Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = electron beam melting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4411 KB  
Review
The Tribological Behavior of Electron Beam Powder Bed Fused Ti-6Al-4V: A Review
by Mohammad Sayem Bin Abdullah and Mamidala Ramulu
Metals 2025, 15(11), 1170; https://doi.org/10.3390/met15111170 (registering DOI) - 23 Oct 2025
Viewed by 100
Abstract
This article comprehensively reviews the tribological behavior of a Ti-6Al-4V alloy manufactured via electron beam powder bed fusion (EB-PBF), an additive manufacturing process for aerospace and biomedical applications. EB-PBF Ti-6Al-4V demonstrates wear resistance that is superior or comparable to conventional Ti-6Al-4V. The reported [...] Read more.
This article comprehensively reviews the tribological behavior of a Ti-6Al-4V alloy manufactured via electron beam powder bed fusion (EB-PBF), an additive manufacturing process for aerospace and biomedical applications. EB-PBF Ti-6Al-4V demonstrates wear resistance that is superior or comparable to conventional Ti-6Al-4V. The reported average friction coefficient ranges between ~0.22 and ~0.75 during sliding wear in dry and lubricated conditions against metallic and ceramic counterparts when loading 1–50 N under varied surface and heat treatment conditions, and between 1.29 and 2.2 during fretting wear against EB-PBF Ti-6Al-4V itself. The corresponding average specific wear rates show a broad range between ~8.20 × 10−5 mm3/Nm and ~1.30 × 10−3 mm3/Nm during sliding wear. Lubrication reduces the wear rates and/or the friction coefficient. Wear resistance can be improved via machining and heat treatment. Wear anisotropy is reported and primarily attributed to microhardness variations, which can be mitigated through lubrication and post-processing. The effects of applied load and frequency on EB-PBF Ti-6Al-4V are also discussed. The wear resistance at elevated temperatures shows a mixed trend that depends on the counterpart material and the testing methods. Wear mechanisms involve oxide tribo-layer formation, abrasive wear, and adhesive wear. Current limitations, future research directions, and a standardization framework are also discussed. Full article
Show Figures

Figure 1

29 pages, 2258 KB  
Review
Powder Bed Fabrication of Copper: A Comprehensive Literature Review
by Vi Ho, Leila Ladani, Jafar Razmi, Samira Gruber, Anthony Bruce Murphy, Cherry Chen, Daniel East and Elena Lopez
Metals 2025, 15(10), 1114; https://doi.org/10.3390/met15101114 - 8 Oct 2025
Viewed by 969
Abstract
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper [...] Read more.
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper limits energy absorption, thereby resulting in a narrow processing window. Although optimized parameters can yield relative densities above 97%, issues such as keyhole porosity, incomplete melting, and anisotropy remain concerns. Green lasers, with higher absorptivity in copper, offer broader process windows and enable more consistent fabrication of high-density parts with superior electrical conductivity, often reaching or exceeding 99% relative density and 100% International Annealed Copper Standard (IACS). Mechanical properties, including tensile and yield strength, are also improved, though challenges remain in surface finish and geometrical resolution. In contrast, Electron Beam Powder Bed Fusion (EB-PBF) uses high-energy electron beams in a vacuum, eliminating oxidation and leveraging copper’s high conductivity to achieve high energy absorption at lower volumetric energy densities (~80 J/mm3). This results in consistently high relative densities (>99.5%) and excellent electrical and thermal conductivity, with additional benefits including faster scanning speeds and in situ monitoring capabilities. However, EB-PBF processes in general face their own limitations, such as surface roughness and powder smoking. This paper provides a comprehensive review of the current state of laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) powder bed fusion processes for the additive manufacturing of copper, summarizing key trends, material properties, and process innovations. Both approaches continue to evolve, with ongoing research aimed at refining these technologies to enable the reliable and efficient additive manufacturing of high-performance copper components. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

