Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = endocrine-disrupting compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 926 KB  
Review
Advances in the Application of Aerobic Granular Sludge for the Removal of Emerging Contaminants in Municipal and Industrial Wastewater
by Gobi Kanadasan, Choon Aun Ng, Vel Murugan Vadivelu and Mohammad J. K. Bashir
Molecules 2025, 30(17), 3522; https://doi.org/10.3390/molecules30173522 - 28 Aug 2025
Viewed by 436
Abstract
Aerobic granules are dense three-dimensional microbial aggregates which are known for their excellent settling ability, high biomass retention, and simultaneous biological reaction due to their multilayered structure. All these features enable the aerobic granules to remove emerging contaminants, such as pharmaceutical and personal [...] Read more.
Aerobic granules are dense three-dimensional microbial aggregates which are known for their excellent settling ability, high biomass retention, and simultaneous biological reaction due to their multilayered structure. All these features enable the aerobic granules to remove emerging contaminants, such as pharmaceutical and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), microplastics, and per- and polyfluoroalkyl substances (PFASs) in municipal and industrial wastewater. This review discusses the development and application of the aerobic granules, especially in a sequencing batch reactor (SBR) with a height over diameter (H/D) ratio of 5 to 10. The mechanisms of EC removal in aerobic granules and the removal efficiency of the ECs by aerobic granules were also scrutinized, with the reported removal efficiency ranging from 10–100% for PPCPs, 84–94% for EDCs, 74–95% for microplastics, and more than 85% for PFAs. In spite of the huge potential of aerobic granular technology, its large-scale implementation is hampered by operational and scaling challenges. Future research should focus on optimizing the operational parameters and overcoming the scale-up barrier to fully leverage the potential of aerobic granules in removing ECs. Full article
Show Figures

Figure 1

21 pages, 420 KB  
Article
Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors
by Nina Franko, Manca Vetrih and Marija Sollner Dolenc
J. Xenobiot. 2025, 15(5), 136; https://doi.org/10.3390/jox15050136 - 22 Aug 2025
Viewed by 322
Abstract
This study investigated whether the Endocrine Disruptome and VirtualToxLab in silico platforms are suitable for predicting the endocrine disrupting effects of per- and polyfluoroalkyl substances (PFASs)—in particular, for interactions with oestrogen receptors (ERs) and androgen receptor (AR). Compounds included in the U.S. Environmental [...] Read more.
This study investigated whether the Endocrine Disruptome and VirtualToxLab in silico platforms are suitable for predicting the endocrine disrupting effects of per- and polyfluoroalkyl substances (PFASs)—in particular, for interactions with oestrogen receptors (ERs) and androgen receptor (AR). Compounds included in the U.S. Environmental Protection Agency’s PFAS working list were analysed with both models, and the results were compared with the available in vitro data regarding their modulation of nuclear receptors. Based on the identified prediction parameters, such as sensitivity, specificity, accuracy, and Mathews’ correlation coefficient, VirtualToxLab was found to be a reliable model for predicting the reactivity of PFASs with AR, while a positive consensus approach of both platforms provided reliable predictions of the PFAS reactivity with ERα and ERβ. This study provides the evidence that Endocrine Disruptome and VirtualToxLab can be used as a tier 1 screening tool for assessment of the endocrine disrupting effect of PFASs. Furthermore, it demonstrates that the likelihood of endocrine disrupting properties increases with the lipophilicity of PFASs and identifies the understudied PFHpS, PFNS, PFDS, 9-Cl, NMeFOSAA, NEtFOSAA, 4:2 FTS, 6:2 FTS, 8:2 FTS, 6:2 monoPAP, 8:2 monoPAP, and 5:3 acid as potential ligands of AR and/or ERs. Full article
Show Figures

Figure 1

21 pages, 911 KB  
Review
Unveiling the Endocrine-Disrupting Potential of Plant-Derived Compounds: An Ecotoxicological Review
by Changgyun Park and Heung Bin Lim
Toxins 2025, 17(8), 423; https://doi.org/10.3390/toxins17080423 - 20 Aug 2025
Viewed by 752
Abstract
Secondary metabolites derived from plants, such as flavonoids, alkaloids, and terpenoids, are being increasingly utilized because of their bioactivity and ubiquitous distribution. Although their pharmacological uses and agricultural applications are well studied, their potential role as endocrine-disrupting compounds (EDCs) in non-target environmental organisms [...] Read more.
Secondary metabolites derived from plants, such as flavonoids, alkaloids, and terpenoids, are being increasingly utilized because of their bioactivity and ubiquitous distribution. Although their pharmacological uses and agricultural applications are well studied, their potential role as endocrine-disrupting compounds (EDCs) in non-target environmental organisms is largely unknown. This review aims to update our knowledge on the endocrine-disrupting effects induced by plant-derived metabolites in environmental testing models. We review guidelines and conceptual models for standardized testing approaches used to assess endocrine disruption and identify critical data gaps in the context of mammalian test systems compared to those for environmental species. We also emphasize the known endocrine mechanisms, including the regulation of estrogen and thyroid pathways and their effects on reproduction and hormonal regulation in environmental species. By integrating evidence across diverse biological systems, this work intends to provide a link between toxicological and ecological perspectives on the emerging role of plant-derived metabolites as potential EDCs in natural ecosystems. Importantly, we highlight that an extensive assessment of plant-derived metabolites is required to improve understanding of their ecological hazards and the mechanisms of their effects. Full article
(This article belongs to the Special Issue Toxic Plant-Derived Metabolites)
Show Figures

