Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,328)

Search Parameters:
Keywords = electrons scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1898 KiB  
Article
Local Structure Displacements and Electronic Structure of Sb-Substituted Rock-Salt Type AgBi1xSbxSe0.8S0.6Te0.6 System
by Lorenzo Tortora, Asato Seshita, Giovanni Tomassucci, Francesco Minati, Alina Skorynina, Laura Simonelli, Aichi Yamashita, Yoshikazu Mizuguchi and Naurang L. Saini
Materials 2025, 18(11), 2578; https://doi.org/10.3390/ma18112578 (registering DOI) - 31 May 2025
Abstract
The cubic phase of the high-entropy alloy AgBi1xSbxSe0.8S0.6Te0.6 compound, characterized by the substitution of Sb for Bi in the structure to enhance phonon scattering, has been [...] Read more.
The cubic phase of the high-entropy alloy AgBi1xSbxSe0.8S0.6Te0.6 compound, characterized by the substitution of Sb for Bi in the structure to enhance phonon scattering, has been analyzed for local atomic displacements and electronic structure using a combination of X-ray absorption and X-ray photoelectron spectroscopy techniques. Notably, Ag K-edge and Bi L3-edge X-ray absorption measurements demonstrate a contraction of bond distances upon substitution due to the smaller size of Sb. Conversely, X-ray photoelectron spectroscopy reveals that, while Ag remains predominantly in the Ag1+ state across all samples, Bi and Sb exhibit a single valence state only for minimal Sb substitution. At higher Sb substitution levels, both Bi and Sb manifest mixed valence states, indicating complex electronic behavior that potentially influences the thermoelectric properties of the system. These findings suggest that optimizing the local structure through Sb substitution can be beneficial in enhancing the material’s thermoelectric performance. Full article
(This article belongs to the Section Advanced Materials Characterization)
21 pages, 5231 KiB  
Article
Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance
by Walhan Alshaer, Shrouq Alsotari, Nour Aladaileh, Alaa Rifai, Aya Khalaf, Baidaa AlQuaissi, Bushra Sabbah, Hamdi Nsairat and Fadwa Odeh
Pharmaceutics 2025, 17(6), 729; https://doi.org/10.3390/pharmaceutics17060729 (registering DOI) - 31 May 2025
Abstract
Background/Objectives: Clarithromycin (CLA) is a widely used antibiotic effective against a variety of bacterial strains, making it a common treatment for respiratory, skin, and soft tissue infections. Moreover, extensive studies have confirmed the anticancer activity of CLA against different cancers, particularly when combined [...] Read more.
Background/Objectives: Clarithromycin (CLA) is a widely used antibiotic effective against a variety of bacterial strains, making it a common treatment for respiratory, skin, and soft tissue infections. Moreover, extensive studies have confirmed the anticancer activity of CLA against different cancers, particularly when combined with conventional therapies. This study investigates the potential anticancer and antibacterial activities of developed CLA-loaded bovine serum albumin nanoparticles (CLA-BSA NPs), designed with optimized physicochemical properties to enhance drug delivery. Methods: The CLA-BSA NPs were synthesized using the desolvation method, followed by drug loading. Characterization techniques, including Dynamic Light Scattering (DLS), Fourier-Transform Infrared (FTIR) Spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Thermogravimetric Analysis (TGA). Results: The results confirmed that CLA interacts with BSA NPs through van der Waals forces. The performance of drug–nanocarrier interaction was further assessed through in vitro drug release studies. The release studies demonstrated that CLA had a robust release profile in reductive media, with a cumulative release of 50.9% in acetate buffer (pH 5.0) supplemented with 10 mM glutathione (GSH). Further biological activity assays were also conducted, including cell viability assays (MTT) and antibacterial activity tests. CLA-BSA NPs demonstrated anticancer activity against the lung cancer (A549) cell line, while showing minimal cytotoxicity on normal human dermal fibroblast (HDF) cells. The antibacterial activity was assessed against Streptococcus pyogenes, Bacillus cereus, and Staphylococcus aureus. Among the tested strains, Bacillus cereus exhibited the highest sensitivity, with a minimum inhibitory concentration (MIC) of 0.032 µg/mL, compared to 0.12 µg/mL for Staphylococcus aureus and >32 µg/mL for Streptococcus pyogenes. Conclusions: In conclusion, these findings highlight CLA-BSA NPs as a promising drug delivery system that enhances the anticancer and antibacterial efficacy of CLA. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

12 pages, 9743 KiB  
Article
Similarities in the Low-Energy Elastic and Ps Formation Differential Cross-Sections for e+-H and e+-He Scattering
by Peter Van Reeth and John W. Humberston
Atoms 2025, 13(6), 46; https://doi.org/10.3390/atoms13060046 - 28 May 2025
Viewed by 72
Abstract
Scattering differential cross-sections (DCSs) are important tools, both experimentally and theoretically, in the investigation of scattering processes in lepton–atom collisions. In the present work, the elastic scattering differential cross-sections (EDCSs) for e+-H and e+-He below the first excitation threshold [...] Read more.
Scattering differential cross-sections (DCSs) are important tools, both experimentally and theoretically, in the investigation of scattering processes in lepton–atom collisions. In the present work, the elastic scattering differential cross-sections (EDCSs) for e+-H and e+-He below the first excitation threshold of the target were evaluated using the Kohn variational method and found to be very similar. In both cases, the EDCS below the positronium formation threshold, i.e., for pure elastic scattering, had minimum valley features in which significant minima close to 90 degrees were found at ≈2.8 eV for H and ≈2 eV for He. These minima were shown to be linked to the zero in the s-wave phase shift, which gives rise to the Ramsauer minimum in the elastic integrated cross-sections. They were not vortices, but the overall EDCS structure was found to be related to the structures and vortices found in the Ps formation differential cross-sections just above the Ps formation threshold. The valley-type structure in the EDCS went smoothly through the Ps formation threshold, where it linked up with a similar valley structure in both the EDCS above the threshold and the Ps formation DCS. A comparison with the EDCS for e-H and e-He scattering over the same energy range revealed similarities with the positron EDCS, however, with less pronounced structures that had different angular and momentum dependences. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

27 pages, 6361 KiB  
Article
Antineoplastic Activity of Podophyllotoxin and Juniper Extracts Encapsulated in MPEG-b-PLA Diblock Copolymer Micelles in Cutaneous Squamous Carcinoma Cells
by Radostina G. Kalinova, Ivaylo V. Dimitrov, Yana Ilieva, Dimitar B. Iliev, George A. Miloshev, Dessislava N. Staneva, Maya M. Zaharieva, Aleksandrina Nesheva, Galya Staneva, Diana I. Ivanova, George Angelov and Hristo M. Najdenski
Int. J. Mol. Sci. 2025, 26(11), 5167; https://doi.org/10.3390/ijms26115167 - 28 May 2025
Viewed by 35
Abstract
Nanotechnology offers alternative approaches to the discovery of anticancer drugs. Hydrophobic bioactive components can be included in the cores of amphiphilic nanocarriers, which leads to the formation of a water-dispersible product with improved bioavailability, facilitated excretion, and reduced systemic toxicity in the treated [...] Read more.
Nanotechnology offers alternative approaches to the discovery of anticancer drugs. Hydrophobic bioactive components can be included in the cores of amphiphilic nanocarriers, which leads to the formation of a water-dispersible product with improved bioavailability, facilitated excretion, and reduced systemic toxicity in the treated organisms. This study was aimed at the formation of polymer nanocarriers, loaded with anticancer drug precursor podophylotoxin (PPT) or PPT-containing juniper leaf extracts, seeking to study their antineoplastic activity in A-431 epidermoid carcinoma cells and HaCaT normal keratinocytes. The amphiphilic, biodegradable, and biocompatible MPEG-b-PLA diblock copolymer was self-assembled in aqueous media into nanosized particles, whose physicochemical characteristics were studied by dynamic light scattering, transmission electron microscopy, and other methods. High encapsulation efficiency was determined for the PPT component-loaded micelles. DNA fragmentation, cell cycle arrest, nuclear condensation, membrane lipid order assessment, reactive oxygen species, and apoptosis induction by the loaded nanocarriers in A-431 or HaCaT cells were analyzed by the comet assay, FACS, Hoechst DNA staining, Laurdan generalized polarization, and other methods. As a result of various cellular processes induced by the PPT component-loaded nanoparticles, effector caspase-3 and caspase-7 activation showed selectivity towards tumor cells compared to the normal cells. The newly obtained PPT-containing nanoparticles have applications as potential drugs in the prospective nanomedicine. Full article
(This article belongs to the Special Issue Recent Discovery and Mechanisms of Potential Anticancer Drugs)
Show Figures

Figure 1

19 pages, 3012 KiB  
Article
A Novel Brain-Targeting Nanoparticle Loaded with Biatractylolide and Its Protective Effect on Alzheimer’s Disease
by Qianmei Hu, Candi Liu, Jiawang Tan, Jixiang Wang, Hao Yang, Yi Liu, Haochu Mao, Zixuan Jiang, Xing Feng and Xiaojun Tao
Pharmaceuticals 2025, 18(6), 809; https://doi.org/10.3390/ph18060809 - 28 May 2025
Viewed by 54
Abstract
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which [...] Read more.
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which polysorbate 80 (Tween-80) was subsequently adsorbed. The PUC polymers with CDCA substitution levels were analyzed by 1H NMR spectroscopy. Nanoparticles were fabricated via the dialysis method and characterized by transmission electron microscopy and dynamic light scattering for morphology, size, and surface charge. In vitro neuroprotection was assessed by exposing SH-SY5Y and PC12 cells to 20 µM Aβ25-35 to induce cytotoxicity, followed by pretreatment with biatractylolide-loaded PUC (BD-PUC) nanoparticle solutions at various biatractylolide concentrations. The in vivo brain-targeting capability of both empty PUC and BD-PUC particles was evaluated using a live imaging system. Results: The 1H NMR analysis confirmed three distinct CDCA substitution degrees (8.97%, 10.66%, 13.92%). Transmission electron microscopy revealed uniformly dispersed, spherical nanoparticles. Dynamic light scattering measurements showed a hydrodynamic diameter of ~200 nm and a negative zeta potential. Exposure to 20 µM Aβ25-35 significantly reduced SH-SY5Y and PC12 cell viability; pretreatment with BD-PUC nanoparticles markedly enhanced cell survival rates and preserved cellular morphology compared to cells treated with free biatractylolide. Notably, the cytoprotective effect of BD-PUC exceeded that of the free drug. In vivo imaging demonstrated that both empty PUC and Tween-80-adsorbed BD-PUC nanoparticles effectively accumulated in the brain. Conclusions: The protective effect of BD-PUC on SH-SY5Y and PC12 cells induced by Aβ25-35 was higher than free biatractylolide solution, and the BD-PUC nanosolution modified with Tween-80 showed a brain-targeting effect. Full article
(This article belongs to the Special Issue Natural Products for Therapeutic Potential)
Show Figures

Figure 1

15 pages, 5629 KiB  
Article
Phase and Valence State Engineering of MOFs-Derived Iron Oxide@Carbon Polyhedrons for Advanced Microwave Absorption
by Xiaojiao Yang, Shuai Han, Hongna Xing, Yi Dong, Xia Deng, Yan Zong, Juan Feng, Xiuhong Zhu, Xinghua Li and Xinliang Zheng
Nanomaterials 2025, 15(11), 806; https://doi.org/10.3390/nano15110806 - 27 May 2025
Viewed by 89
Abstract
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. [...] Read more.
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. In this study, iron oxide components show a temperature-dependent phase evolution process (α-Fe2O3→Fe3O4→Fe3O4/FeO), during which the valence states of iron ions are regulated. The tunable phases modulate the magnetic Fe3O4 component, resulting in enhanced magnetic loss. The changed valence states affect the polarization relaxation by adjusting the electronic structure and tune the electron scattering by introducing defects, leading to enhanced dielectric loss. The microwave absorption properties of iron oxide@carbon composites display phase- and valence state-dependent characteristics. Especially, Fe3O4@C composites exhibit superior microwave absorption properties, ascribed to the improved magnetic/dielectric losses induced by good impedance matching and strong microwave attenuation capacity. The minimum reflection loss of Fe3O4@C composites reaches −73.14 dB at 10.35 GHz with an effective absorption bandwidth of 4.9 GHz (7.69–12.59 GHz) when the absorber thickness is 2.31 mm. This work provides new insights into the adjustment of electromagnetic parameters and microwave absorption properties by regulating the phase and valence state. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 1302 KiB  
Article
Combined Experimental and DFT Study of Alumina (α-Al2O3(0001))-Supported Fe Atoms in the Limit of a Single Atom
by Ramazan T. Magkoev, Yong Men, Reza Behjatmanesh-Ardakani, Mohammadreza Elahifard, Ivan V. Silaev, Aleksandr P. Bliev, Nelli E. Pukhaeva, Anatolij M. Turiev, Vladislav B. Zaalishvili, Aleksandr A. Takaev, Tamerlan T. Magkoev, Ramazan A. Khekilaev and Oleg G. Ashkhotov
Nanomaterials 2025, 15(11), 804; https://doi.org/10.3390/nano15110804 - 27 May 2025
Viewed by 76
Abstract
To probe the properties of single atoms is a challenging task, especially from the experimental standpoint, due to sensitivity limits. Nevertheless, it is sometimes possible to achieve this by making corresponding choices and adjustments to the experimental technique and sample under investigation. In [...] Read more.
To probe the properties of single atoms is a challenging task, especially from the experimental standpoint, due to sensitivity limits. Nevertheless, it is sometimes possible to achieve this by making corresponding choices and adjustments to the experimental technique and sample under investigation. In the present case, the absolute value of the electronic charge the Fe atoms acquire when they are adsorbed on the surface of aluminum oxide α-Al2O3(0001) was measured by a set of surface-sensitive techniques: low-energy ion scattering (LEIS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and work function (WF) measurements, in combination with density functional theory (DFT) calculations. The main focus was the submonolayer coverage of Fe atoms in situ deposited on the well-ordered stoichiometric α-Al2O3(0001) 7 nm thick film formed on a Mo(110) crystal face. An analysis of the evolution of the Fe LVV Auger triplet upon variation of the Fe coverage shows that there is electronic charge transfer from Fe to alumina and that its value gradually decreases as the Fe coverage grows. The same trend is also predicted by the DFT results. Extrapolation of the experimental Fe charge value versus coverage plot yields an estimated value of a single Fe atom adsorbed on α-Al2O3(0001) of 0.98e (electron charge units), which is in reasonable agreement with the calculated value (+1.15e). The knowledge of this value and the possibility of its adjustment may be important points for the development and tuning of modern sub-nanometer-scale technologies of diverse applied relevance and can contribute to a more complete justification and selection of the corresponding theoretical models. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

18 pages, 3900 KiB  
Article
Mechanism of Isotropic Behavior in Titanium Alloy Plates Formed by Axial Closed Die Rolling
by Jungang Nan, Dong Liu, Yonghao Zhang, Yu Zhang and Jianguo Wang
Materials 2025, 18(11), 2528; https://doi.org/10.3390/ma18112528 - 27 May 2025
Viewed by 132
Abstract
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the [...] Read more.
The torsional behavior during the deformation process of the axial closed die rolling the axial closed rolling (ACDR) forming is studied in this paper using a numerical simulation technique on TC11 titanium alloy. The axial and radial pinch angles, as well as the degree of specimen torsion, increased with the amount of deformation. The orientation distribution function (ODF) maps of the α-phase and β-phase were obtained by Electron Back Scatter Diffraction (EBSD) treatment of the TC11 titanium alloy. It can be noticed that there were different types of texture with different strengths in the ACDR samples, and in the xz and yz planes, textures in the direction of the column were predominantly of {0001} <2ˉ1ˉ10> and {01ˉ10} <2ˉ1ˉ10>; the weaker the texture was, the closer to the edge of the sample. In the xy plane, the texture structure was mainly distributed along the cone direction, and the textures were {ˉ12ˉ10} <10ˉ10> and {01ˉ10} <2ˉ1ˉ10>. However, the closer to the edge position of the specimen, the higher the intensity of the texture, and the texture was {1ˉ21ˉ2} <1ˉ216>. The β-phase is mainly distributed as {001} <100>, {110} <1ˉ10>, and {110} <001> textures within the specimen, and the texture strength is about 8.5 times. However, owing to the small proportion of the β-phase content in the specimen, the distribution pattern of its texture has a weak impact on the texture distribution of the overall specimen. A high degree of isotropy in the radial and tangential tensile properties, with a strength isotropy of over 99 percent and a plasticity isotropy of over 95 percent, resulted from the distribution of texture types with varying strengths and orientations within the ACDR specimens, which weakened the TC11 discs’ overall orientation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 2221 KiB  
Article
Nanoparticle-Based mRNA Vaccine Induces Protective Neutralizing Antibodies Against Infectious Bronchitis Virus in In-Vivo Infection
by Aseno Sakhrie, Ankarao Kalluri, Zeinab H. Helal, Challa V. Kumar and Mazhar I. Khan
Vaccines 2025, 13(6), 568; https://doi.org/10.3390/vaccines13060568 - 26 May 2025
Viewed by 274
Abstract
Background: Live attenuated and inactivated virus vaccines are commonly used against infectious bronchitis virus (IBV) in chickens, but they have limitations such as mutation risks and short efficacy. This study explores cationic bovine serum albumin (BSA) polyamine nanoparticles (NPs) for delivering IBV spike [...] Read more.
Background: Live attenuated and inactivated virus vaccines are commonly used against infectious bronchitis virus (IBV) in chickens, but they have limitations such as mutation risks and short efficacy. This study explores cationic bovine serum albumin (BSA) polyamine nanoparticles (NPs) for delivering IBV spike protein mRNA, aiming to develop a safer and more effective vaccine. Methods: A BSA-based nanoparticle system was designed with positive surface charges and characterized using dynamic light scattering (DLS), Zetasizer, and transmission electron microscopy (TEM). Its cytotoxicity, cellular uptake, and ability to deliver IBV spike protein mRNA were evaluated in macrophage-like chicken cell lines (HD11), followed by immunogenicity studies in SPF chickens to assess immune responses. Results: The study demonstrated successful binding and transfection efficiency of the in vitro transcription (IVT)-mRNA complexed with the NPs, which was enhanced with chloroquine. Immunogenicity studies in SPF chickens showed a significant increase in antibody titers in chickens vaccinated with the mRNA vaccine compared to the PBS control, indicating an effective immune response against the IBV S protein. Furthermore, the neutralization index doubled after a higher-dose mRNA booster with chloroquine, and PBMCs from immunized chickens exhibited a threefold higher stimulation index than the PBS control. Conclusions: BSA-based NPs effectively deliver IBV spike protein mRNA, enhancing immune responses and offering a promising strategy for a safer, more effective IBV vaccine. Full article
Show Figures

Graphical abstract

18 pages, 3353 KiB  
Article
Enhancing Bioavailability and Stability of Plant Secondary Metabolites: Formulation and Characterization of Nanophytosomes Encapsulating Red Bryony and Horned Poppy Extracts
by Atoosa Olfati, Naser Karimi, Elham Arkan, Mohsen Zhaleh and M. R. Mozafari
J. Funct. Biomater. 2025, 16(6), 194; https://doi.org/10.3390/jfb16060194 - 24 May 2025
Viewed by 338
Abstract
Biocompatible nanocarriers were formulated by encapsulating medicinal extracts from Bryonia dioica (Red Bryony) and Glaucium leiocarpum (Horned Poppy) using a nanophytosome approach. The nanophytosomes were prepared by employing a thin-film hydration technique. The SEM results showed a broad size distribution for both nanophytosomes, [...] Read more.
Biocompatible nanocarriers were formulated by encapsulating medicinal extracts from Bryonia dioica (Red Bryony) and Glaucium leiocarpum (Horned Poppy) using a nanophytosome approach. The nanophytosomes were prepared by employing a thin-film hydration technique. The SEM results showed a broad size distribution for both nanophytosomes, and the encapsulation efficiency was about 75–80% for both Red Bryony and Horned Poppy nanophytosomes, as confirmed through scanning electron microscopy (SEM) and dynamic light scattering (DLS). Zeta potential analysis indicated sufficient surface charges to maintain colloidal stability. Encapsulation improved the release characteristics of the extracts, exhibiting an initial burst release followed by sustained release, which is advantageous for enhancing bioavailability within a liquid environment. Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, confirming the successful encapsulation of bioactive ingredients within the nanophytosomes. Cytotoxicity tests on fibroblast cell lines (HSF-PI 16) demonstrated the safety of these nanocarriers, indicating biocompatibility at concentrations up to 200 μg/mL. Stability tests over 30 days revealed minimal size fluctuations, further supporting the structural integrity of the formulations. Results suggest that the synthesized nanophytosomes could serve as effective and novel nanocarriers for herbal delivery, addressing the bioavailability limitations of herbal extracts and offering a promising approach for therapeutic applications in both traditional and alternative medicine. This is the first study to report nanophytosome-based delivery of Red Bryony and Horned Poppy extracts. Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Figure 1

16 pages, 3482 KiB  
Article
Conducting EVA/GNP Composite Films with Multifunctional Applications: Effect of the Phosphonium-Based Ionic Liquid
by André A. Schettini, Debora P. Schmitz, Beatriz S. Cunha and Bluma G. Soares
J. Compos. Sci. 2025, 9(6), 256; https://doi.org/10.3390/jcs9060256 - 23 May 2025
Viewed by 265
Abstract
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) [...] Read more.
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) matrix, through a melt-mixing procedure. The mechanical properties and creep resistance of the films prepared by the film extrusion process were evaluated. The results demonstrated that the noncovalent treatment of GNP with the ionic liquid (IL) enhanced the electrical conductivity and creep stability of the EVA composites. The microwave absorbing properties were studied in the X-band and Ku-band. A reflection loss (RL) of −15 dB for EVA containing 0.5 wt% of GNP and 1:1 wt% of GNP/IL was achieved. The use of a multi-layered structure containing thin film layers was efficient for enhancing the microwave absorbing performance, with a minimum RL of −24.6 dB and effective absorption bandwidth of 4.3 GHz. This result is attributed to the internal reflection and scattering of the radiation between layers. The use of simple, low-cost materials and procedures, combined with the system’s excellent mechanical and electrical properties, makes it a promising candidate for multifunctional applications as electrostatic dissipative and microwave absorbing materials for electronic packaging and other electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

17 pages, 4351 KiB  
Article
Low-Power NIR-Triggered Photothermal Inactivation of Pseudomonas aeruginosa with Polypyrrole Nanoparticles
by Melina D. Gil, Silvestre Bongiovanni Abel, César A. Barbero, Natalia S. Paulucci and Edith I. Yslas
Polymers 2025, 17(11), 1442; https://doi.org/10.3390/polym17111442 - 23 May 2025
Viewed by 175
Abstract
Conducting polymer (CP) nanoparticles have emerged as innovative materials for biomedical applications, particularly due to their safe interaction with biological systems. This study focuses on the synthesis, morphological, and spectroscopic characterization of polypyrrole nanoparticles (PPy-NPs) as photoactivatable agents under near-infrared (NIR) radiation for [...] Read more.
Conducting polymer (CP) nanoparticles have emerged as innovative materials for biomedical applications, particularly due to their safe interaction with biological systems. This study focuses on the synthesis, morphological, and spectroscopic characterization of polypyrrole nanoparticles (PPy-NPs) as photoactivatable agents under near-infrared (NIR) radiation for the inactivation of pathogenic bacteria. We successfully synthesized uniform nanoparticles (~180 nm) with strong absorption in the NIR region. A comprehensive characterization was performed using electron microscopy, dynamic light scattering, X-ray diffraction, and UV–Vis and infrared spectroscopy. The microbiological evaluation focused on elucidating the inactivation mechanism of Pseudomonas aeruginosa, particularly through oxidative stress induction, metabolic activity alteration, and cell membrane disruption. Our results highlight the significant potential of PPy-NPs as photoactivatable agents for the targeted inactivation of pathogenic microorganisms, underscoring their promising applications in antimicrobial surface coatings. Full article
(This article belongs to the Special Issue Advanced Electrically Conductive Polymers and Composites)
Show Figures

Figure 1

13 pages, 3605 KiB  
Article
Dual Antibiotic-Infused Liposomes to Control Methicillin-Resistant Staphylococcus aureus
by Sourav Chakraborty, Piyush Baindara, Surojit Das, Suresh K. Mondal, Pralay Sharma, Austin Jose T, Kumaravel V, Raja Manoharan and Santi M. Mandal
Medicines 2025, 12(2), 14; https://doi.org/10.3390/medicines12020014 - 22 May 2025
Viewed by 239
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) considered under the category of serious threats by the Centers for Disease Control and Prevention (CDC), urges for new antibiotics or alternate strategies to control MRSA. Methods: Ethosome-like liposomes have been developed and characterized using dynamic [...] Read more.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) considered under the category of serious threats by the Centers for Disease Control and Prevention (CDC), urges for new antibiotics or alternate strategies to control MRSA. Methods: Ethosome-like liposomes have been developed and characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Liposomes were confirmed for antibiotics infusion by encapsulation efficiency and release kinetics as well. Further, the antimicrobial potential of liposomes was checked by determination of minimum inhibitory concentrations (MICs), crystal violet assay, and live/dead biofilm eradication assay. Results: The specially designed liposomes consist of amphiphilic molecules, tocopherol, conjugated with ampicillin and, another antibiotic amikacin, loaded in the core. The developed liposomes exhibited good encapsulation efficiency, and sustained release while serving as ideal antibiotic carriers for advanced efficacy along with anti-inflammatory benefits from tocopherol. Conclusively, newly designed liposomes displayed potential antimicrobial activity against MRSA and its complex biofilms. Conclusions: Overall, dual antibiotic-encapsulated liposomes demonstrate the potential to eradicate MRSA and its mature biofilms by dual-targeted action. This could be developed as an efficient anti-infective agent and delivery vehicle for conventional antibiotics to combat MRSA. Full article
Show Figures

Graphical abstract

10 pages, 3197 KiB  
Article
Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes
by Bo Zhu, Tiany Ji, Qiong Liu and Lixin Li
Batteries 2025, 11(5), 203; https://doi.org/10.3390/batteries11050203 - 21 May 2025
Viewed by 229
Abstract
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a [...] Read more.
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a few-layer graphene (FLG)-coated hard carbon fiber composite is constructed. A uniform graphene encapsulation is confirmed by synchrotron small-angle X-ray scattering and transmission electron microscopy technologies. Post-cycling observation reveals FLG participation in forming a hybrid solid electrolyte interphase (SEI). At a proper concentration, the FLG with a small specific surface area and pore size characteristics is well matched in the SEI. The FLG-integrated SEI not only mitigates volume expansion but also enhances ion conductivity through its oxygen-rich functional groups. As a result, the composite structure maintains 98.2% capacity retention after 100 cycles and reaches 164 mAh g−1 at 1000 mA g−1, compared to 97 mAh g−1 for the pristine hard carbon. This work demonstrates that FLG coating simultaneously stabilizes the interfacial chemistry and improves the ion transport, offering a practical pathway to advance hard carbon anodes for high-performance sodium-ion batteries. Full article
Show Figures

Figure 1

16 pages, 4542 KiB  
Article
Studies of Raman-Scattered Technology on S-Shaped Dinaphtho[2,1-b:2′,1′-f]thieno[3,2-b]thiophene-10 (S-DNTT-10)
by Haobing Wang, Olivier Simonetti, Oumaima Et-Thakafy, Nicolas Bercu, Florence Etienne, Sylvain Potiron, Pierre-Michel Adam and Louis Giraudet
Materials 2025, 18(10), 2389; https://doi.org/10.3390/ma18102389 - 20 May 2025
Viewed by 208
Abstract
S-shaped dinaphtho[2,1-b:2′,1′-f]thieno[3,2-b]thiophene (S-DNTT) molecules have shown promise for applications in organic electronic devices, though their molecular characteristics are not fully understood yet. In this study, we first revealed the material characteristics of S-DNTT-10 by vibrational dynamics using Raman spectroscopy and density functional theory [...] Read more.
S-shaped dinaphtho[2,1-b:2′,1′-f]thieno[3,2-b]thiophene (S-DNTT) molecules have shown promise for applications in organic electronic devices, though their molecular characteristics are not fully understood yet. In this study, we first revealed the material characteristics of S-DNTT-10 by vibrational dynamics using Raman spectroscopy and density functional theory (DFT) simulations, employing the B3LYP functional method and the 6-311G (d, p) basis set. The molecular vibrations identified included C–H bending in alkyl chains and the deformation of S-shaped thiophene rings. In addition, surface-enhanced Raman scattering (SERS) with 785 nm incident light was applied to thermally deposited 25 nm S-DNTT-10 thin films with gold (Au) nanostructures. It showed enhanced Raman signals from the lower S-DNTT-10 layers. The findings significantly contribute to the knowledge of S-DNTT-10 molecular properties and also contribute insights into using this material into organic electronic devices in the future. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop