Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,814)

Search Parameters:
Keywords = electrode functionalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 33768 KiB  
Article
Influence of Rust Layer on Corrosion-Critical Humidity in Outdoor Environments Based on Corrosion Sensors
by Qing Li, Xinyu Wang, Zibo Pei, Kui Xiao, Xiaojia Yang and Xuequn Cheng
Materials 2025, 18(10), 2299; https://doi.org/10.3390/ma18102299 (registering DOI) - 15 May 2025
Abstract
In this study, the Fe/Cu-based two-electrode corrosion monitoring technique was employed to monitor the long-term atmospheric corrosion of carbon steel at five different outdoor sites within the China National Environmental Corrosion Platform. Based on the fitted monitoring data, the variation trend of corrosion-critical [...] Read more.
In this study, the Fe/Cu-based two-electrode corrosion monitoring technique was employed to monitor the long-term atmospheric corrosion of carbon steel at five different outdoor sites within the China National Environmental Corrosion Platform. Based on the fitted monitoring data, the variation trend of corrosion-critical humidity as a function of exposure time at different monitoring locations was obtained. The cross-sectional rust layer of corrosion coupons from different experimental periods at each location was characterized using scanning electron microscopy and Raman spectroscopy to identify variations in the thickness and phase composition of the carbon steel rust layer. The influence of rust layer thickness and phase structure on the critical humidity of carbon steel in atmospheric environments was investigated. Finally, the corrosion resistance of weathering steel in Tianjin, China, was validated using corrosion monitoring techniques, and the corrosion mechanism of weathering steel was elucidated by analyzing the influence of the acquired rust layer phase structure on the critical humidity of carbon steel in atmospheric environments. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

11 pages, 947 KiB  
Article
Individualising Galvanic Vestibular Stimulation Further Improves Visuomotor Performance in Parkinson’s Disease
by Anjali Menon, Madhini Vigneswaran, Tina Zhang, Varsha Sreenivasan, Christina Kim and Martin J. McKeown
Bioengineering 2025, 12(5), 523; https://doi.org/10.3390/bioengineering12050523 - 14 May 2025
Abstract
Impaired motor function is a defining characteristic of Parkinson’s disease (PD). Galvanic vestibular stimulation (GVS) has been proposed as a potential non-invasive intervention to enhance motor performance; however, its efficacy depends on both stimulation parameters and electrode configuration. In this study, we examined [...] Read more.
Impaired motor function is a defining characteristic of Parkinson’s disease (PD). Galvanic vestibular stimulation (GVS) has been proposed as a potential non-invasive intervention to enhance motor performance; however, its efficacy depends on both stimulation parameters and electrode configuration. In this study, we examined the effects of two-pole and three-pole GVS configurations, utilising different stimulation parameters, on motor performance in individuals with PD. Twelve participants with PD were administered eight distinct subthreshold amplitude-modulated GVS stimuli, along with sham stimulation, while performing a visuomotor target tracking task. Analysis of tracking error demonstrated substantial inter-individual variability in response to different stimuli and electrode configurations. While the three-pole configuration yielded superior motor performance in some cases, the two-pole configuration was more effective in others. The most effective overall stimulus across all subjects, characterised by an envelope frequency of 30 Hz and a carrier frequency of 110 Hz, improved motor performance by 25% relative to the sham stimulus. Moreover, tailoring the stimulation parameters to the individual further enhanced performance by an additional 24%. These findings suggest that GVS can yield significant motor improvements in individuals with PD. Furthermore, individualised optimisation of stimulation parameters, including the selection of the appropriate electrode configuration, may further enhance therapeutic efficacy. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

15 pages, 4969 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2⁺ and Cu⁺ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
33 pages, 2654 KiB  
Article
A Portable and Affordable Four-Channel EEG System for Emotion Recognition with Self-Supervised Feature Learning
by Hao Luo, Haobo Li, Wei Tao, Yi Yang, Chio-In Ieong and Feng Wan
Mathematics 2025, 13(10), 1608; https://doi.org/10.3390/math13101608 - 14 May 2025
Abstract
Emotions play a pivotal role in shaping human decision-making, behavior, and physiological well-being. Electroencephalography (EEG)-based emotion recognition offers promising avenues for real-time self-monitoring and affective computing applications. However, existing commercial solutions are often hindered by high costs, complicated deployment processes, and limited reliability [...] Read more.
Emotions play a pivotal role in shaping human decision-making, behavior, and physiological well-being. Electroencephalography (EEG)-based emotion recognition offers promising avenues for real-time self-monitoring and affective computing applications. However, existing commercial solutions are often hindered by high costs, complicated deployment processes, and limited reliability in practical settings. To address these challenges, we propose a low-cost, self-adaptive wearable EEG system for emotion recognition through a hardware–algorithm co-design approach. The proposed system is a four-channel wireless EEG acquisition device supporting both dry and wet electrodes, with a component cost below USD 35. It features over 7 h of continuous operation, plug-and-play functionality, and modular expandability. At the algorithmic level, we introduce a self-supervised feature extraction framework that combines contrastive learning and masked prediction tasks, enabling robust emotional feature learning from a limited number of EEG channels with constrained signal quality. Our approach attains the highest performance of 60.2% accuracy and 59.4% Macro-F1 score on our proposed platform. Compared to conventional feature-based approaches, it demonstrates a maximum accuracy improvement of up to 20.4% using a multilayer perceptron classifier in our experiment. Full article
Show Figures

Figure 1

14 pages, 5585 KiB  
Article
Experimental Study on Distributed Measurement of Internal Pressure in Lithium-Ion Batteries Using Thin-Film Sensors
by Qingyun Liu, Xiuwu Wang, Jiangong Zhu, Guiwen Jiang, Xuezhe Wei and Haifeng Dai
World Electr. Veh. J. 2025, 16(5), 270; https://doi.org/10.3390/wevj16050270 - 14 May 2025
Abstract
With the rapid development of electric vehicles, the safety and reliability of lithium-ion batteries (LIBs), as their core energy storage units, have become increasingly prominent. The variation in internal battery pressure is closely related to critical issues such as thermal runaway, mechanical deformation, [...] Read more.
With the rapid development of electric vehicles, the safety and reliability of lithium-ion batteries (LIBs), as their core energy storage units, have become increasingly prominent. The variation in internal battery pressure is closely related to critical issues such as thermal runaway, mechanical deformation, and lifespan degradation. The non-uniform distribution of internal pressure may trigger localized hot spots or even thermal runaway, posing significant threats to vehicle safety. However, traditional external monitoring methods struggle to accurately reflect internal pressure data, and single-point external pressure measurements fail to capture the true internal state of the battery, particularly within battery modules. This limitation hinders efficient battery management. Addressing the application needs of electric vehicle power batteries, this study integrates thin-film pressure sensors into LIBs through the integrated functional electrode (IFE), enabling distributed in situ monitoring of internal pressure during long-term cycling. Compared to non-implanted benchmark batteries, this design does not compromise electrochemical performance. By analyzing the pressure distribution and evolution data during long-term cycling, the study reveals the dynamic patterns of internal pressure changes in LIBs, offering new solutions for safety warnings and performance optimization of electric vehicle power batteries. This research provides an innovative approach for the internal state monitoring of power batteries, significantly enhancing the safety and reliability of electric vehicle battery systems. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Diagnosis: Health and Safety)
Show Figures

Figure 1

13 pages, 2896 KiB  
Article
Individually Modified Microneedle Array for Minimal Invasive Multi-Electrolyte Monitoring
by Ketian Yu, Yukun Ma, Yiming Wei, Wanying Chen, Zhen Dai, Yu Cai, Xuesong Ye and Bo Liang
Biosensors 2025, 15(5), 310; https://doi.org/10.3390/bios15050310 - 12 May 2025
Viewed by 128
Abstract
Electrolytes play crucial roles in regulating nerve and muscle functions. Currently, microneedle technology enables real-time electrolyte monitoring through minimally invasive methods. However, due to the small size of microneedles, performing multi-layer modifications on individual microneedles and ensuring the integrity of these layers pose [...] Read more.
Electrolytes play crucial roles in regulating nerve and muscle functions. Currently, microneedle technology enables real-time electrolyte monitoring through minimally invasive methods. However, due to the small size of microneedles, performing multi-layer modifications on individual microneedles and ensuring the integrity of these layers pose significant challenges. Additionally, the puncture efficiency of the electrodes will be affected by the structure of microneedle array integration. To address these issues, we primarily focus on developing a multi-parameter ion monitoring system based on microneedle arrays. By optimizing the surface reconstruction of electrode substrates, the adhesion between the electrode surface and the modification layer was improved, enhancing the stability of the electrodes. Potassium, sodium, and calcium ion-selective electrodes based on microneedles were fabricated, demonstrating good sensitivity and linearity. To tackle the puncture efficiency of microneedle arrays, finite element simulation was employed to investigate the mechanical properties of different structural designs of microneedle arrays during skin insertion. Ultimately, an integrated microneedle array was designed and assembled, and a multi-parameter ion monitoring system was developed, validated through in vitro simulations and in vivo animal experiments. This research provides valuable insights into the development and advancement of minimally invasive, multi-parameter dynamic monitoring technologies in clinical settings. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

14 pages, 2078 KiB  
Article
A Microfluidic Device Integrating a Glucose Sensor and Calibration Function for Cell-Based Assays
by Laner Chen, Kenta Shinha, Hiroko Nakamura, Kikuo Komori and Hiroshi Kimura
Biosensors 2025, 15(5), 307; https://doi.org/10.3390/bios15050307 - 11 May 2025
Viewed by 229
Abstract
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell [...] Read more.
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell status through glucose consumption. The platform addresses the critical limitations of traditional cell assays, which typically rely on invasive, discontinuous methods. By combining enzyme-modified platinum electrodes within a microfluidic device, our biosensor can quantify dynamic changes in glucose concentration resulting from cellular metabolism. We have integrated a calibration function that corrects sensor drift, ensuring accurate and prolonged short-term measurement stability. In the validation experiments, the system successfully monitored glucose levels continuously for 20 h, demonstrating robust sensor performance and reliable glucose concentration predictions. Furthermore, in the cell toxicity assays using HepG2 cells exposed to varying concentrations of paraquat, the platform detected changes in glucose consumption, effectively quantifying the cellular toxicity responses. This capability highlights the device’s potential for accurately assessing the dynamic physiological conditions of the cells. Overall, our integrated platform significantly enhances cell-based assays by enabling continuous, quantitative, and non-destructive analysis, positioning it as a valuable tool for future drug development and biomedical research. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

18 pages, 2109 KiB  
Article
The Role of the Surface Functionalities in the Electrocatalytic Activity of Cytochrome C on Graphene-Based Materials
by Andrés Felipe Quintero-Jaime, Diego Cazorla-Amorós and Emilia Morallón
Nanomaterials 2025, 15(10), 722; https://doi.org/10.3390/nano15100722 - 11 May 2025
Viewed by 169
Abstract
The development of efficient electron transfer between enzymatic elements and the electrode is considered an important issue in the synthesis and design of bioelectrochemical devices. In this regard, the modification of the surface properties is an effective route to obtain a high-performance electrode [...] Read more.
The development of efficient electron transfer between enzymatic elements and the electrode is considered an important issue in the synthesis and design of bioelectrochemical devices. In this regard, the modification of the surface properties is an effective route to obtain a high-performance electrode using enzymatic elements. As we present here, understanding the role of surface functional groups generated by the electrochemical functionalization of graphene-based materials facilitates the design and optimization of effective electroactive bioelectrodes. In this sense, the surface chemistry directly influences the inherent electrocatalytic activity of cytochrome c (Cyt C) toward the electrochemical reduction of H2O2. Although the surface oxygen groups provide an immobilization matrix for the Cyt C in the pristine graphene oxide, the electrochemical functionalization with N and P species in one step significantly improves the electrocatalytic activity, since they may facilitate an optimal electrostatic interaction and orientation between the electrode material and the redox heme cofactor in the Cyt C, enhancing the electron transfer process. On the other hand, the lack of surface functional groups in the reduced graphene oxide does not favor the electron transfer with the Cyt C immobilized on the surface being completely inactive. Thus, the incorporation of surface groups using electrochemical functionalization with N and P species provokes a remarkable enhancement of the electrocatalytic activity of cytochrome c, up to four times more than the H2O2 reduction reaction. This demonstrated the effectiveness of the functionalization process and the impact in the electrochemical performance of Cyt C immobilized in graphene-based electrodes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

27 pages, 5530 KiB  
Article
Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Electronics 2025, 14(10), 1948; https://doi.org/10.3390/electronics14101948 - 10 May 2025
Viewed by 226
Abstract
Optoelectronic devices, which combine optics and electronics, are vital for converting light energy into electrical energy. Various solar cell technologies, such as dye-sensitized solar cells (DSSCs), silicon solar cells, and perovskite solar cells, among others, belong to this category. DSSCs have gained significant [...] Read more.
Optoelectronic devices, which combine optics and electronics, are vital for converting light energy into electrical energy. Various solar cell technologies, such as dye-sensitized solar cells (DSSCs), silicon solar cells, and perovskite solar cells, among others, belong to this category. DSSCs have gained significant attention due to their affordability, flexibility, and ability to function under low light conditions. The current research incorporates machine learning (ML) models to predict the performance of a modified Eu3+-doped Y2WO6/TiO2 photo-electrode DSSC. Experimental data were collected from the “Dryad Repository Database” to feed into the models, and a detailed data visualization analysis was performed to study the trends in the datasets. The support vector regression (SVR) and Random Forest regression (RFR) models were applied to predict the short-circuit current density (Jsc) and maximum power (Pmax) output of the device. Both models achieved reasonably accurate predictions, and the RFR model attained a better prediction response, with the percentage difference between the experimental data and model prediction being 0.73% and 1.01% for the Jsc and Pmax respectively, while the SVR attained a percentage difference of 1.22% and 3.54% for the Jsc and Pmax respectively. Full article
(This article belongs to the Special Issue Modeling and Design of Solar Cell Materials)
Show Figures

Graphical abstract

30 pages, 8581 KiB  
Article
Improvement of Surface Properties of Carbon Steel Through Electrospark Coatings from Multicomponent Hard Alloys
by Todor Penyashki, Georgi Kostadinov and Mara Kandeva
Materials 2025, 18(10), 2211; https://doi.org/10.3390/ma18102211 - 10 May 2025
Viewed by 203
Abstract
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4 [...] Read more.
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4C and TiB2. The variation in the roughness, thickness, composition, structure, microhardness and wear at the friction of the coatings as a function of the ratios between the bonding mass and the high-hardness components in the composition of the electrode and of the pulse energy for ESD has been studied. It has been established that with a content of the bonding mass in the electrode of 25–35%, coatings with improved adhesion and simultaneously higher hardness and toughness are obtained. Suitable electrode compositions and optimal pulse energy have been defined, which provide dense and uniform coatings with an increased amount of crystalline-amorphous structures, as well as intermetallic and wear-resistant phases, with thickness, roughness and microhardness that can be changed by the ESD modes in the ranges of δ = 8–65 µm, Ra = 1.5–7 µm, and HV 8.5–15.0 GPa, respectively, and minimal wear of the coated surfaces that is up to 5 times lower than that of the substrate and up to 1.5 times lower than that obtained with conventional WC-Co electrodes. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

21 pages, 5046 KiB  
Article
Samarium-Doped PbO2 Electrocatalysts for Environmental and Energy Applications: Theoretical Insight into the Mechanisms of Action Underlying Their Carbendazim Degradation and OER Properties
by Milica Kaluđerović, Slađana Savić, Danica Bajuk-Bogdanović, Aleksandar Z. Jovanović, Lazar Rakočević, Filip Vlahović, Jadranka Milikić and Dalibor Stanković
Processes 2025, 13(5), 1459; https://doi.org/10.3390/pr13051459 - 10 May 2025
Viewed by 441
Abstract
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. [...] Read more.
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. The Ti/Sb-SnO2/Sm-PbO2 electrode showed 2.5 times higher oxygen evolution potential activity than the Ti/Sb-SnO2/PbO2 electrode. Density Functional Theory was used to conduct first-principles calculations, and the obtained results indicated that Sm doping enhances the production of reactive oxygen species. The application of the Ti/Sb-SnO2/Sm-PbO2 electrode in carbendazim (CBZ) removal was investigated, since CBZ is a fungicide whose presence in the environment, including food, water, and soil, poses a threat. After 60 min of the treatment under optimized working parameters, the degradation rate of CBZ reached 94.2% in the presence of 7.2 g/L Na2SO4 with an applied current density of 10 mA/cm2 in an acidic medium (pH 4). Of the four investigated parameters, the current density had the most significant influence on the degradation process. At the same time, the initial pH value of the solution was shown to have the least impact on degradation efficiency. These results imply a potential use of the proposed treatment for CBZ removal from wastewater. Full article
Show Figures

Figure 1

10 pages, 1986 KiB  
Article
Tunable Structure and Properties of Co-Evaporated Co–C60 Nanocomposite Films
by Ziyang Gu, Yiting Gao, Zhou Li, Weihang Zou, Keming Li, Huan Xu, Zhu Xiao and Mei Fang
Nanomaterials 2025, 15(10), 715; https://doi.org/10.3390/nano15100715 - 9 May 2025
Viewed by 136
Abstract
Magnetic nanoparticles (NPs) hold great promise for both fundamental research and future applications due to their unique structural features, high specific surface area, and tailored physical properties. Here, we present a convenient thermal co-evaporation approach to deposit Co–C60 composite films with controlled composition, [...] Read more.
Magnetic nanoparticles (NPs) hold great promise for both fundamental research and future applications due to their unique structural features, high specific surface area, and tailored physical properties. Here, we present a convenient thermal co-evaporation approach to deposit Co–C60 composite films with controlled composition, structure, morphology, and tunable performances, specifically designed for spintronic device applications. By tuning the growth rates of Co and C60 during co-evaporation, the composition of the films can be tuned with different ratios. With a Co/C60 ratio of 5:1, ~300 nm clusters are formed in the films with increased coercivity compared with pure Co films, which is attributed to the interfaces in the composite film. The magnetoresistance (MR), however, becomes dominated by organic semiconductor C60 with ordinary magnetoresistance (OMAR). By increasing the composition of C60 to the ratio of 5:2, the particle diameter decreases while the height increases dramatically, forming magnetic electrodes and, thus, nano-organic spin valves (OSV) in the composite films with giant magnetoresistance (GMR). The work demonstrates a versatile approach to tailoring the structural and functional properties of magnetic NP-composite films for advanced spintronic applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

8 pages, 2287 KiB  
Communication
Lithiophilic Interlayer with Electrolyte-Reservoir and Dendrite-Buffer for High-Performance Lithium Metal Batteries
by Huasen Shen, Guoning Wu, Tingting Ma, Mengjun Li, Yunan Tian, Si Chen, Shaojun Cai and Zhaohuai Li
Nanomaterials 2025, 15(10), 710; https://doi.org/10.3390/nano15100710 - 9 May 2025
Viewed by 202
Abstract
Uneven local electric fields and limited nucleation sites at the reaction interface can lead to the formation of hazardous lithium (Li) dendrites, posing a significant safety risk and impeding the practical utilization of Li metal anodes (LMAs). Here, we present a method utilizing [...] Read more.
Uneven local electric fields and limited nucleation sites at the reaction interface can lead to the formation of hazardous lithium (Li) dendrites, posing a significant safety risk and impeding the practical utilization of Li metal anodes (LMAs). Here, we present a method utilizing atomic layer deposition (ALD) to create lithiophilic titanium nitride (TiN) sites on carbon nanotubes (CNTs) surfaces, integrated with nanocellulose to form a lithiophilic interlayer (NFCP@TN). This interlayer, which is highly flexible and electrolyte-wettable, functions as a current collector and host material for LMAs. The uniform deposition of Li is facilitated by the synergistic interplay of the lithiophilic active sites TiN, the conductive CNT network, and excellent electrolyte wettability of nanocellulose. As a result, Li preferentially adsorbs on TiN sheaths with lower diffusion barriers, leading to controlled nucleation sites and dendrite-free Li deposition. Furthermore, the well-designed NFCP@TN interlayer exhibits exceptional electrochemical performance and significantly extended cycle life when paired LMA with high areal capacity NCM811 (5.0 mAh cm−2) electrodes. Full article
(This article belongs to the Special Issue Design of Nanomaterials for Electrochemical Devices)
Show Figures

Figure 1

19 pages, 6091 KiB  
Article
Investigation of Gas Sensing Performance of CuO/Cu2O Thin Films as a Function of Au-NP Size for CO, CO2, and Hydrocarbons Mixtures
by Christian Maier, Larissa Egger, Anton Köck, Sören Becker, Jan Steffen Niehaus and Klaus Reichmann
Nanomaterials 2025, 15(10), 705; https://doi.org/10.3390/nano15100705 - 8 May 2025
Viewed by 250
Abstract
This study examines the impact of Au nanoparticles (Au-NPs) on the chemoresistive gas sensing properties as a function of particle size. The sensing material is composed of ultrathin CuO/Cu2O films, which are fabricated by either thermal deposition technology or spray pyrolysis. [...] Read more.
This study examines the impact of Au nanoparticles (Au-NPs) on the chemoresistive gas sensing properties as a function of particle size. The sensing material is composed of ultrathin CuO/Cu2O films, which are fabricated by either thermal deposition technology or spray pyrolysis. These are used on a silicon nitride (Si3N4) micro hotplate (µh) chip with Pt electrodes and heaters. The gas sensing material is then functionalised with Au-NP of varying sizes (12, 20, and 40 nm, checked by transmission electron microscopy) using drop coating technology. The finalised sensors are tested by measuring the electrical resistance against various target gases, including carbon monoxide (CO), carbon dioxide (CO2), and a mixture of hydrocarbons (HCMix), in order to evaluate any cross-sensitivity issues. While the sensor response is markedly contingent on the structural surface, our findings indicate that the dimensions of the Au-NPs exert a discernible influence on the sensor’s behaviour in response to varying target gases. The 50 nm thermally evaporated CuO/Cu2O layers exhibited the highest sensor response of 78% against 2000 ppm CO2. In order to gain further insight into the surface of the sensors, a scanning electron microscope (SEM) was employed, and to gain information about the composition, Raman spectroscopy was also utilised. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Graphical abstract

11 pages, 2307 KiB  
Article
Electrochemical Detection of Caffeic Acid on Diethyl 3,4-Dihydroxythiophene-2,5-Dicarboxylate-Modified Carbon Paste Electrode: Insights from Computational Analysis
by Surya Chethana Suresh, Gururaj Kudur Jayaprakash, Sunitha Mughalihalli Shivashankar, Rajendrachari Shashanka and Bhavana Rikhari
Electrochem 2025, 6(2), 19; https://doi.org/10.3390/electrochem6020019 - 8 May 2025
Viewed by 200
Abstract
This study presents the electrochemical detection of caffeic acid using an ester (Diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate)-modified carbon paste electrode (EMCPE). Caffeic acid, a naturally occurring hydroxycinnamic acid with antioxidant properties, was investigated due to its significance in food products and its potential health benefits. The [...] Read more.
This study presents the electrochemical detection of caffeic acid using an ester (Diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate)-modified carbon paste electrode (EMCPE). Caffeic acid, a naturally occurring hydroxycinnamic acid with antioxidant properties, was investigated due to its significance in food products and its potential health benefits. The modified electrode demonstrated enhanced sensitivity and selectivity for caffeic acid detection. Voltammetric methods were applied to evaluate the electrode performance. Results indicated that EMCPE has improved electron transfer kinetics and a lower detection limit compared unmodified electrode. Detection and quantification thresholds (LOD and LOQ) were found to be 3.12×106 M and 1.04×103 M. Density functional theory used to understand the electron transfer properties of Diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate. The study highlights the potential of EMCPE as a reliable and cost-effective sensor to quantify caffeic acid across different sample matrices. Full article
Show Figures

Figure 1

Back to TopTop