Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = electrolytic extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4839 KB  
Review
Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation
by Chuang Zhao, Yiheng Zhou, Yudong Liu, Bo Li, Zhaoqiang Li, Yu Zhang, Deqiang Wang, Ruilin Qiu, Qilin Shuai, Yuan Xue, Haoqi Wang, Xiaojuan Shen, Wu Wen, Di Wu and Qingsong Hua
Nanomaterials 2025, 15(18), 1439; https://doi.org/10.3390/nano15181439 - 18 Sep 2025
Viewed by 385
Abstract
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still [...] Read more.
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still faces multiple critical challenges that hinder its practical application, primarily including the ambiguous energy storage reaction mechanism (e.g., unresolved debates on core issues such as ion transport pathways and phase transition kinetics), dendrite growth and side reactions (e.g., the hydrogen evolution reaction and corrosion reaction) on the metallic Zn anode, inadequate intrinsic electrical conductivity of MnO2 cathodes (≈10−5 S·cm−1), active material dissolution, and structural collapse. This review begins by systematically summarizing the prevailing theoretical models that describe the energy storage reactions in Zn-Mn batteries, categorizing them into the Zn2+ insertion/extraction model, the conversion reaction involving MnOx dissolution–deposition, and the hybrid mechanism of H+/Zn2+ co-intercalation. Subsequently, we present a comprehensive discussion on Zn anode protection strategies, such as surface protective layer construction, 3D structure design, and electrolyte additive regulation. Furthermore, we focus on analyzing the performance optimization strategies for MnO2 cathodes, covering key pathways including metal ion doping (e.g., introduction of heteroions such as Al3+ and Ni2+), defect engineering (oxygen vacancy/cation vacancy regulation), structural topology optimization (layered/tunnel-type structure design), and composite modification with high-conductivity substrates (e.g., carbon nanotubes and graphene). Therefore, this review aims to establish a theoretical foundation and offer practical guidance for advancing both fundamental research and practical engineering of Zn-manganese oxide secondary batteries. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

21 pages, 2047 KB  
Systematic Review
The Identification and Management of Refeeding Syndrome in Inpatient Severely Acutely Malnourished Children Aged 6 to 59 Months in Sub-Saharan African Countries: A Systematic Review and Meta-Analysis
by Tshegofatso Mogase, Annette Van Onselen, Nidia Rodriguez-Sanchez and Stuart D. R. Galloway
Children 2025, 12(9), 1223; https://doi.org/10.3390/children12091223 - 12 Sep 2025
Viewed by 336
Abstract
Background: Refeeding syndrome is a potentially fatal complication that occurs in inpatient, severely acutely malnourished children during the early phase of nutritional management. Its early identification and management are critical to preventing adverse outcomes. Addressing refeeding syndrome in inpatient settings is critical in [...] Read more.
Background: Refeeding syndrome is a potentially fatal complication that occurs in inpatient, severely acutely malnourished children during the early phase of nutritional management. Its early identification and management are critical to preventing adverse outcomes. Addressing refeeding syndrome in inpatient settings is critical in Sub-Saharan Africa, where severe acute malnutrition is common and under-researched. Objective: To systematically review and meta-analyse current evidence on the identification and management of refeeding syndrome in hospitalised severely malnourished children (6 to 59 months) in Sub-Saharan Africa. Methods: A comprehensive search was conducted across academic databases such as PubMed and the Cochrane Library, from 2010 to 2024. Articles reporting on the identification and management of refeeding syndrome in inpatient children with severe acute malnutrition in Sub-Saharan Africa were included. Data extractions were performed by two reviewers using Rayyan software. A meta-analysis of proportions was conducted using STATA 19. Results: Nine studies were included. The identification and management of refeeding syndrome were impacted by the lack of a standardised definition. Significant heterogeneity (Q = 27.17, p < 0.001) was observed, indicating a significant variation in the prevalence rates ranging from 8.7% to 34.8%. Management strategies varied; most studies adhered to World Health Organisation guidelines for severe acute malnutrition but lacked specific protocols for refeeding syndrome. Conclusions: Evidence highlights the need for standardised, evidence-based and context-specific protocols for refeeding syndrome in children with severe acute malnutrition. Early screening, electrolyte monitoring, and cautious feeding remain important, although current evidence is of low certainty. Future prospective studies are needed to develop effective management strategies. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

16 pages, 1732 KB  
Article
Electrochemical Measures for Determining the Total Antioxidant Capacity of Açaí Pulp (Euterpe oleracea) at a Glassy Carbon Electrode
by Tabata N. Feijoó, Luis D. Loor-Urgilés, Danyelle M. de Araújo, Elisama V. dos Santos, Marília Oliveira Fonseca Goulart and Carlos A. Martínez-Huitle
Antioxidants 2025, 14(9), 1082; https://doi.org/10.3390/antiox14091082 - 3 Sep 2025
Viewed by 642
Abstract
Antioxidants, such as flavonoids, are influential secondary metabolites that play a significant role in regulating human health. Açaí, known for its potent antioxidant properties, has gained popularity in the nutritional field. However, there is a need for accurate methods to quantify its antioxidant [...] Read more.
Antioxidants, such as flavonoids, are influential secondary metabolites that play a significant role in regulating human health. Açaí, known for its potent antioxidant properties, has gained popularity in the nutritional field. However, there is a need for accurate methods to quantify its antioxidant capacity. Therefore, the goal of this investigation was to determine the total antioxidant capacity of frozen açaí pulp by applying the concept of the electrochemical quantitative index (EQI) using the cyclic voltammetry technique. The electrochemical response of ethanolic extracts obtained by a nonconventional ultrasound bath was investigated in the anodic region. The results clearly showed redox behavior at +0.37 V and +0.27 V (vs. Ag/AgCl) for the anodic and cathodic peaks, respectively, when evaluated by cyclic voltammetry at a glassy carbon (GC) electrode. By investigating a constant ethanolic extract concentration (0.2%) and analyzing the scan rate and supporting electrolyte effects, it was determined that the frozen açaí pulp extract presented an EQI of about 2.3 µA/V. Similarly, the concept of the EQI was extended to the use of the differential pulse voltammetry profile of a 0.2% ethanolic açaí extract on different supporting electrolytes, which showed that some experimental conditions needed improvement. Still, maintaining pH with a buffer solution in the anodic region is crucial to ensure reproducibility. The antioxidant capacity was also determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay to compare the electrochemical results. The Folin–Ciocalteu colorimetric test was applied to determine the total phenolic content of the extract. Full article
(This article belongs to the Special Issue The Electrochemical Tentacles of Oxidative Stress)
Show Figures

Graphical abstract

17 pages, 1892 KB  
Article
First Evidence of the Potential of Postharvest Hesperidin Treatments: Effects on Strawberry Quality During Storage
by Mihaela Iasmina Madalina Ilea, Huertas María Díaz-Mula, Christian Fernández-Picazo, Pedro Javier Zapata, Alicia Dobón-Suárez, Salvador Castillo and Fabián Guillén
Foods 2025, 14(16), 2837; https://doi.org/10.3390/foods14162837 - 16 Aug 2025
Viewed by 553
Abstract
Strawberries (Fragaria x ananassa Duch.) are highly perishable fruits that rapidly lose their quality properties, even when stored under cold conditions. The purpose of this research was to study the effectiveness of hesperidin (10, 50, and 100 mg L−1) to [...] Read more.
Strawberries (Fragaria x ananassa Duch.) are highly perishable fruits that rapidly lose their quality properties, even when stored under cold conditions. The purpose of this research was to study the effectiveness of hesperidin (10, 50, and 100 mg L−1) to preserve harvest-ripe strawberry quality during cold storage (2 °C). The data obtained indicate that hesperidin treatments were able to delay fruit metabolism and thus weight loss, while maintaining firmness and delaying colour evolution, obtaining positive results even with the lower concentrations applied. Strawberries treated with hesperidin exhibited a cell membrane with greater integrity, as reflected by a lower loss of electrolytes, resulting from reduced oxidation degradation. In addition, these strawberries maintained a higher concentration of chlorophylls in the calyx during storage, which could be due to a better antioxidant balance and a more effective preservation of their qualities. In this regard, the levels of bioactive substances, including total phenolics and the major anthocyanin compounds present in strawberries, were delayed in hesperidin-treated strawberries. This is the first report highlighting the effectiveness of hesperidin as a postharvest treatment in fruit, specifically in strawberries, delaying senescence. These results suggest that hesperidin, either by itself or in hesperidin-rich extracts, could become a valuable tool for postharvest fruit preservation. Full article
Show Figures

Figure 1

18 pages, 555 KB  
Review
Heat Stress and Determinants of Kidney Health Among Agricultural Workers in the United States: An Integrative Review
by Justin J. Zhao, Erwin W. Leyva, Kamomilani A. Wong, Merle Kataoka-Yahiro and Leorey N. Saligan
Int. J. Environ. Res. Public Health 2025, 22(8), 1268; https://doi.org/10.3390/ijerph22081268 - 13 Aug 2025
Viewed by 1190
Abstract
Agricultural workers in the United States (U.S.) are exposed to occupational heat stress, increasing their risk of adverse kidney outcomes. The aim of this integrative review was to explore the relationship between occupational heat stress and kidney health among U.S. agricultural workers. PubMed, [...] Read more.
Agricultural workers in the United States (U.S.) are exposed to occupational heat stress, increasing their risk of adverse kidney outcomes. The aim of this integrative review was to explore the relationship between occupational heat stress and kidney health among U.S. agricultural workers. PubMed, EMBASE, Scopus, and Google Scholar were searched for original research articles on this relationship among U.S. agricultural workers. Studies were screened and reviewed by two independent reviewers in three phases: title and abstract screening, full text screening, and data extraction. The search yielded 278 articles; 14 were included in the final analysis. Heat stress was commonly measured using core body temperature changes, heat index, and wet-bulb globe temperature. Acute kidney injury (AKI) incidence following a single work shift was up to 43%. Occupational heat stress and piece-rate compensation increased the odds for developing AKI. The use of cooling bandanas and water mixed with electrolytes are promising interventions for mitigating the effect of heat stress on kidney health outcomes. The results confirm that occupational heat stress influences kidney health for U.S. agricultural workers. The mechanisms of this relationship have not been fully elucidated. More studies exploring heat protection interventions are needed. Full article
(This article belongs to the Special Issue Health-Related Risk Caused by Occupational Environmental Exposure)
Show Figures

Figure 1

27 pages, 4829 KB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 773
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

20 pages, 8022 KB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 351
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

14 pages, 992 KB  
Article
On-Line Preconcentration of Selected Kynurenine Pathway Metabolites and Amino Acids in Urine via Pressure-Assisted Electrokinetic Injection in a Mixed Micelle System
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(13), 6125; https://doi.org/10.3390/ijms26136125 - 26 Jun 2025
Viewed by 421
Abstract
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was [...] Read more.
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was applied to key compounds of the kynurenine pathway, including L-tryptophan, kynurenine, 3-hydroxykynurenine, and kynurenic acid, as well as to the aromatic amino acids (AAs) L-tyrosine and L-phenylalanine. PAEKI was performed by electrokinetic injection for 2 min at −6.5 kV (reversed polarity) and 0.5 psi (3.45 kPa) using a fused silica capillary (50 cm in length, 50 µm inner diameter). The background electrolyte (BGE) consisted of 20 mM Na2B4O7 (pH 9.2), 2 mM Brij-35, 20 mM SDS, and 20% (v/v) methanol (MeOH). The limit of detection (LOD) using a diode array detector (DAD) was 1.2 ng/mL for kynurenine and ranged from 1.5 to 3.0 ng/mL for the other analytes. The application of PAEKI in conjunction with micellar electrokinetic capillary chromatography (MEKC) and solid-phase extraction (SPE) of artificial urine samples resulted in a 146-fold increase in signal intensity for kynurenines compared to that observed using the hydrodynamic injection (HDI) mode. The developed method demonstrates strong potential for determining kynurenine pathway metabolites in complex biological matrices. Full article
Show Figures

Figure 1

20 pages, 5514 KB  
Article
The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications
by Fida Hussain, Wanhinyal Dars, Rabia Kanwal, Jethanand Parmar, Ghansham Das, Ahmed Raza, Haresh Kumar, Rameez Mangi, Masroor Ali Bhellar, Ambedker Meghwar, Kashif Ali, Aneela Tahira, Muhammad Ali Bhatti, Elmuez Dawi, Rafat M. Ibrahim, Brigitte Vigolo and Zafar Hussain Ibupoto
Catalysts 2025, 15(6), 508; https://doi.org/10.3390/catal15060508 - 22 May 2025
Viewed by 4375
Abstract
This study employed a simple and cost-effective method for developing NiO with reduced optical band gaps that can be combined with nanostructured polyaniline (PANI). The composite systems were used as electrocatalytic and electrode materials in oxygen evolution reactions (OER) and in supercapacitor applications. [...] Read more.
This study employed a simple and cost-effective method for developing NiO with reduced optical band gaps that can be combined with nanostructured polyaniline (PANI). The composite systems were used as electrocatalytic and electrode materials in oxygen evolution reactions (OER) and in supercapacitor applications. We prepared the composite material in two stages: NiO was prepared with a reduced optical band gap by combining it with wheat peel extract. This was followed by the incorporation of PANI nanoparticles during the chemical oxidation polymerization process. A variety of structural characterization techniques were employed, including scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). A surface-modified NiO/PANI composite with enhanced surface area, fast charge transfer rate, and redox properties was produced. When NiO/PANI composites were tested in KOH electrolytic solution, 0.5 mL of wheat peel extract-mediated NiO/PANI demonstrated excellent electrochemical performance. It was found that the asymmetric supercapacitor (ASC) device had the highest specific capacitance of 404 Fg−1 at a current density of 4 Ag−1. In terms of energy density and power density, the ASC device was found to have 140 Whkg−1 and 3160 Wkg−1, respectively. The ASC device demonstrated excellent cycling stability and charge storage rates, with 97.9% capacitance retention and 86.9% columbic efficiency. For the OER process, an overpotential of 320 mV was observed at a current density of 10 mA/cm2. It was found that the NiO/PANI composite was highly durable for a period of 30 h. A proposed hypothesis suggested that reducing the optical band gap of NiO and making its composites with PANI could be an appealing approach to developing next-generation electrode materials for supercapacitors, batteries, and fuel cells. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Electrocatalysts)
Show Figures

Graphical abstract

17 pages, 5514 KB  
Article
Research on Aseptic Milk Extraction Technology and Mechanism of Slightly Acidic Electrolytic Water Coupled with Ultrasound Treatment
by Ye Liu, Qinggang Xie, Dongying Cui, Jiaqi Ren, Wanyu Zhao and Xiaoxi Xu
Foods 2025, 14(10), 1711; https://doi.org/10.3390/foods14101711 - 12 May 2025
Viewed by 641
Abstract
The use of low-temperature antibacterial technology is a processing method designed to preserve the biological activity of milk to the greatest extent. Traditional feeding and milking practices result in high levels of microbiological contamination of raw milk after extraction, mainly from cows and [...] Read more.
The use of low-temperature antibacterial technology is a processing method designed to preserve the biological activity of milk to the greatest extent. Traditional feeding and milking practices result in high levels of microbiological contamination of raw milk after extraction, mainly from cows and milking equipment, especially rubber cups. Ultrasonic treatment combined with antimicrobial agents combine cleaning and antibacterial technology, compared with traditional cleaning methods, more efficiently and in a environmentally friendly way. In this study, the technique was demonstrated to significantly reduce the total amount of bacteria in raw milk through simulation experiments on the surface of milking cups. It was shown that ultrasound-coupled slightly electrolytic water has a good potential for application in reducing bacterial contamination in the milk extraction process on farms. We investigated the synergistic mechanism of ultrasound (US) and slightly acidic electrolytic water (SAEW) and verified the bactericidal effect of milking cups. A 20 s treatment of milking cups with US (100 W) and SAEW (90 mg/L) led to an antibacterial rate of over 90%. The bactericidal mechanism causes fragmentation of the cell membrane of pathogenic bacteria, exudation of their intracellular contents such as nucleic acids and proteins, and increases in ROS. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 5073 KB  
Article
Study on Detection Method of Sulfamethazine Residues in Duck Blood Based on Surface-Enhanced Raman Spectroscopy
by Junshi Huang, Runhua Zhou, Jinlong Lin, Qi Chen, Ping Liu, Shuanggen Huang and Jinhui Zhao
Biosensors 2025, 15(5), 286; https://doi.org/10.3390/bios15050286 - 1 May 2025
Viewed by 629
Abstract
Sulfadimethazine (SM2) is widely used in livestock and poultry farming, but its improper use can pose a serious threat to human health. Therefore, the detection of SM2 residues in livestock and poultry products, including duck blood, is of great significance for food safety. [...] Read more.
Sulfadimethazine (SM2) is widely used in livestock and poultry farming, but its improper use can pose a serious threat to human health. Therefore, the detection of SM2 residues in livestock and poultry products, including duck blood, is of great significance for food safety. A rapid detection method for SM2 residues in duck blood based on surface-enhanced Raman spectroscopy (SERS) was proposed in this paper. Density functional theory (DFT) was employed to optimize the molecular structure of SM2 and perform theoretical Raman vibrational analysis, thereby identifying its characteristic peaks. The enhancement effects of four different substrates were compared. The sample pretreatment method and detection conditions were optimized through single-factor experiments, including the types and amounts of electrolyte aggregators, the amount of gold nanocolloids, and the adsorption time. Under optimal conditions, the SERS spectral data of the samples were preprocessed, and features were extracted to establish an optimal quantitative prediction model. The experimental results found that the adaptive iteratively reweighted penalized least-squares method (air-PLS) was the best preprocessing method, and the competitive adaptive reweighted sampling–multiple linear regression (CARS-MLR) model demonstrated the best prediction performance, with a coefficient of determination for the prediction set (Rp2) of 0.9817, a root mean square error of calibration (RMSEC) of 1.5539 mg/L, a relative prediction deviation (RPD) of 7.1953, and limits of quantification of 0.75 mg/L. The research demonstrated that the combination of SERS technology and chemometric methods was feasible and effective for the detection of SM2 residues in duck blood. Full article
(This article belongs to the Special Issue Optical Biosensors for Environmental Monitoring)
Show Figures

Figure 1

17 pages, 3053 KB  
Article
Therapeutic Effect of Lebanese Cannabis Oil Extract in the Management of Sodium Orthovanadate-Induced Nephrotoxicity in Rats
by Christabel Habchy, Alia Khalil, Wassim Shebaby, Diana Bylan, Marissa El Hage, Mona Saad, Selim Nasser, Wissam H. Faour and Mohamad Mroueh
Int. J. Mol. Sci. 2025, 26(9), 4142; https://doi.org/10.3390/ijms26094142 - 27 Apr 2025
Viewed by 937
Abstract
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current [...] Read more.
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current study investigated the therapeutic effect of Lebanese cannabis oil extract (COE) against sodium orthovanadate-induced nephrotoxicity both in vitro and in vivo. Sprague Dawley male rats were intraperitoneally injected with 10 mg/kg sodium orthovanadate for 10 days followed by 5 mg/kg; 10 mg/kg; or 20 mg/kg intraperitoneal injection of cannabis oil extract, starting on day 4 until day 10. The body weight of the rats was monitored during the study, and clinical parameters, including serum urea, creatinine, and electrolytes, as well as kidney and heart pathology, were measured. Conditionally immortalized cultured rat podocytes were exposed to either sodium orthovanadate or selective phosphatase inhibitors, including DUSPi (DUSP1/6 inhibitor) and SF1670 (PTEN inhibitor), in the presence or absence of cannabis oil extract. MTS and an in vitro scratch assay were used to assess podocyte cell viability and migration, respectively. Western blot analysis was used to evaluate the phosphorylation levels of AKT and p38 MAPK. Rats injected with sodium orthovanadate displayed a marked reduction in body weight and an increase in serum creatinine and urea in comparison to the control non-treated group. All doses of COE caused a significant decrease in serum urea, with a significant decrease in serum creatinine observed at a dose of 20 mg/kg. Moreover, the COE treatment of rats injected with orthovanadate (20 mg/kg) showed a marked reduction in renal vascular dilatation, scattered foci of acute tubular necrosis, and numerous mitoses in tubular cells compared to the sodium orthovanadate-treated group. The cell viability assay revealed that COE reversed cytotoxicity induced by sodium orthovanadate and specific phosphatase inhibitors (DUSPi and SF1670) in rat podocytes. The in vitro scratch assay showed that COE partially restored the migratory capacity of podocytes incubated with DUSPi and SF1670. Time-course and dose-dependent experiments showed that COE (1 μg/mL) induced a significant increase in phospho-(S473)-AKT, along with a decrease in phospho (T180 + Y182) P38 levels. The current results demonstrated that Lebanese cannabis oil possesses important kidney protective effects against sodium orthovanadate-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

18 pages, 6092 KB  
Article
VideoMamba Enhanced with Attention and Learnable Fourier Transform for Superheat Identification
by Yezi Hu, Xiaofang Chen, Lihui Cen, Zeyang Yin and Ziqing Deng
Processes 2025, 13(5), 1310; https://doi.org/10.3390/pr13051310 - 25 Apr 2025
Viewed by 558
Abstract
Superheat degree (SD) is an important indicator for identifying the status of aluminum electrolytic cells. The fire hole video of the aluminum electrolytic cell captured by an industrial camera is an important basis for identifying SD. This article proposes a novel method that [...] Read more.
Superheat degree (SD) is an important indicator for identifying the status of aluminum electrolytic cells. The fire hole video of the aluminum electrolytic cell captured by an industrial camera is an important basis for identifying SD. This article proposes a novel method that VideoMamba enhances with attention and learnable Fourier transform (CFVM) for SD identification. With a lower computational complexity and feature extraction capabilities comparable to transformers, VideoMamba offers the CFVM model a stronger feature extraction basis. The channel attention mechanism (CAM) block can achieve information exchange between channels. Through matrix eigenvalue manipulation, the learnable nonlinear Fourier transform (LNFT) block may guarantee stable convergence of the model. Furthermore, the LNFT block can efficiently use mixed frequency domain channels to capture global dependency information. The model is trained using the aluminum electrolysis fire hole dataset. Compared with recent fire hole identification models that primarily rely on neural networks, the method proposed in this paper is based on the concept of state space modeling, offering lower model complexity and enhanced feature extraction capability. Experimental results demonstrate that the proposed model achieves competitive performance in fire hole video identification tasks, reaching an identification accuracy of 85.7% on the test set. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

15 pages, 1268 KB  
Article
Strategies for Signal Amplification of Thyroid Hormones via Electromigration Techniques Coupled with UV Detection and Laser-Induced Fluorescence
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(8), 3708; https://doi.org/10.3390/ijms26083708 - 14 Apr 2025
Cited by 1 | Viewed by 554
Abstract
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) [...] Read more.
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) columns containing quaternary amine groups with a chloride counterion, were investigated for the simultaneous separation and signal amplification of free thyroid hormones (THs) in biological samples. Moreover, a sensitive method for the quantification of THs in selected biological samples using micellar electrokinetic capillary chromatography with LIF detection (MEKC-LIF) was developed. The THs present in biological samples (L-tyrosine, T2, T3, rT3, T4, and DIT) were successfully separated in less than 10 min. The analytes were separated following a derivatization procedure with fluorescein isothiocyanate isomer I (FITC). A background electrolyte (BGE) composed of 20 mM sodium tetraborate (Na2B4O7) and 20 mM sodium dodecyl sulphate (SDS) was employed. Key validation parameters such as linearity, precision, limits of detection (LOD), and limits of quantification (LOQ) were determined. The use of PAEKI for the electrophoretic determination of free THs demonstrates significant potential for monitoring these hormones in real urine samples due to its high sensitivity and efficiency. Full article
Show Figures

Graphical abstract

15 pages, 3549 KB  
Article
Rapid Determination of Thiourea Concentration in Copper Electrolyte
by Liqing Chen, Xiaofeng Yuan, Yulong Li, Zhenqian Zhang, Yangtao Xu, Wenqian Zhou and Yi Wang
Processes 2025, 13(4), 1092; https://doi.org/10.3390/pr13041092 - 5 Apr 2025
Viewed by 852
Abstract
Due to the characteristics of high salt and high acidity of the electrolyte and the chemical reaction between thiourea (Tu) and metal ions, it is still a problem to quickly and accurately detect Tu concentration in copper electrolyte. An improved spectrophotometric method has [...] Read more.
Due to the characteristics of high salt and high acidity of the electrolyte and the chemical reaction between thiourea (Tu) and metal ions, it is still a problem to quickly and accurately detect Tu concentration in copper electrolyte. An improved spectrophotometric method has been proposed by simplifying the extraction steps of the traditional extraction–spectrophotometry and reducing the dosage of extractant and buffer. The improved method, with a favorable R2 of 0.9991, great precision of 1.67% and excellent spiked recovery of 102.19%, was not affected by the presence of gelatin and copper ions. Moreover, based on the spectrophotometry, a colorimetric method for rapid detection of Tu concentration in copper electrolyte was proposed. Using the standard color card produced enabled the expeditious determination of the concentration range of Tu in copper electrolyte. Since the gray value of the standard color card is linearly related to the Tu concentration, it is feasible to determine the Tu concentration by measuring the gray value of the test strip, and its accuracy was verified by spectrophotometry. The colorimetric method has satisfactory results in industrial practice. This study provides a novel approach for the rapid detection of Tu concentration in the copper electrolysis industry. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop