Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (35,447)

Search Parameters:
Keywords = electronic effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2162 KB  
Article
Synthesis and Purification of [Eu(BA)4(pip)] Rare-Earth Molecular Crystals
by Xiangtai Xi, Wenli Fan, Jun Huang, Haoyang Chen, Huan Chen, Zhengkun Fu and Zhenglong Zhang
Nanomaterials 2025, 15(17), 1348; https://doi.org/10.3390/nano15171348 (registering DOI) - 2 Sep 2025
Abstract
Europium mononuclear complexes are able to form organic molecular crystals by aggregation of molecules through non-covalent bonding interactions. These crystals have many unique optical properties. However, this kind of crystal still faces some difficulties and challenges in the process of research and application, [...] Read more.
Europium mononuclear complexes are able to form organic molecular crystals by aggregation of molecules through non-covalent bonding interactions. These crystals have many unique optical properties. However, this kind of crystal still faces some difficulties and challenges in the process of research and application, such as the high difficulty of synthesis and purification, and the difficulty of spectral property modulation. In this work, an europium-containing rare-earth molecular crystal material [Eu(BA)4(pip)], was prepared via a solvothermal method. It is characterized by low melting point, low polarity, stable structure, high luminescence intensity, and has the potential for the preparation of quantum optical devices. After that, optimized the structure of the molecular crystals by petroleum ether solvent. Through the recrystallization process, a uniform and continuous film was formed, which resulted with a more regular surface morphology, and the changes in the optimized crystal structure had an effect on the europium ion electron-leap energy level, the fluorescence emission spectra also showed higher fluorescence resolving ratio. This study particular emphasis on enhancing the quality of [Eu(BA)4(pip)] molecular crystals and investigating their impact on their spectral properties. Full article
Show Figures

Graphical abstract

9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 (registering DOI) - 2 Sep 2025
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

21 pages, 2924 KB  
Article
Feasibility Study on Using Calcium Lignosulfonate-Modified Loess for Landfill Leachate Filtration and Seepage Control
by Jinjun Guo, Wenle Hu and Shixu Zhang
ChemEngineering 2025, 9(5), 96; https://doi.org/10.3390/chemengineering9050096 (registering DOI) - 2 Sep 2025
Abstract
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to [...] Read more.
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to investigate its effects on loess permeability via a series of laboratory tests. This study focused on the influence of varying dosages of calcium lignosulfonate (CLS) on loess permeability, along with its capacity to adsorb and immobilize heavy metal ions. Microscale characterization techniques, including Zeta potential analysis, X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM), were employed to investigate the impermeability mechanisms of CLS-modified loess and its adsorption behavior toward heavy metals. The results indicate that the permeability coefficient of loess decreases significantly with increasing compaction, while higher leachate concentrations lead to a notable increase in permeability. At a compaction degree of 0.90, the permeability coefficient was reduced to 8 × 10−8 cm/s. In contrast, under conditions of maximum leachate concentration, the permeability coefficient rose markedly to 1.5 × 10−4 cm/s. Additionally, increasing the dosage of the compacted loess stabilizer (CLS) effectively reduced the permeability coefficient of the modified loess to 7.1 × 10−5 cm/s, indicating improved impermeability and enhanced resistance to contaminant migration. With the prolonged infiltration time of landfill leachate, the removal efficiency of Pb2+ gradually decreases and stabilizes, while the Pb2+ removal efficiency of the modified loess increased by approximately 40%. CLS-modified loess, through multiple mechanisms, reduces the fluid flow pathways and enhances its adsorption capacity for Pb2+, thereby improving the soil’s protection against heavy metal contamination. While these results demonstrate the potential of CLS-modified loess as a sustainable landfill liner material, the findings are based on controlled laboratory conditions with Pb2+ as the sole target contaminant. Future work should evaluate long-term performance under field conditions, including seasonal wetting–drying and freeze–thaw cycles, and investigate multi-metal systems to validate the broader applicability of this modification technique. Full article
Show Figures

Figure 1

35 pages, 9984 KB  
Review
Recent Progress of Liquid Metal-Based Electromagnetic Shielding Materials
by Jialu Suo, Li Guan, Peng Chen, Yujie Zhu, Mengmeng Lin, Yuanhua Hu, Zhen Liu, Shijie Han, Shixuan Han, Zhongyi Bai, Xiaoqin Guo, Biao Zhao and Rui Zhang
Nanomaterials 2025, 15(17), 1346; https://doi.org/10.3390/nano15171346 - 1 Sep 2025
Abstract
Electromagnetic shielding materials are pivotal for suppressing electromagnetic radiation and mitigating potential health risks that electronic devices may pose to humans. Beyond health protection, they also hold significant strategic value in safeguarding national information security and maintaining stability. In the research of electromagnetic [...] Read more.
Electromagnetic shielding materials are pivotal for suppressing electromagnetic radiation and mitigating potential health risks that electronic devices may pose to humans. Beyond health protection, they also hold significant strategic value in safeguarding national information security and maintaining stability. In the research of electromagnetic shielding materials, continuous technological advancements and growing application demands have driven the emergence of various novel materials. Among these, liquid metal (LM) exhibits outstanding properties—including exceptional electrical conductivity, excellent fluidity, and superior deformability—which endow it with substantial potential for application in electromagnetic shielding. Looking ahead, with the continuous advancement in related technologies, liquid metal-based electromagnetic shielding materials are expected to provide effective solutions to key challenges such as electromagnetic pollution and interference. This contribution synthesizes the latest literature. First, it clarifies the nomenclature and classification of liquid metals, as well as the fundamental framework for electromagnetic shielding. Then, it systematically distills recent research advances based on four key design motifs. These motifs include monolithic liquid metal (LM) scaffolds, LM/conductive-filler blends, LM/magnetic particle composites, and architectured multifunctional architectures. Finally, this review identifies current bottlenecks in the field and outlines directions for future development, which aim to achieve ultra-lightweight, broadband, and intelligent LM-based electromagnetic shields. Full article
Show Figures

Figure 1

21 pages, 16141 KB  
Article
Low-Latitude Ionospheric Anomalies During Geomagnetic Storm on 10–12 October 2024
by Plamen Mukhtarov and Rumiana Bojilova
Universe 2025, 11(9), 295; https://doi.org/10.3390/universe11090295 - 1 Sep 2025
Abstract
This research examines in detail the behavior of the Equatorial Ionization Anomaly (EIA) during a severe geomagnetic storm that occurred on 10–11 October 2024. The global data of Total Electron Content (TEC) represented by relative deviation, giving information about the variations compared to [...] Read more.
This research examines in detail the behavior of the Equatorial Ionization Anomaly (EIA) during a severe geomagnetic storm that occurred on 10–11 October 2024. The global data of Total Electron Content (TEC) represented by relative deviation, giving information about the variations compared to quiet conditions, were used. The main attention is paid to the appearance of an additional “fountain effect” under the action of disturbed dynamo currents and the vertical drift of the ionospheric plasma caused by them. The results show that the area in which a positive response (increase) of TEC is observed occurs in an area corresponding to local time around 18–20 h (longitude around 60 °W) at magnetic latitudes ±30° and during the storm shifts westward to around 180 °W. The westward drift of the storm-induced “fountain effect” is moving at a speed much slower than the Earth’s rotation speed. As a result, the area of positive TEC response (vertical upward drift) and the area of negative response (vertical downward drift) are localized in both nighttime and daytime conditions. In this investigation, an example of a very similar geomagnetic storm registered on 25 September 1998 is given for comparison, in which a similar stationing of the storm-induced EIA was observed at longitudes around 180 °E. Full article
(This article belongs to the Section Space Science)
21 pages, 1551 KB  
Article
Excitonic States in GaAs/AlxGa1−xAs Quantum Wells: Direct Coulomb Interaction Modeling via Finite Element Electrostatics and Parametric Analysis Under Impurity and Field Effects
by Fabian Andres Castaño, David Laroze and Carlos Alberto Duque
Nanomaterials 2025, 15(17), 1345; https://doi.org/10.3390/nano15171345 - 1 Sep 2025
Abstract
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron [...] Read more.
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron and hole wavefunctions are computed by directly solving the Schrödinger equation using the finite element method in cylindrical coordinates, without assuming trial forms. To evaluate the exciton binding energy, the implementation and comparison of two independent approaches were performed: a numerical integration method based on elliptic function corrections, and a novel finite element electrostatic formulation using COMSOL Multiphysics v5.6. The latter computes the Coulomb interaction by solving Poisson’s equation with the hole charge distribution and integrating the resulting potential over the electron density. Both methods agree within 1% and capture the spatial and field-induced modifications in excitonic properties. The results show that quantum confinement enhances binding in narrow wells, while donor impurities and electric fields reduce binding via spatial separation of carriers. Magnetic fields counteract this effect by providing radial confinement. The FEM-based electrostatic method demonstrates high spatial accuracy, computational efficiency, and flexibility for complex heterostructures, making it a promising tool for exciton modeling in low-dimensional systems. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

16 pages, 4614 KB  
Article
Influence of Plasma Assistance on EB-PVD TBC Coating Thickness Distribution and Morphology
by Grzegorz Maciaszek, Krzysztof Cioch, Andrzej Nowotnik and Damian Nabel
Materials 2025, 18(17), 4109; https://doi.org/10.3390/ma18174109 (registering DOI) - 1 Sep 2025
Abstract
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a [...] Read more.
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a plasma environment during the deposition of the ceramic top coat onto a metallic substrate. The objective was to assess how plasma assistance influences the microstructure and thickness distribution of 7% wt. yttria-stabilised zirconia (YSZ) thermal barrier coatings (TBCs). Coatings were deposited with and without plasma assistance to enable a direct comparison. The thickness uniformity and columnar morphology of the 7YSZ top coats were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the deposited coatings were verified by the scratch test method. The results demonstrate that, in the presence of plasma, columnar grains become more uniformly spaced and exhibit sharper, well-defined boundaries even at reduced substrate temperatures. XRD analysis confirmed that plasma-assisted EB-PVD processes allow for maintaining the desired tetragonal phase of YSZ without inducing secondary phases or unwanted texture changes. These findings indicate that plasma-assisted EB-PVD can achieve desirable coating characteristics (uniform thickness and optimised columnar structure) more efficiently, offering potential advantages for high-temperature applications in aerospace and power-generation industries. Continued development of the EB-PVD process with the assistance of plasma generation could further improve deposition rates and TBC performance, underscoring the promising future of HC-assisted EB-PVD technology. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

29 pages, 38336 KB  
Article
Control and Design of a Quasi-Y-Source Inverter for Vehicle-to-Grid Applications in Virtual Power Plants
by Rafael Santos, Guilherme Gomes Leite and Flávio Alessandro Serrão Gonçalves
Processes 2025, 13(9), 2800; https://doi.org/10.3390/pr13092800 - 1 Sep 2025
Abstract
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power [...] Read more.
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power transfer using Electric Vehicles (EVs) to supply power to the utility grid, businesses, and homes, thereby acting as distributed energy resources. The proposed QS-YSI topology supports both V2G and G2V operation while providing reactive power compensation and enabling the decoupled tracking of active power (P) and reactive power (Q), demonstrating the capability of EVs to return energy to the grid and to provide ancillary services such as power factor correction. The key contributions are a detailed control design methodology that includes pulsating DC-link voltage regulation, inverter output current reference tracking in the synchronous dq reference frame considering DC-link voltage dynamics, and a modified Pulse Width Modulation (PWM) technique for effective decoupling of DC link and inverter output current control. Finally, the feasibility and validity of the proposed approach are demonstrated through simulations of the complete system under nominal conditions and experiments conducted considering a small-scale prototype. Full article
(This article belongs to the Special Issue Advances in Power Converters in Energy and Microgrid Systems)
Show Figures

Figure 1

16 pages, 2251 KB  
Article
Matching Network Design for Ultrasonic Guided Wave Interdigital Transducers
by Lorenzo Capineri
Sensors 2025, 25(17), 5401; https://doi.org/10.3390/s25175401 (registering DOI) - 1 Sep 2025
Abstract
Ultrasonic guided wave interdigital transducers realized with piezoelectric materials are of interest for structural health monitoring systems because of their capability of performing Lamb wave mode selection with respect to single-element transducers. Besides this advantage, the coverage of large areas with a minimum [...] Read more.
Ultrasonic guided wave interdigital transducers realized with piezoelectric materials are of interest for structural health monitoring systems because of their capability of performing Lamb wave mode selection with respect to single-element transducers. Besides this advantage, the coverage of large areas with a minimum number of elements is an important challenge and the problem of efficient excitation with integrated electronics must be solved. This work proposes an electrical matching network topology made of L and C passive components that can be designed for the trade-off between electrical to mechanical conversion efficiency and bandwidth. The network circuit is analyzed considering the equivalent transducer impedance and the output impedance of the driving electronics. The design rules derived by the transfer function analysis are described and a case study for a piezopolymer IDT is presented. Finally, with the implementation of the integrated matching network with the connector of the IDT, the effect of cable capacitance is minimized. In conclusion this article is a contribution to the study of using IDT efficiently and in a versatile mode for different electronic front-ends that usually operate at low power supply voltage. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

24 pages, 8518 KB  
Article
Two-Dimensional Materials for Raman Thermometry on Power Electronic Devices
by Mohammed Boussekri, Lucie Frogé, Raphael Sommet, Julie Cholet, Dominique Carisetti, Bruno Dlubak, Eva Desgué, Patrick Garabedian, Pierre Legagneux, Nicolas Sarazin, Mathieu Moreau, David Brunel, Pierre Seneor, Etienne Carré, Marie-Blandine Martin, Vincent Renaudin and Tony Moinet
Nanomaterials 2025, 15(17), 1344; https://doi.org/10.3390/nano15171344 - 1 Sep 2025
Abstract
Raman thermometry is a powerful technique for sub-microscale thermal measurements on semiconductor-based devices, provided that the active region remains accessible and is not obscured by metallization. Since pure metals do not exhibit Raman scattering, traditional Raman thermometry becomes ineffective in such cases. To [...] Read more.
Raman thermometry is a powerful technique for sub-microscale thermal measurements on semiconductor-based devices, provided that the active region remains accessible and is not obscured by metallization. Since pure metals do not exhibit Raman scattering, traditional Raman thermometry becomes ineffective in such cases. To overcome this limitation, we propose the use of atomically thin Two-Dimensional materials as local temperature sensors. These materials generate Raman spectra at the nanoscale, enabling highly precise absolute surface temperature measurements. In this study, we investigate the feasibility and effectiveness of this approach by applying it to power devices, including a calibrated gold resistor and an SiC Junction Barrier Schottky (JBS) diode. We assess the processing challenges and measurement reliability of 2D materials for thermal characterization. To validate our findings, we complement Raman thermometry with thermoreflectance measurements, which are well suited for metallized surfaces. For example, on the serpentine resistor, Raman thermometry applied to the 2D material yielded a thermal resistance of 22.099 °C/W, while thermoreflectance on the metallic surface measured 21.898 °C/W. This close agreement suggests good thermal conductance at the metal/2D material interface. The results demonstrate the potential of integrating 2D materials as effective nanoscale temperature probes, offering new insights into thermal management strategies for advanced electronic components. Additionally, thermal simulations are conducted to further analyze the thermal response of these devices under operational conditions. Furthermore, we investigate two 2D material integration methods, transfer and direct growth, and evaluate them through measured thermal resistances for the SiC JBS diode, highlighting the influence of the deposition technique on thermal performance. Full article
Show Figures

Graphical abstract

14 pages, 3054 KB  
Article
Mechanically Robust and Conductive Gelatin/Glucose Hydrogels Enabled by the Hofmeister Effect for Flexible Strain Sensors
by Wei Sang, Xu Yang, Hui Li, Xiaoxu Liang and Hongyao Ding
Gels 2025, 11(9), 694; https://doi.org/10.3390/gels11090694 (registering DOI) - 1 Sep 2025
Abstract
Conductive hydrogels are attractive for flexible electronics; however, achieving high mechanical strength and conductivity simultaneously remains challenging. Herein, we present a facile strategy to fabricate a tough and conductive hydrogel by immersing a physically crosslinked gelatin/glucose hydrogel in an aqueous sodium citrate. The [...] Read more.
Conductive hydrogels are attractive for flexible electronics; however, achieving high mechanical strength and conductivity simultaneously remains challenging. Herein, we present a facile strategy to fabricate a tough and conductive hydrogel by immersing a physically crosslinked gelatin/glucose hydrogel in an aqueous sodium citrate. The introduction of sodium citrate induced multiple physical interactions via the Hofmeister effect, which synergistically reinforced the hydrogel network. The resulting hydrogel exhibited excellent mechanical properties, with a fracture strength of 2.7 MPa, a fracture strain of 932%, and a toughness of 9.5 MJ/m3. Moreover, the incorporation of free ions imparted excellent ionic conductivity of 0.97 S/m. A resistive strain sensor based on this hydrogel showed a linear and sensitive response over a wide strain range and stable performance under repeated loading–unloading cycles. These features enabled accurate and reliable monitoring of various human movements. This work offers an effective strategy for designing hydrogels with both high strength and conductivity for flexible and wearable electronics. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Figure 1

17 pages, 5055 KB  
Article
Removal of Copper (II) from Aqueous Solutions Using Silica Xerogel as Sorbent: Adsorption Properties and Mechanism
by Ammaeva Shanaz, Isaev Abdulgalim, Schubert Richard, Pankov Ilya and Talanov Valery
Colloids Interfaces 2025, 9(5), 58; https://doi.org/10.3390/colloids9050058 (registering DOI) - 1 Sep 2025
Abstract
The contamination of water resources with heavy metals creates problems for using it as a source of drinking water. Adsorption is one of the most promising methods for heavy metal ion removal from natural and wastewater. The process of removing copper (II) from [...] Read more.
The contamination of water resources with heavy metals creates problems for using it as a source of drinking water. Adsorption is one of the most promising methods for heavy metal ion removal from natural and wastewater. The process of removing copper (II) from aqueous solutions using SiO2 xerogel as an adsorbent has been studied. The xerogel was thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and argon adsorption–desorption isotherms, revealing an amorphous structure with a high surface area (~347 m2/g) and uniform mesoporosity (2–14 nm pore size). The surface chemistry, dominated by silanol groups, was confirmed by XPS analysis. The adsorption process is influenced by electrostatic interactions between the positively charged Cu(II) ions and the negatively charged surface groups, with the optimal performance near neutral pH. Batch adsorption experiments demonstrated that the silica xerogel effectively removes Cu(II) ions from aqueous solutions, with removal efficiency exceeding 99% at pH values above 4.0. The maximum adsorption capacity of copper (II) ions on SiO2 xerogel is 67.5 mg/L. Full article
Show Figures

Graphical abstract

9 pages, 2532 KB  
Article
Effect of Calcium Nitrate on Microstructure and Anti-Corrosion Properties of Zinc Phosphate Coatings on Stainless Steel
by Xian Zhang, Hong-Hong Zhang, Kang Wu, Yan Zhang, Zhong-Nian Yang and Yu Chen
Coatings 2025, 15(9), 1018; https://doi.org/10.3390/coatings15091018 - 1 Sep 2025
Abstract
Hopeite (Zn3(PO4)2·4H2O) coatings, fabricated via zinc phosphate chemical conversion (ZPCC), have attracted considerable interest in biomedical applications owing to their excellent corrosion resistance and biocompatibility. However, the influence of calcium nitrate (CN) on coating properties [...] Read more.
Hopeite (Zn3(PO4)2·4H2O) coatings, fabricated via zinc phosphate chemical conversion (ZPCC), have attracted considerable interest in biomedical applications owing to their excellent corrosion resistance and biocompatibility. However, the influence of calcium nitrate (CN) on coating properties remains poorly understood. This study systematically investigates the effect of CN concentration on the microstructure and corrosion behavior of ZPCC coatings deposited on stainless steel (SS). The phase composition, surface morphology, and elemental distribution were characterized using X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). Electrochemical corrosion performance was assessed via potentiodynamic polarization in a 0.9 wt.% NaCl solution. The results indicate that CN concentration critically influences coating morphology, with higher concentrations leading to reduced crystal size and increased coating mass. Notably, the coating prepared with 6 g/L CN exhibited a dense, uniform, and fine-grained microstructure, resulting in superior corrosion resistance. Additionally, the optimized coating demonstrated strong interfacial adhesion, with a shear strength of 10.05 ± 1.2 MPa. Full article
(This article belongs to the Special Issue Advanced Functional Coatings for Corrosion Protection)
Show Figures

Figure 1

16 pages, 3291 KB  
Article
Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy
by Yuqi Wang, Tao He, Xiangyang Du, Artem Okulov, Alexey Vereschaka, Jian Li, Yang Ding, Kang Chen and Peiyu He
Coatings 2025, 15(9), 1017; https://doi.org/10.3390/coatings15091017 - 1 Sep 2025
Abstract
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization [...] Read more.
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization analysis) with characterization tests (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy), the synergistic effects of equal channel angular pressing (ECAP) and aging treatment(AT) were elucidated. The results demonstrate that the combined ECAP and AT significantly enhance the coating’s performance. Specifically, AT promotes the precipitation of η’ phase within the 7075 aluminum alloy substrate, increases the size of Cr7C3 crystallites in the Cr-based interlayer, improves the crystallinity of the Cr7C3 phase on the (060) or (242) crystal planes, and elevates the sp3-C/sp2-C ratio in the diamond-like carbon(DLC) top layer, leading to partial healing of defects and a denser overall coating structure. These microstructural transformations, induced by AT, result in substantial improvements in the mechanical properties (hardness reaching 5.2 GPa, bond strength achieving 15.1 N) and corrosion resistance (corrosion potential increasing to -0.698 V) of the Cr/DLC-coated ECAP-7075 aluminum alloy. This enhanced combination of properties makes these coatings particularly well-suited for high-performance aerospace components requiring both wear resistance and corrosion protection in demanding environments. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

27 pages, 11538 KB  
Article
Adaptive Transient Power Angle Control for Virtual Synchronous Generators via Physics-Embedded Reinforcement Learning
by Jiemai Gao, Siyuan Chen, Shixiong Fan, Jun Jason Zhang, Deping Ke, Hao Jun, Kezheng Jiang and David Wenzhong Gao
Electronics 2025, 14(17), 3503; https://doi.org/10.3390/electronics14173503 (registering DOI) - 1 Sep 2025
Abstract
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient [...] Read more.
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient stability under dynamic grid conditions. This paper proposes a novel adaptive GFM control framework based on physics-informed reinforcement learning, targeting transient power angle stability in systems with high renewable penetration. An adaptive controller, termed the 3N-D controller, is developed to periodically update the virtual inertia and damping coefficients of VSGs based on real-time system observations, enabling anticipatory adjustments to evolving operating conditions. The controller leverages a reinforcement learning architecture embedded with physical priors, which captures the high-order differential relationships between rotor angle dynamics and control variables. This approach enhances generalization, reduces data dependency, and mitigates the risk of local optima. Comprehensive simulations on the IEEE-39 bus system with varying VSG penetration levels validate the proposed method’s effectiveness in improving system stability and control flexibility. The results demonstrate that the physics-embedded GFM strategy can significantly enhance the transient stability and adaptability of future power grids. Full article
Show Figures

Figure 1

Back to TopTop