26 pages, 11935 KB  
Article
Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk and Joanna Zielińska-Szwajka
Materials 2025, 18(19), 4605; https://doi.org/10.3390/ma18194605 - 4 Oct 2025
Viewed by 565
Abstract
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high [...] Read more.
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high loads in sheet metal forming. This article presents the results of friction tests using the bending under tension friction tribotester. Low-carbon DC01 steel sheets were used as the test material. The main goal of the study was to determine the effect of lubricant modification by adding MoS2 and SiO2 particles and the modification of 145Cr6 steel countersamples on the coefficient of friction (CoF), changes in friction-induced surface roughness and friction mechanisms. The surfaces of the countersamples were modified using electron beam melting and the ion implantation of lead (IPb). It was found that increasing the SiO2 and MoS2 content in DC01/145Cr6 and DC01/IPb contacts under base oil lubrication conditions resulted in a decrease in the CoF value. For the countersample subjected to electron beam melting, considering all friction conditions, the CoF decreased between 31.9% and 37.5%. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 11844 KB  
Article
Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions
by Tomasz Trzepieciński, Krzysztof Szwajka, Valmir Dias Luiz, Joanna Zielińska-Szwajka and Marek Szewczyk
Materials 2025, 18(19), 4534; https://doi.org/10.3390/ma18194534 - 29 Sep 2025
Viewed by 392
Abstract
Control of the friction process in stretch-forming conditions, when creating sheet metal, is essential for obtaining components of the quality required. This paper presents an approach to modelling the friction phenomenon at the rounded edges of stamping dies. The aim of the study [...] Read more.
Control of the friction process in stretch-forming conditions, when creating sheet metal, is essential for obtaining components of the quality required. This paper presents an approach to modelling the friction phenomenon at the rounded edges of stamping dies. The aim of the study is to compare the coefficient of friction (CoF) determined from numerous analytical models available in the literature. Experimental studies were conducted using self-developed bending under tension friction testing apparatus. The test material was low-carbon DC01 steel sheeting. Tests were conducted under lubricated conditions, using industrial oil intended for deep drawing operations. The surfaces of countersamples made of 145Cr6 substrate were modified using the ion implantation of Pb (IOPb) and electron beam melting processes. Variation in the CoF in BUT tests was related to continuous deformation-induced changes in surface topography and changes in the mechanical properties of sheet metal due to the work-hardening phenomenon. Under friction testing with a stationary countersample, the largest increase in average roughness (by 19%) was found for the DC01/IOPb friction pair. The friction process caused a significant decrease in kurtosis values. The results show that the difference between the highest and lowest CoF values, determined for the analytical models considered, was approximately 40%. Full article
Show Figures

Figure 1

15 pages, 13719 KB  
Article
Spot Melting Strategy for Contour Melting in Electron Beam Powder Bed Fusion
by Tobias Kupfer, Lukas Spano, Sebastian Pohl, Carolin Körner and Matthias Markl
J. Manuf. Mater. Process. 2025, 9(9), 303; https://doi.org/10.3390/jmmp9090303 - 4 Sep 2025
Viewed by 738
Abstract
Spot melting is an emerging alternative to traditional line melting in electron beam powder bed fusion, dividing a layer into thousands of individual spots. This method allows for an almost infinite number of spot arrangements and spot melting sequences to tailor material and [...] Read more.
Spot melting is an emerging alternative to traditional line melting in electron beam powder bed fusion, dividing a layer into thousands of individual spots. This method allows for an almost infinite number of spot arrangements and spot melting sequences to tailor material and part properties. To enhance the productivity of spot melting, the number of spots can be reduced by increasing the beam diameter. However, this results in rough surfaces due to the staircase effect. The classical approach to counteract these effects is to melt a contour that surrounds the infill area. Creating effective contours is challenging because the melted area ought to cover the artifacts from the staircase effect and avoid porosity in the transition area between the infill and contour, all while minimizing additional energy and melt time. In this work, we propose an algorithm for generating a spot melting sequence for contour lines surrounding the infill area. Additionally, we compare three different approaches for combining the spot melting of infill and contour areas, each utilizing a combination of large infill spots and small contour spots. The quality of the contours is evaluated based on optical inspection as well as the porosity between infill and contour using electron optical images, balanced against the additional energy input. The most suitable approach is used to build a complex brake caliper. Full article
(This article belongs to the Special Issue Advances in Powder Bed Fusion Technologies)
Show Figures

