Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,473)

Search Parameters:
Keywords = electromagnetic radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9419 KB  
Article
Initial-Offset-Control and Amplitude Regulation in Memristive Neural Network
by Hua Liu, Haijun Wang, Wenhui Zhang and Suling Zhang
Symmetry 2025, 17(10), 1682; https://doi.org/10.3390/sym17101682 - 8 Oct 2025
Abstract
Traditional Hopfield neural networks (HNNs) suffer from limitations in generating controllable chaotic dynamics, which are essential for applications in neuromorphic computing and secure communications. Memristors, with their memory-dependent nonlinear characteristics, provide a promising approach to regulate neuronal activities, yet systematic studies on attractor [...] Read more.
Traditional Hopfield neural networks (HNNs) suffer from limitations in generating controllable chaotic dynamics, which are essential for applications in neuromorphic computing and secure communications. Memristors, with their memory-dependent nonlinear characteristics, provide a promising approach to regulate neuronal activities, yet systematic studies on attractor offset behaviors remain scarce. In this study, we propose a fully memristive electromagnetic radiation neural network by incorporating three distinct memristors as external electromagnetic stimuli into an HNN. The parameters of the memristors were tuned to modulate chaotic oscillations, while variations in initial conditions were employed to explore multistability through bifurcation and basin stability analyses. The results demonstrate that the system enables large-scale amplitude control of chaotic signals via memristor parameter adjustments, allowing arbitrary scaling of attractor amplitudes. Various offset behaviors emerge, including parameter-driven symmetric double-scroll relocations in phase space and initial-condition-induced offset boosting that leads to extreme multistability. These dynamics were experimentally validated using an STM32-based electronic circuit, confirming precise amplitude and offset control. Furthermore, a multi-channel pseudo-random number generator (PRNG) was implemented, leveraging the initial-boosted offset to enhance security entropy. This offers a hardware-efficient chaotic solution for encrypted communication systems, demonstrating strong application potential. Full article
(This article belongs to the Topic A Real-World Application of Chaos Theory)
Show Figures

Figure 1

13 pages, 3651 KB  
Article
Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities
by Vicente Cisternas, Pablo Díaz, Ulises Guevara, David Laroze and Eduardo Cisternas
Materials 2025, 18(19), 4613; https://doi.org/10.3390/ma18194613 - 5 Oct 2025
Viewed by 188
Abstract
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is [...] Read more.
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is based on the wurtzite structure of pristine ZnO. We employ the Quantum Espresso package, using a fully unconstrained implementation of the generalized gradient approximation (GGA) with an additional U correction for exchange and correlation effects. We analyze the density of states, energy gaps, and absorption spectra for these doped systems, considering the limitations of a finite-size cell approximation. Rather than focusing on precise numerical values, we highlight the following two key aspects: the location of impurity-induced electronic states and the overall trends in optical properties across the eight systems, including pristine ZnO. Our results indicate that certain dopants introduce electronic levels within the band gap, which enhance optical absorption in the visible, near-infrared, and near-ultraviolet regions. For instance, Sn-doped ZnO shows a pronounced absorption peak at ∼2.5 eV, which is in the middle of the visible spectrum. In the case of Ag and Pd impurities, they lead to increased electromagnetic radiation absorption at the near ultra-violet spectrum. This represents a promising performance for efficient solar radiation absorption, both at the Earth’s surface and in outer space. Furthermore, Ga- and In-doped ZnO present bandgaps of ∼0.9 eV, promising an interesting performance in the near infrared region. These findings suggest potential applications in solar energy harvesting and selective sensors. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

32 pages, 2713 KB  
Review
Quantum and Nonlinear Metamaterials for the Optimization of Greenhouse Covers
by Chrysanthos Maraveas
AgriEngineering 2025, 7(10), 334; https://doi.org/10.3390/agriengineering7100334 - 4 Oct 2025
Viewed by 259
Abstract
Background: Greenhouses are pivotal to sustainable agriculture as they provide suitable conditions to support the growth of crops in unusable land such as arid areas. However, conventional greenhouse cover materials such as glass, polycarbonate (PC), and polyethylene (PE) sheets are limited in regulating [...] Read more.
Background: Greenhouses are pivotal to sustainable agriculture as they provide suitable conditions to support the growth of crops in unusable land such as arid areas. However, conventional greenhouse cover materials such as glass, polycarbonate (PC), and polyethylene (PE) sheets are limited in regulating internal conditions in the greenhouses based on environmental changes. Quantum and nonlinear metamaterials are emerging materials with the potential to optimize the covers and ensure appropriate regulation. Objective: This comprehensive review investigated the performance optimization of greenhouse covers through the potential application of nonlinear and quantum metamaterials as nano-additives, examining their effects on electromagnetic radiation management, crop growth enhancement, and temperature regulation within greenhouse systems. Method: The scoping review method was used, where 39 published articles were examined. Results: The review revealed that integrating nano-additives ensured that the greenhouse covers would block harmful near-infrared (NIR) radiation that generated heat while also optimizing for photosynthetically active radiation (PAR) to promote crop yields. Conclusions: The insights also indicated that the high sensitivity of the metamaterials would facilitate the regulation of the internal conditions within the greenhouses. However, challenges such as complex production processes that were not commercially scalable and the recyclability of the metamaterials were identified. Future work should further investigate pathways to produce hybrid greenhouse covers that integrate metamaterials with conventional materials to enhance scalability. Full article
Show Figures

Figure 1

22 pages, 3340 KB  
Article
Microstrip Patch Antenna for GNSS Applications
by Hatice-Andreea Topal and Teodor Lucian Grigorie
Appl. Sci. 2025, 15(19), 10663; https://doi.org/10.3390/app151910663 - 2 Oct 2025
Viewed by 156
Abstract
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a [...] Read more.
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a comparative evaluation of the materials used in the antenna design, assess the geometric configuration and analyze the key performance parameters of the proposed microstrip patch antenna. Prior to the numerical modeling and simulation process, a preliminary assessment was conducted to evaluate how different substrate materials influence antenna efficiency. For instance, a comparison between FR-4 and RT Duroid 5880 dielectric substrates revealed signal attenuation differences of approximately −1 dB at the target frequency. The numerical simulations were carried out using Ansys HFSS design. The antenna was mounted on a dielectric substrate, which was also mounted on a ground plane. The microstrip antenna was fed using a coaxial cable at a single point, strategically positioned to achieve circular polarization within the operating frequency band. The aim of this study is to design and analyze a microstrip antenna that operates within the previously specified frequency range, ensuring optimal impedance matching of 50 Ω with a return loss of S11 < −10 dB at the operating frequency (with these parameters also contributing to the definition of the antenna’s operational bandwidth). Furthermore, the antenna is required to provide a gain greater than 3 dB for integration into GNSS’ receivers and to achieve an Axial Ratio value below 3 dB in order to ensure circular polarization, thereby facilitating the antenna’s integration into GNSSs. Full article
Show Figures

Figure 1

16 pages, 9648 KB  
Article
A Novel Classification Framework for VLF/LF Lightning-Radiation Electric-Field Waveforms
by Wenxing Sun, Tingxiu Jiang, Duanjiao Li, Yun Zhang, Xinru Li, Yunlong Wang and Jiachen Gao
Atmosphere 2025, 16(10), 1130; https://doi.org/10.3390/atmos16101130 - 26 Sep 2025
Viewed by 220
Abstract
The classification of very-low-frequency and low-frequency (VLF/LF) lightning-radiation electric-field waveforms is of paramount importance for lightning-disaster prevention and mitigation. However, traditional waveform classification methods suffer from the complex characteristics of lightning waveforms, such as non-stationarity, strong noise interference, and feature coupling, limiting classification [...] Read more.
The classification of very-low-frequency and low-frequency (VLF/LF) lightning-radiation electric-field waveforms is of paramount importance for lightning-disaster prevention and mitigation. However, traditional waveform classification methods suffer from the complex characteristics of lightning waveforms, such as non-stationarity, strong noise interference, and feature coupling, limiting classification accuracy and generalization. To address this problem, a novel framework is proposed for VLF/LF lightning-radiated electric-field waveform classification. Firstly, an improved Kalman filter (IKF) is meticulously designed to eliminate possible high-frequency interferences (such as atmospheric noise, electromagnetic radiation from power systems, and electronic noise from measurement equipment) embedded within the waveforms based on the maximum entropy criterion. Subsequently, an attention-based multi-fusion convolutional neural network (AMCNN) is developed for waveform classification. In the AMCNN architecture, waveform information is comprehensively extracted and enhanced through an optimized feature fusion structure, which allows for a more thorough consideration of feature diversity, thereby significantly improving the classification accuracy. An actual dataset from Anhui province in China is used to validate the proposed classification framework. Experimental results demonstrate that our framework achieves a classification accuracy of 98.9% within a processing time of no more than 5.3 ms, proving its superior classification performance for lightning-radiation electric-field waveforms. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

11 pages, 2404 KB  
Communication
Development of a High-Temperature Co-Fe-Si-B Amorphous Wire Fluxgate Magnetometer for Downhole Attitude Measurement in MWD Systems at Temperatures up to 175 °C
by Bin Yan, Wanhua Zhu, Xin Zhuang, Zheng Lu and Guangyou Fang
Sensors 2025, 25(19), 5972; https://doi.org/10.3390/s25195972 - 26 Sep 2025
Viewed by 368
Abstract
Measurement While Drilling (MWD) systems require high-precision triaxial magnetometers for real-time downhole attitude sensing, yet conventional fluxgates fail to meet the stringent size, noise, bandwidth, and temperature demands of deep reservoirs (>175 °C). To bridge this gap, we present a miniaturized triaxial fluxgate [...] Read more.
Measurement While Drilling (MWD) systems require high-precision triaxial magnetometers for real-time downhole attitude sensing, yet conventional fluxgates fail to meet the stringent size, noise, bandwidth, and temperature demands of deep reservoirs (>175 °C). To bridge this gap, we present a miniaturized triaxial fluxgate magnetometer (23 × 23 × 21 mm3) leveraging Co-Fe-Si-B amorphous wire cores—a material selected for its near-zero magnetostriction and tunable magnetic anisotropy. The sensor achieves breakthrough performance: a 300 Hz bandwidth combined with noise levels below 200 pT/√Hz at 1 Hz when operating at 175 °C while maintaining full functionality with the probe surviving temperatures exceeding 200 °C. This advancement paves the way for more accurate wellbore positioning and steering in high-temperature hydrocarbon and geothermal reservoirs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 3618 KB  
Article
Electromagnetic Compatibility of Maglev Arc Discharge Interference on VDB Signals
by Xin Li, Chao Zhou, Yifang Tan, Yutao Tang and Hede Lu
Electronics 2025, 14(19), 3806; https://doi.org/10.3390/electronics14193806 - 25 Sep 2025
Viewed by 166
Abstract
Electromagnetic compatibility (EMC) impacts of arc discharge from medium-low speed maglev trains on the VHF Data Broadcast (VDB) link of the Ground-Based Augmentation System (GBAS) are systematically investigated. Considering that a single VDB station serves multiple runways, this study evaluates how different placements [...] Read more.
Electromagnetic compatibility (EMC) impacts of arc discharge from medium-low speed maglev trains on the VHF Data Broadcast (VDB) link of the Ground-Based Augmentation System (GBAS) are systematically investigated. Considering that a single VDB station serves multiple runways, this study evaluates how different placements of the VDB antenna relative to runway thresholds affect its susceptibility to maglev interference. Field measurements of maglev arc radiation under various operational conditions revealed a maximum radiation field strength of 57.76 dBμV/m at 113 MHz. Laboratory experiments further identified a minimum required signal-to-interference ratio (SIR) of 26 dB for reliable VDB signal decoding. Theoretical analyses demonstrate that maintaining a separation greater than 5.73 km between the maglev arc source and runway threshold is necessary to ensure signal integrity. The findings offer practical guidance for airport planning and electromagnetic protection design. Full article
Show Figures

Figure 1

22 pages, 2809 KB  
Article
Radiation Pattern Recovery from Tilted Orbital Sampling Measurements via Sparse Spherical Harmonic Expansion
by Miguel Labodía and Arturo Mediano
Electronics 2025, 14(19), 3755; https://doi.org/10.3390/electronics14193755 - 23 Sep 2025
Viewed by 167
Abstract
This paper proposes a reconstruction framework for estimating the far-field (FF) radiation patterns of large, heavy, or non-rotatable wireless-enabled systems. The method combines a tilted orbital sampling (ToS) strategy with sparse spherical harmonic (SH) expansion, compressed sensing (CS), and convex optimization (CO), thereby [...] Read more.
This paper proposes a reconstruction framework for estimating the far-field (FF) radiation patterns of large, heavy, or non-rotatable wireless-enabled systems. The method combines a tilted orbital sampling (ToS) strategy with sparse spherical harmonic (SH) expansion, compressed sensing (CS), and convex optimization (CO), thereby linking a mechanically constrained acquisition scheme with a mathematically efficient recovery process. The purpose of this integration is not only to reduce the number of measurements but also to retrieve the radiation information most relevant to Internet of Things (IoT) devices and bulky equipment that cannot be easily rotated within anechoic chambers. The framework is validated on two representative cases: a canonical half-wave dipole and a commercial Wi-Fi-enabled device. In the latter and more challenging case, accurate reconstruction is achieved with fewer than 30 SH coefficients and using less than 20% of the measurements required by a conventional full-sphere scan, with the normalized root-mean-square error remaining below 5%. Although inaccessible angular regions may be partially uncharacterized, such directions are of minor relevance for the intended operational coverage. The resulting SH-based representation can be seamlessly integrated into ray-tracing propagation simulators and electromagnetic optimization workflows, enabling efficient and application-oriented OTA characterization under realistic chamber constraints. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 2864 KB  
Review
Selective Inactivation Strategies for Vegetable Raw Materials: Regulating Microbial Communities to Ensure the Safety and Quality of Fermented Vegetables
by Lin Zhu, Mengke Cheng, Cuicui Xu, Rong Wang, Meng Zhang, Yufei Tao, Shanshan Qi and Wei Wei
Foods 2025, 14(19), 3291; https://doi.org/10.3390/foods14193291 - 23 Sep 2025
Viewed by 370
Abstract
Fermented vegetables, which are valued for their distinctive organoleptic properties and nutritional profile, are susceptible to quality deterioration during processing and storage because microorganisms inhabit vegetable raw materials. The metabolic processes of these microorganisms may induce texture degradation, chromatic alterations, flavor diminution, and [...] Read more.
Fermented vegetables, which are valued for their distinctive organoleptic properties and nutritional profile, are susceptible to quality deterioration during processing and storage because microorganisms inhabit vegetable raw materials. The metabolic processes of these microorganisms may induce texture degradation, chromatic alterations, flavor diminution, and spoilage. Conventional inactivation methods employing thermal sterilization or chemical preservatives achieve microbial control through nonselective inactivation, inevitably compromising the regional sensory characteristics conferred by indigenous fermentative microbiota. Recent advances in existing antimicrobial technologies offer promising alternatives for selective microbial management in fermented vegetable matrices. Existing modalities, including cold plasma, electromagnetic wave-based inactivation (e.g., photodynamic inactivation, pulsed light, catalytic infrared radiation, microwave, and radio frequency), natural essential oils, and lactic acid bacterial metabolites, demonstrate targeted pathogen inactivation while maintaining beneficial microbial consortia essential for quality preservation when properly optimized. This paper explores the applications, mechanisms, and targeted microbes of these technologies in fermented vegetable ingredients, aiming to provide a robust theoretical and practical framework for the use of selective inactivation strategies to manage the fermentation process. By assessing their impact on the initial microbial community, this review aims to guide the development of methods that ensure product safety while safeguarding the characteristic flavor and quality of fermented vegetables. Full article
Show Figures

Figure 1

16 pages, 8002 KB  
Article
A High-Gain Reconfigurable Beam-Switched Circular Array Antenna Based on Pentagonal Radiating Elements Fed by Mutual Coupling for Sub-6 GHz Wireless Application Systems
by Faouzi Rahmani, Moustapha El Bakkali, Aziz Dkiouak, Naima Amar Touhami, Abdelmounaim Belbachir Kchairi, Bousselham Samoudi and Laurent Canale
Electronics 2025, 14(18), 3701; https://doi.org/10.3390/electronics14183701 - 18 Sep 2025
Cited by 1 | Viewed by 365
Abstract
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around [...] Read more.
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around a central circular patch, which is excited through a coaxial feed. These radiating elements are linked by four circular segments, ensuring mutual coupling for effective operation. A systematic dimensional analysis has been conducted to optimize electromagnetic performance, resulting in a compact and efficient architecture. The beam reconfiguration is achieved through the control of four PIN diodes, which allow the main radiation beam to switch among ten different orientations in the azimuth plane. Specifically, the antenna supports eight directional states, oriented at 45° intervals, and two additional bidirectional states covering opposite directions. A prototype has been fabricated and experimentally validated, confirming the steering capability of ±40° in both the XZ and YZ planes. Performance evaluation shows a maximum gain of 9.29 dBi and efficiency levels ranging from 91% to 97%. Bandwidth varies across states, with 9.72% for S1–S7, 7.45% for S2–S8, and 4.61% for S9–S10. Overall, the proposed design demonstrates optimized bandwidth, gain, efficiency, and complete azimuthal coverage. Full article
Show Figures

Graphical abstract

17 pages, 430 KB  
Review
Effects of Photobiomodulation on Osteoarthritis from In Vivo and In Vitro Studies: A Narrative Review
by Ryo Kunimatsu, Ayaka Nakatani, Shuzo Sakata and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(18), 8997; https://doi.org/10.3390/ijms26188997 - 16 Sep 2025
Viewed by 988
Abstract
Osteoarthritis (OA) is an inflammatory disorder characterized by metabolic changes in the bone tissue, including the degeneration of hyaline cartilage (articular cartilage) and fibrocartilage (including the meniscus and labrum), sclerosis of the subchondral bone, and osteophyte formation. OA poses a major challenge for [...] Read more.
Osteoarthritis (OA) is an inflammatory disorder characterized by metabolic changes in the bone tissue, including the degeneration of hyaline cartilage (articular cartilage) and fibrocartilage (including the meniscus and labrum), sclerosis of the subchondral bone, and osteophyte formation. OA poses a major challenge for adults of all ages, leading to increased morbidity and decreased quality of life. The current conventional therapies mainly focus on pain control, with no definitive or regenerative therapies to reverse OA progression available. Lasers consist of electromagnetic waves generated by radiation emitted by an excited material. In medicine and dentistry, photobiomodulation by low-power laser therapy (photobiomodulation therapy [PBMT]) has been widely applied clinically to promote healing, regenerate tissue, modulate inflammation, and relieve pain. Basic studies have explored the regulation of OA manifestations and joint inflammation using PBMT, as well as the mechanisms of action involved, and clinical research has validated the beneficial effects of PBMT for patients with OA. However, the effects of PBM on OA and its mechanisms of action remain unknown. Herein, we review basic research that has examined the effects of PBMT on OA using in vitro and in vivo testing and discuss future challenges and prospects. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Graphical abstract

18 pages, 7904 KB  
Article
Microscopic Insight into Knudsen and Electromagnetic Effects on Thermal Conductivity of Closed Mesoporous Metal Gels
by Haiyan Yu, Ning Guo, Anqi Chen, Mingdong Li, Haochun Zhang and Mu Du
Gels 2025, 11(9), 739; https://doi.org/10.3390/gels11090739 - 15 Sep 2025
Viewed by 340
Abstract
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect [...] Read more.
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect and microscale electromagnetic interactions. Predicted thermal conductivity closely matched experimental results, with an average error of 5.35%. The results demonstrate that thermal conductivity decreases with porosity, increases with temperature, and varies with pore size, with a minimum of 17.47 W/(m·K) observed at ~1 μm. Variations in refractive index, extinction coefficient, and specific surface area exert negligible influence. Conductive heat transfer is suppressed under Knudsen-dominated conditions at small pore sizes. Electromagnetic analysis around the pore size corresponding to minimum conductivity reveals localized surface plasmon resonances and magnetic coupling at the gas–solid interface, which enhance radiative dissipation and further reduce thermal conductivity. Radiation dissipation efficiency increases with decreasing porosity and pore size. This model thus serves as a predictive tool for designing high-performance thermal insulation systems for elevated-temperature applications. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

19 pages, 4015 KB  
Article
A Detection Method of Novel Class for Radiation Source Individuals Based on Feature Distribution and Isolation Forest
by Qiang Pan, Lei Shi, Changzhao Feng, Yinan Li, Congcong Wang, Yuefan Du and Zhiyi Chen
Sensors 2025, 25(18), 5747; https://doi.org/10.3390/s25185747 - 15 Sep 2025
Viewed by 390
Abstract
Traditional specific emitter identification (SEI) systems often suffer significant performance degradation when confronted with previously unseen signal sources, underscoring the critical need for accurate detection and rejection of novel-class instances. To address this limitation, we propose an Integrated Deep Feature Representation and Isolation [...] Read more.
Traditional specific emitter identification (SEI) systems often suffer significant performance degradation when confronted with previously unseen signal sources, underscoring the critical need for accurate detection and rejection of novel-class instances. To address this limitation, we propose an Integrated Deep Feature Representation and Isolation Forest (IDFIF) method for identifying novel-class radiation emitters. IDFIF begins by employing a convolutional neural network (CNN) to extract embedding features from raw In-phase/Quadrature (IQ) signals, enhancing inter-class separability while suppressing intra-class variability. These deep features are then used to construct an unsupervised iForest that learns the statistical distribution of known classes, enabling the effective detection of anomalies via a threshold-based scoring mechanism. Experiments conducted on a real-world ADS-B dataset demonstrate that the proposed method achieves a novel-class detection accuracy of over 94%, significantly outperforming comparative methods. Furthermore, the method exhibits low sensitivity to known-class samples, thereby ensuring robustness and generalization under open-set conditions. The proposed IDFIF method is promising for deployment in challenging electromagnetic environments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 14833 KB  
Article
Assessment of Electromagnetic Exposure Levels for Humans from Electric Vehicle DC Charging Stations
by Shaowen Dong and Mai Lu
Sensors 2025, 25(18), 5735; https://doi.org/10.3390/s25185735 - 14 Sep 2025
Viewed by 1174
Abstract
The potential health risks of DC charging piles to human health were investigated by quantifying the internal electromagnetic exposure level. In this study, the transformer in the DC/DC circuit of a DC charging pile was selected as the radiation source, and two realistic [...] Read more.
The potential health risks of DC charging piles to human health were investigated by quantifying the internal electromagnetic exposure level. In this study, the transformer in the DC/DC circuit of a DC charging pile was selected as the radiation source, and two realistic human models (adult and child) were used as exposure subjects. A simulation model, including the vehicle body, charging pile, and transformer, was established using COMSOL(COMSOL Multiphysics 6.2) Multiphysics software to calculate the magnetic induction intensity (B-field) and electric field intensity (E-field) in various organs at distances of 0.1 m, 0.3 m, and 0.6 m from the charging pile. The results show that at 0.1 m, the peak B-field (1.91 µT) and E-field (447 mV/m) in the adult body were 1.91% and 2.07% of the ICNIRP occupational exposure limits, respectively, and 7.07% and 4.14% of the public exposure limits. For the child model, the peak electromagnetic exposure levels (2.31 µT and 259 mV/m) were only 8.56% and 2.40% of the public limits. Further evaluation of exposure levels for in-vehicle occupants during charging showed that the peak B-field and E-field for an adult driver and a child in the front passenger seat were 0.0225 × 10−2 µT, 0.0237 × 10−2 µT, 5.81 mV/m, and 5.82 mV/m, respectively, far below the ICNIRP public limits. Additionally, analyses at multiple frequency bands (85 kHz, 90 kHz, and 95 kHz) under a typical scenario (adult at 0.1 m from the charging pile) revealed that the B-field in the human body decreased with increasing frequency, while the E-field showed minimal variation due to shielding effects. All electromagnetic exposure levels were below both ICNIRP public and occupational limits, indicating the broad applicability of the results. Under normal operating conditions of DC charging piles, the electromagnetic exposure from the DC/DC transformer fully complies with safety standards and poses no threat to human health. This study provides a scientific basis for alleviating public concerns about the health risks of electromagnetic radiation from DC charging piles for electric vehicles. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

24 pages, 6726 KB  
Article
Wearable K Band Sensors for Telemonitoring and Telehealth and Telemedicine Systems
by Albert Sabban
Sensors 2025, 25(18), 5707; https://doi.org/10.3390/s25185707 - 12 Sep 2025
Viewed by 415
Abstract
Novel K band wearable sensors and antennas for Telemonitoring, Telehealth and Telemedicine Systems, Internet of Things (IoT) systems, and communication sensors are discussed in this paper. Only in a limited number of papers are K band sensors presented. One of the major goals [...] Read more.
Novel K band wearable sensors and antennas for Telemonitoring, Telehealth and Telemedicine Systems, Internet of Things (IoT) systems, and communication sensors are discussed in this paper. Only in a limited number of papers are K band sensors presented. One of the major goals in the evaluation of Telehealth and Telemedicine and wireless communication devices is the development of efficient compact low-cost antennas and sensors. The development of wideband efficient antennas is crucial to the evaluation of wideband and multiband efficient Telemonitoring, Telehealth and Telemedicine wearable devices. The advantage of the printed wearable antenna is that the feed and matching network can be etched on the same substrate as the printed radiating antenna. K band slot antennas and arrays are presented in this paper the sensors are compact, lightweight, efficient, and wideband. The antennas’ design parameters, and comparison between computation and measured electrical performance of the antennas, are presented in this paper. Fractal efficient antennas and sensors were evaluated to maximize the electrical characteristics of the communication and medical devices. This paper presents wideband printed antennas in frequencies from 16 GH to 26 GHz for Telemonitoring, Telehealth and Telemedicine Systems. The bandwidth of the K band fractal slot antennas and arrays ranges from 10% to 40%. The electrical characteristics of the new compact antennas in the vicinity of the patient body were measured and simulated by using electromagnetic simulation techniques. The gain of the new K band fractal antennas and slot arrays presented in this paper ranges from 3 dBi to 7.5 dBi with 90% efficiency. Full article
Show Figures

Figure 1

Back to TopTop