Figure 1

18 pages, 3748 KB  
Article
Sulfur-Containing Heterocyclic Aromatic Hydrocarbons Alter Estrogen Metabolism and Cause DNA Damage and Apoptosis in Granulosa Cells
by Genevieve A. Perono, Thane Tomy, Kara Loudon, Laiba Jamshed, Bianca Garlisi, Sylvia Lauks, Cielle Lockington, Celina Ruan, Gregg T. Tomy, James J. Petrik, Philippe J. Thomas and Alison C. Holloway
Int. J. Mol. Sci. 2025, 26(16), 8004; https://doi.org/10.3390/ijms26168004 - 19 Aug 2025
Viewed by 397
Abstract
The expansion of the Alberta Oil Sands Region (AOSR) has increased the deposition of petroleum-derived chemicals into the surrounding environment. Among these, polycyclic aromatic compounds (PACs), including sulfur-containing heterocyclic hydrocarbons, have been detected in exposed local wildlife, yet the reproductive toxicity and genotoxicity [...] Read more.
The expansion of the Alberta Oil Sands Region (AOSR) has increased the deposition of petroleum-derived chemicals into the surrounding environment. Among these, polycyclic aromatic compounds (PACs), including sulfur-containing heterocyclic hydrocarbons, have been detected in exposed local wildlife, yet the reproductive toxicity and genotoxicity of this suite of PACs remain largely unexplored. This study examined the effects of dibenzothiophene (DBT) and its alkylated congener, 2,4,7-trimethyldibenzothiophene (2,4,7-DBT), on estradiol (E2) synthesis and metabolism in granulosa cells (SIGCs). Cells were exposed to DBT or 2,4,7-DBT for 24 h at concentrations detected in AOSR wildlife tissues (0, 0.1, 1 and 10 nM). We measured the gene expression of markers involved in E2 synthesis, signaling and metabolism, E2 output via ELISA and E2 metabolite production via HPLC-MS/MS. Exposure to 2,4,7-DBT, but not DBT, shifted E2 metabolism towards 4-OHE2, a genotoxic E2 metabolite. DNA damage was assessed by γH2Ax expression, alongside DNA repair (Parp1) and survival markers (pAKT). Interestingly, both DBT and 2,4,7-DBT increased DNA damage and triggered apoptosis via a caspase-independent mechanism. Given the critical role of granulosa cells in steroidogenesis and fertility, these findings highlight the endocrine-disruptive effects of sulfur-containing heterocyclic PACs and their potential to compromise reproductive health in exposed mammals. Full article
(This article belongs to the Special Issue Reproductive Toxicity of Chemicals)
Show Figures

Figure 1

29 pages, 801 KB  
Review
Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods
by Adriana Solange Maddaleno, Laia Guardia-Escote, Maria Pilar Vinardell, Elisabet Teixidó and Montserrat Mitjans
Cosmetics 2025, 12(4), 175; https://doi.org/10.3390/cosmetics12040175 - 16 Aug 2025
Viewed by 1186
Abstract
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of [...] Read more.
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of cosmetic ingredients, the ban on animal testing for safety and efficacy evaluations in Europe and other regions necessitates the use of in vitro or in silico approaches. Concerns have been raised regarding the possible endocrine-disrupting properties of certain cosmetic compounds, prompting the development of a priority substance list that includes several ultraviolet (UV) filters. This review provides a comprehensive overview of the main methodologies employed to evaluate endocrine-disrupting effects, with a particular focus on different endocrine organs. It also compiles and analyzes literature data related to commonly used UV filters such as benzophenones, avobenzone, homosalate, octocrylene, octinoxate, and 4-methylbenzylidene camphor. A major limitation identified is the lack of validated in vitro methods for assessing disruptions in specific endocrine organs, such as the thyroid and pancreas. This gap hinders accurate interpretation of experimental results and highlights the urgent need for further research to clarify the safety profiles of UV filters and other cosmetic ingredients. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

16 pages, 858 KB  
Review
Unraveling the Core of Endometriosis: The Impact of Endocrine Disruptors
by Efthalia Moustakli, Anastasios Potiris, Themos Grigoriadis, Athanasios Zikopoulos, Eirini Drakaki, Ioanna Zouganeli, Charalampos Theofanakis, Angeliki Gerede, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Int. J. Mol. Sci. 2025, 26(15), 7600; https://doi.org/10.3390/ijms26157600 - 6 Aug 2025
Viewed by 517
Abstract
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative [...] Read more.
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative agents of endometriosis, and highlight implications in the general population and clinical work. A thorough review of experimental, epidemiologic, and mechanistic research studies was conducted to explain the association between EDCs and endometriosis. Among the primary EDCs under investigation are polychlorinated biphenyls, dioxins, phthalates, and bisphenol A (BPA). Despite methodological heterogeneity and some discrepancies, epidemiologic evidence supports a positive association between some increased levels of BPA, phthalates, and dioxins in urine or in blood, and endometriosis. Experiments support some effect of EDCs on endometrial cells and causing endometriosis. EDCs function as xenoestrogens, alter immune function, induce oxidative stress, and disrupt progesterone signaling. Epigenetic reprogramming may play a role in mediating EDC-induced endometriosis. Endocrine, immunological, and epigenetic pathways link EDCs and endometriosis. Prevention techniques require deeper comprehension of those factors. Causal linkages and possible treatment targets should be based on longitudinal studies and multi-omics techniques. Restriction of EDCs could be beneficial for endometriosis prevalence limitation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3236 KB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Viewed by 584
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

13 pages, 1165 KB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Viewed by 325
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Graphical abstract

38 pages, 9212 KB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Cited by 1 | Viewed by 891
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

26 pages, 1112 KB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 - 1 Aug 2025
Cited by 1 | Viewed by 475
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

13 pages, 2414 KB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 502
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

27 pages, 1569 KB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 932
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

21 pages, 1625 KB  
Article
Disrupting Defenses: Effects of Bisphenol A and Its Analogs on Human Antibody Production In Vitro
by Francesca Carlotta Passoni, Martina Iulini, Valentina Galbiati, Marina Marinovich and Emanuela Corsini
Life 2025, 15(8), 1203; https://doi.org/10.3390/life15081203 - 28 Jul 2025
Viewed by 456
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus [...] Read more.
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus brasiliensis, Toxocara canis) through cytokine and regulatory T-cell modulation. Following its ban in food contact materials in Europe, several analogs have been introduced. This study assessed the immunotoxicity of BPA and six analogs, namely BPAP, BPE, BPP, BPS-MAE, BPZ, and TCBPA, by evaluating in vitro the antibody production. Peripheral blood mononuclear cells from healthy male and female donors were exposed to increasing concentrations of each compound for 24 h. After stimulation with rhIL-2 and ODN2006, IgM and IgG secretion were measured on day six. All compounds suppressed antibody production in a concentration-dependent manner, with some sex-related differences. IC50 values showed BPP as the most potent suppressor, and BPE as the weakest. Similarly, IC20 values confirmed these differences in potency, except for BPA being the weakest for IgM in males. Overall, te results do not support the idea that BPA analogs are safer than BPA. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

14 pages, 486 KB  
Review
Bisphenol A Promotes the Progression of Hormone-Sensitive Breast Cancers Through Several Inflammatory Pathways
by Michael Thoene, Kamila Zglejc-Waszak, Marcin Jozwik and Joanna Wojtkiewicz
Cancers 2025, 17(14), 2373; https://doi.org/10.3390/cancers17142373 - 17 Jul 2025
Viewed by 713
Abstract
Background/Objectives: Bisphenol A (BPA) is found throughout the environment and exposure to it has been shown to cause several health problems, including cancer. The problem with BPA is that it is a xenoestrogen that is chemically very similar to 17β-estradiol. Chronic exposure [...] Read more.
Background/Objectives: Bisphenol A (BPA) is found throughout the environment and exposure to it has been shown to cause several health problems, including cancer. The problem with BPA is that it is a xenoestrogen that is chemically very similar to 17β-estradiol. Chronic exposure to BPA overstimulates the estrogen receptors and leads to inflammation that triggers several pathways leading to cancer progression. This is especially true in the case of hormone-sensitive breast cancers. This article reviewed the main pathways thought to be involved in the formation and/or progression of the most common forms of hormone-sensitive breast cancers due to BPA exposure. The main results were compiled and presented in tables along with a more detailed discussion of each pathway within the text. In most cases, chronic BPA exposure led to inflammation, which then triggered pathways leading to cancer stem cell formation and maintenance. In other cases, BPA exposure led to the formation of reactive oxygen species that damaged DNA and caused the formation of mutated p53 and tumorigenesis. Conclusions: The article summarizes the key pathways that are currently known, pertaining to how BPA leads to the progression and maintenance of breast cancer. The article then concludes by discussing how prenatal and perinatal BPA exposure may also predispose women to hormone-sensitive breast cancers later in life. Full article
Show Figures

Figure 1

42 pages, 8737 KB  
Review
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Viewed by 3333
Abstract
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis [...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility. Full article
Show Figures

Graphical abstract

Back to TopTop