Graphical abstract

13 pages, 3614 KB  
Article
Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
by Xuanjing Zhang, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue and Xidong Hui
Metals 2025, 15(9), 982; https://doi.org/10.3390/met15090982 - 2 Sep 2025
Viewed by 580
Abstract
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This [...] Read more.
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This study introduces an innovative purification method combining droplet electron-beam melting (EBM) with centrifugal directional solidification. Through this advanced EBM technique, we successfully produced ultrapure DZ125 superalloy with nitrogen content reduced below 5 ppm and total O + N + S content below 10 ppm. Most significantly, the process nearly eliminated Hf oxides from the reverts, meeting the stringent purity standards for DZ125 superalloy. We conducted a comprehensive analysis of inclusion morphology and composition in three distinct regions: the top slag layer, final solidification zone, and interior section of the ingot processed at varying EBM power levels. Our findings reveal that MC-type carbides at the slag–crucible interface were formed. There are HfO2, TaC, and Al2O3 in the final solidification zone, with notable encapsulation of HfO2 particulates within Al2O3 particles; and few HfO2 and Al2O3 inclusions exist in the ingot interior. It is also found that increasing EBM power from 36 kW to 46 kW significantly improved impurity removal efficiency, as evidenced by substantial reductions in both inclusion quantity and size. This enhanced purification stems from two primary mechanisms: (1) flotation of inclusions during EBM melting, facilitated by Marangoni convection, droplet stirring effects, and centrifugal forces generated by ingot rotation; and (2) decomposition of stable oxides enabled by the high-energy density characteristic of EBM and high-vacuum processing environment. This combined approach demonstrates superior capability in overcoming the limitations of traditional refining methods, particularly for challenging Hf oxide removal, while establishing an effective pathway for superalloy revert recycling. Full article
Show Figures

Figure 1

36 pages, 14298 KB  
Review
Constructing Hetero-Microstructures in Additively Manufactured High-Performance High-Entropy Alloys
by Yuanshu Zhao, Zhibin Wu, Yongkun Mu, Yuefei Jia, Yandong Jia and Gang Wang
Entropy 2025, 27(9), 917; https://doi.org/10.3390/e27090917 - 29 Aug 2025
Viewed by 746
Abstract
High-entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as [...] Read more.
High-entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as an effective strategy to overcome this challenge. With the rapid advancement of additive manufacturing (AM) technologies, their unique ability to fabricate complex, spatially controlled, and non-equilibrium microstructures offers unprecedented opportunities for tailoring heterostructures in HEAs with high precision. This review highlights recent progress in utilizing AM to engineer heterogeneous microstructures in high-performance HEAs. It systematically examines the multiscale heterogeneities induced by the thermal cycling effects inherent to AM techniques such as selective laser melting (SLM) and electron beam melting (EBM). The review further discusses the critical role of these heterostructures in enhancing the synergy between strength and ductility, as well as improving work-hardening behavior. AM enables the design-driven fabrication of tailored microstructures, signaling a shift from traditional “performance-driven” alloy design paradigms toward a new model centered on “microstructural control”. In summary, additive manufacturing provides an ideal platform for constructing heterogeneous HEAs and holds significant promise for advancing high-performance alloy systems. Its integration into alloy design represents both a valuable theoretical framework and a practical pathway for developing next-generation structural materials with multiple performance attributes. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

20 pages, 691 KB  
Review
Alloy Selection and Manufacturing Technologies for Total Ankle Arthroplasty: A Narrative Review
by Kishen Mitra, Arun K. Movva, Michael O. Sohn, Joshua M. Tennyson, Grayson M. Talaski, Samuel B. Adams and Albert T. Anastasio
Materials 2025, 18(16), 3770; https://doi.org/10.3390/ma18163770 - 11 Aug 2025
Cited by 1 | Viewed by 687
Abstract
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but [...] Read more.
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but present metal ion release concerns, while titanium alloys (Ti6Al4V) optimize biocompatibility with elastic modulus values (101–113 GPa) closer to bone, despite tribological limitations. Novel β-titanium formulations (Ti-35Nb-7Zr-5Ta, Ti10Mo6Zr4Sn3Nb) eliminate toxic aluminum and vanadium components while achieving lower elastic modulus values (50–85 GPa) that better match cortical bone properties. Manufacturing has transitioned from traditional methods (investment casting, forging, CNC machining) toward additive manufacturing technologies. Selective laser melting and electron beam melting enable patient-specific geometries, controlled porosity, and optimized microstructures, though challenges remain with residual stresses, surface finish requirements, and post-processing needs. Emerging biodegradable materials, composite structures, and hybrid implant designs represent promising future directions for addressing current material limitations. This review provides evidence-based insights for alloy selection and manufacturing approaches, emphasizing the critical role of materials engineering in TAA implant performance and clinical outcomes. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys (2nd Edition))
Show Figures

Graphical abstract

34 pages, 22828 KB  
Article
Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach
by Yuchen Xin, Jianglu Liu, Yaming Shi, Zina Cheng, Yang Liu, Lei Gao, Huanhuan Zhang, Haohang Ji, Tianrui Han, Shenghui Guo, Shubiao Yin and Qiuni Zhao
Metals 2025, 15(8), 897; https://doi.org/10.3390/met15080897 - 11 Aug 2025
Viewed by 781
Abstract
During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), [...] Read more.
During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K. Full article
Show Figures

Figure 1

33 pages, 3776 KB  
Review
The Role of Additive Manufacturing in Dental Implant Production—A Narrative Literature Review
by Ján Duplák, Darina Dupláková, Maryna Yeromina, Samuel Mikuláško and Jozef Török
Sci 2025, 7(3), 109; https://doi.org/10.3390/sci7030109 - 3 Aug 2025
Viewed by 1832
Abstract
This narrative review explores the role of additive manufacturing (AM) technologies in the production of dental implants, focusing on materials and key AM methods. The study discusses several materials used in implant fabrication, including porous titanium, trabecular tantalum, zirconium dioxide, polymers, and composite [...] Read more.
This narrative review explores the role of additive manufacturing (AM) technologies in the production of dental implants, focusing on materials and key AM methods. The study discusses several materials used in implant fabrication, including porous titanium, trabecular tantalum, zirconium dioxide, polymers, and composite materials. These materials are evaluated for their mechanical properties, biocompatibility, and suitability for AM processes. Additionally, the review examines the main AM technologies used in dental implant production, such as selective laser melting (SLM), electron beam melting (EBM), stereolithography (SLA), selective laser sintering (SLS), and direct metal laser sintering (DMLS). These technologies are compared based on their accuracy, material limitations, customization potential, and applicability in dental practice. The final section presents a data source analysis of the Web of Science and Scopus databases, based on keyword searches. The analysis evaluates the research trends using three criteria: publication category, document type, and year of publication. This provides an insight into the evolution and current trends in the field of additive manufacturing for dental implants. The findings highlight the growing importance of AM technologies in producing customized and efficient dental implants. Full article
Show Figures

Figure 1

15 pages, 4071 KB  
Article
Microstructural Characterisation of Bi-Ag-Ti Solder Alloy and Evaluation of Wettability on Ceramic and Composite Substrates Joined via Indirect Electron Beam Heating in Vacuum
by Mikulas Sloboda, Roman Kolenak, Tomas Melus, Peter Gogola, Matej Pasak, Daniel Drimal and Jaromir Drapala
Materials 2025, 18(15), 3634; https://doi.org/10.3390/ma18153634 - 1 Aug 2025
Viewed by 454
Abstract
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of [...] Read more.
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of a bismuth matrix containing silver lamellae. Titanium, acting as an active element, positively influenced the interaction between the solder and the joined materials. SiC and Ni-SiC substrates were soldered at temperatures of 750 °C, 850 °C, and 950 °C. Measurements of wettability angles indicated that the lowest value (20°) was achieved with SiC substrates at 950 °C. A temperature of 750 °C appeared to be the least suitable for both substrates and was entirely unsuitable for Ni-SiC. It was also observed that the Bi11Ag3Ti solder wetted the SiC substrates more effectively than Ni-SiC substrates. The optimal working temperature for this solder was determined to be 950 °C. The shear strength of the joints soldered with the Bi11Ag3Ti alloy was 23.5 MPa for the Al2O3/Ni-SiC joint and 9 MPa for the SiC/Ni-SiC joint. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

130 pages, 2839 KB  
Review
Issues Relative to the Welding of Nickel and Its Alloys
by Adam Rylski and Krzysztof Siczek
Materials 2025, 18(15), 3433; https://doi.org/10.3390/ma18153433 - 22 Jul 2025
Viewed by 1069
Abstract
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni [...] Read more.
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni or Ni-based alloys frequently require welding realized, inter alia, via methods using electric arc and beam power. Tungsten inert gas (TIG) and Electron-beam welding (EBW) have been utilized most often. Friction stir welding (FSW) is the most promising solid-state welding technique for connecting Ni and its alloys. The primary weldability issues related to Ni and its alloys are porosity, as well as hot and warm cracking. CP Ni exhibits superior weldability. It is vulnerable to porosity and cracking during the solidification of the weld metal. Typically, SSS alloys demonstrate superior weldability when compared to PS Ni alloys; however, both types may experience weld metal solidification cracking, liquation cracking in the partially melted and heat-affected zones, as well as ductility-dip cracking (DDC). Furthermore, PS alloys are prone to strain-age cracking (SAC). The weldability of specialty Ni alloys is limited, and brazing might provide a solution. Employing appropriate filler metal, welding settings, and minimal restraint can reduce or avert cracking. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 8242 KB  
Article
Quasi-In Situ EBSD Investigation of Variant Evolution and Twin Formation in a Hot Isostatic Pressing-Treated Additively-Manufactured Titanium Alloy Under Tensile Loading
by Fengli Zhu, Jiahong Liang, Guojian Cao, Aihan Feng, Hao Wang, Shoujiang Qu and Daolun Chen
Materials 2025, 18(13), 3169; https://doi.org/10.3390/ma18133169 - 3 Jul 2025
Viewed by 851
Abstract
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated [...] Read more.
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated via selective electron beam melting (SEBM). The alloy exhibits a dual-phase (α+β) microstructure, where six distinct α variants are formed through the β→α phase transformation following the Burgers orientation relationship. Variant selection during AM leads to a non-uniform distribution of these α variants, with α6 (22.3%) dominating due to preferential growth. Analysis of the prismatic slip Schmid factor reveals that α4–α6 variants, with higher Schmid factors (>0.45), primarily undergo prismatic slip, while α1–α3 variants, with lower Schmid factors (<0.3), rely on basal or pyramidal slip and twinning for plastic deformation. In-grain misorientation axis (IGMA) analysis further reveals strain-dependent slip transitions: pyramidal slip is activated in α1–α3 variants at lower strains, while prismatic slip becomes the dominant deformation mechanism in α4–α6 variants at higher strains. Additionally, deformation twins, primarily {10–12}<1–101> extension twins (7.1%), contribute to the plasticity of hard-oriented α variants. These findings significantly enhance the understanding of the orientation-dependent deformation mechanisms in HIPed TA15 alloy and provide a crucial basis for optimizing the performance of additively-manufactured titanium alloys. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

31 pages, 3471 KB  
Review
Advances in the Additive Manufacturing of Superalloys
by Antonio del Bosque, Pablo Fernández-Arias and Diego Vergara
J. Manuf. Mater. Process. 2025, 9(7), 215; https://doi.org/10.3390/jmmp9070215 - 25 Jun 2025
Cited by 1 | Viewed by 2949
Abstract
This study presents a bibliometric analysis of the evolution and research trends in the additive manufacturing (AM) of superalloys over the last decade (2015–2025). The review follows a structured methodology based on the PRISMA 2020 protocol, utilizing data from the Scopus and Web [...] Read more.
This study presents a bibliometric analysis of the evolution and research trends in the additive manufacturing (AM) of superalloys over the last decade (2015–2025). The review follows a structured methodology based on the PRISMA 2020 protocol, utilizing data from the Scopus and Web of Science (WoS) databases. Particular attention is devoted to the intricate process–structure–property relationships and the specific behavioral trends associated with different superalloy families, namely Ni-based, Co-based, and Fe–Ni-based systems. The findings reveal a substantial growth in scientific output, with the United States and China leading contributions and an increasing trend in international collaboration. Key research areas include process optimization, microstructural evolution and control, mechanical property assessment, and defect minimization. The study highlights the pivotal role of technologies such as laser powder bed fusion, electron beam melting, and directed energy deposition in the fabrication of high-performance components. Additionally, emerging trends point to the integration of machine learning and artificial intelligence for real-time quality monitoring and manufacturing parameter optimization. Despite these advancements, challenges such as anisotropic properties, porosity issues, and process sustainability remain critical for both industrial applications and future academic research in superalloys. Full article
Show Figures

Figure 1

56 pages, 2573 KB  
Review
A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation
by Usman Aziz, Marion McAfee, Ioannis Manolakis, Nick Timmons and David Tormey
Materials 2025, 18(12), 2870; https://doi.org/10.3390/ma18122870 - 17 Jun 2025
Cited by 4 | Viewed by 1840
Abstract
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), [...] Read more.
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM) remains challenged by inherent process-related defects such as residual stresses, porosity, anisotropy, and surface roughness. This review critically examines these AM techniques, focusing on optimizing key manufacturing parameters, mitigating defects, and implementing effective post-processing treatments. This review highlights how process parameters including laser power, energy density, scanning strategy, layer thickness, build orientation, and preheating conditions directly affect microstructural evolution, mechanical properties, and defect formation in AM-fabricated 316/316L stainless steel. Comparative analysis reveals that SLM excels in achieving refined microstructures and high precision, although it is prone to residual stress accumulation and porosity. DED, on the other hand, offers flexibility for large-scale manufacturing but struggles with surface finish and mechanical property consistency. EBM effectively reduces thermal-induced residual stresses due to its sustained high preheating temperatures (typically maintained between 700 °C and 850 °C throughout the build process) and vacuum environment, but it faces limitations related to resolution, cost-effectiveness, and material applicability. Additionally, this review aligns AM techniques with specific defect reduction strategies, emphasizing the importance of post-processing methods such as heat treatment and hot isostatic pressing (HIP). These approaches enhance structural integrity by refining microstructure, reducing residual stresses, and minimizing porosity. By providing a comprehensive framework that connects AM techniques optimization strategies, this review serves as a valuable resource for academic and industry professionals. It underscores the necessity of process standardization and real-time monitoring to improve the reliability and consistency of AM-produced 316/316L stainless steel components. A targeted approach to these challenges will be crucial in advancing AM technologies to meet the stringent performance requirements of various high-value industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop