection approach, in which bandwidth reuse is not allowed. For the simulated range of network loads, the maximum (minimum) blocking probability reduction obtained by our proposal is approximately 48% (10%) in the European topology, 46% (7%) in the NSFNET topology, and 32% (6%) in the German topology. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop