Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = energetic particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7530 KB  
Review
Probing the Sources of Ultra-High-Energy Cosmic Rays—Constraints from Cosmic-Ray Measurements
by Teresa Bister
Universe 2025, 11(10), 331; https://doi.org/10.3390/universe11100331 - 3 Oct 2025
Abstract
Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles known—and yet their origin is still an open question. However, with the precision and accumulated statistics of the Pierre Auger Observatory and the Telescope Array, in combination with advancements in theory and modeling—e.g., of [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles known—and yet their origin is still an open question. However, with the precision and accumulated statistics of the Pierre Auger Observatory and the Telescope Array, in combination with advancements in theory and modeling—e.g., of the Galactic magnetic field—it is now possible to set solid constraints on the sources of UHECRs. The spectrum and composition measurements above the ankle can be well described by a population of extragalactic, homogeneously distributed sources emitting mostly intermediate-mass nuclei. Additionally, using the observed anisotropy in the arrival directions, namely the large-scale dipole >8 EeV, as well as smaller-scale warm spots at higher energies, even more powerful constraints on the density and distribution of sources can be placed. Yet, open questions remain—like the striking similarity of the sources that is necessary to describe the rather pure mass composition above the ankle, or the origin of the highest energy events whose tracked back directions point toward voids. The current findings and possible interpretation of UHECR data will be presented in this review. Full article
15 pages, 6813 KB  
Article
Mass Transfer Mechanism and Process Parameters in Glycerol Using Resonant Acoustic Mixing Technology
by Ning Ma, Guangbin Zhang, Xiaofeng Zhang, Yuqi Gao and Shifu Zhu
Processes 2025, 13(9), 2845; https://doi.org/10.3390/pr13092845 - 5 Sep 2025
Viewed by 425
Abstract
Resonant acoustic technology utilizes low-frequency vertical harmonic vibrations to induce full-field mixing effects in processed materials, and it is regarded as a “disruptive technology in the field of energetic materials”. Although numerous scholars have investigated the mechanisms of resonant acoustic mixing, there remains [...] Read more.
Resonant acoustic technology utilizes low-frequency vertical harmonic vibrations to induce full-field mixing effects in processed materials, and it is regarded as a “disruptive technology in the field of energetic materials”. Although numerous scholars have investigated the mechanisms of resonant acoustic mixing, there remains a lack of parameter selection methods for improving product quality and production efficiency in engineering practice. To address this issue, this study employs phase-field modeling and fluid–structure coupling methods to numerically simulate the transport process of glycerol during resonant acoustic mixing. The research reveals the mass transfer mechanism within the flow field, establishes a liquid-phase distribution index for quantitatively characterizing mixing effectiveness, and clarifies the enhancement effect of fluid transport on solid particle mixing through particle tracking methods. Furthermore, parameter studies on vibration frequency and amplitude were conducted, yielding a critical curve for guiding parameter selection in engineering applications. The results demonstrate that Faraday instability first occurs at the fluid surface, generating Faraday waves that drive large-scale vortices for global mass transfer, followed by localized mixing through small-scale vortices. The transport process of glycerol during resonant acoustic mixing comprises three distinct stages: stable Faraday wave oscillation, rapid mass transfer during flow field destabilization, and localized mixing upon stabilization. Additionally, increasing either vibration frequency or amplitude effectively enhances both the rate and effectiveness of mass transfer. These findings offer theoretical guidance for optimizing process parameters in resonant acoustic mixing applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

7 pages, 232 KB  
Article
One-Dimensional Analytical Solutions of the Transport Equations for Incompressible Magnetohydrodynamic (MHD) Turbulence
by Bingbing Wang, Gary P. Zank, Laxman Adhikari and Swati Sharma
Galaxies 2025, 13(5), 104; https://doi.org/10.3390/galaxies13050104 - 3 Sep 2025
Viewed by 329
Abstract
We derive one-dimensional (1D) analytical solutions for the transport equations of incompressible magnetohydrodynamic (MHD) turbulence, including the Elsässer energies and the correlation lengths. The solutions are suitable for an arbitrary given background convection speed and Alfvén speed profiles but require near equipartition of [...] Read more.
We derive one-dimensional (1D) analytical solutions for the transport equations of incompressible magnetohydrodynamic (MHD) turbulence, including the Elsässer energies and the correlation lengths. The solutions are suitable for an arbitrary given background convection speed and Alfvén speed profiles but require near equipartition of turbulent kinetic energy and magnetic field energy. These analytical solutions provide a simple tool to investigate the evolution of turbulence and resulting energetic particle diffusion coefficients in various space and astrophysical environments that possess simple geometry. Full article
Show Figures

Figure 1

16 pages, 1358 KB  
Article
The Hungry Daemon: Does an Energy-Harvesting Active Particle Have to Obey the Second Law of Thermodynamics?
by Simon Bienewald, Diego M. Fieguth and James R. Anglin
Entropy 2025, 27(9), 918; https://doi.org/10.3390/e27090918 - 30 Aug 2025
Cited by 1 | Viewed by 677
Abstract
Thought experiments like Maxwell’s Demon or the Smoluchowski–Feynman Ratchet can help in pursuing the microscopic origin of the Second Law of Thermodynamics. Here we present a more sophisticated mechanical system than a ratchet, consisting of a Hamiltonian (non-Brownian) active particle which can harvest [...] Read more.
Thought experiments like Maxwell’s Demon or the Smoluchowski–Feynman Ratchet can help in pursuing the microscopic origin of the Second Law of Thermodynamics. Here we present a more sophisticated mechanical system than a ratchet, consisting of a Hamiltonian (non-Brownian) active particle which can harvest energy from an environment which may be in thermal equilibrium at a single temperature. We show that while a phenomenological description would seem to allow the system to operate as a Perpetual Motion Machine of the Second Kind, a full mechanical analysis confirms that this is impossible, and that perpetual energy harvesting within a mechanical system can only occur if the environment has an energetic population inversion similar to a lasing medium. Full article
Show Figures

Figure 1

14 pages, 3367 KB  
Article
Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers
by Dongxue Han, Wencong Zhang, Yong Yang, Yuantao Huang, Jiangqi Yu, Li Wu, Wenyan Tian and Huacheng Zhu
Polymers 2025, 17(16), 2183; https://doi.org/10.3390/polym17162183 - 9 Aug 2025
Viewed by 568
Abstract
Atmospheric pressure plasma jets (APPJs) enable efficient solvent-free surface modification to enhance the wettability, adhesion, and biocompatibility of polymers. However, conventional APPJs often generate high temperatures and energetic particles, which lead to melting, surface degradation, and molecular damage of thermosensitive polymers, thus limiting [...] Read more.
Atmospheric pressure plasma jets (APPJs) enable efficient solvent-free surface modification to enhance the wettability, adhesion, and biocompatibility of polymers. However, conventional APPJs often generate high temperatures and energetic particles, which lead to melting, surface degradation, and molecular damage of thermosensitive polymers, thus limiting their scope of application. This study demonstrates an optimized atmospheric pressure microwave plasma jet (MPJ) operating at 8 W microwave power, achieving gas temperatures as low as 27.5 °C—only 2 °C above ambient. Direct skin contacts with the plasma jet for 150 s resulted in a maximum temperature of 35 °C without discomfort. In addition, the MPJ significantly enhances the surface hydrophilicity of TPU, PVC, and POM materials without causing damage. The designed MPJ has low gas temperature and good discharge stability, providing a new solution for plasma surface modification of thermosensitive materials. Full article
(This article belongs to the Special Issue Recent Progress in Surface Treatment for Polymer Materials by Plasmas)
Show Figures

Figure 1

12 pages, 4567 KB  
Article
Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au
by Xinyu Wang, Qun Wei, Jing Luo, Xiaofei Jia, Meiguang Zhang, Xuanmin Zhu and Bing Wei
Materials 2025, 18(16), 3728; https://doi.org/10.3390/ma18163728 - 8 Aug 2025
Cited by 5 | Viewed by 408
Abstract
Considering previous studies on the high-pressure phases and compressibility of Ba–Au alloys with stoichiometries Au2Ba, AuBa, and Au2Ba3, the concentration of the alkaline-earth metal Ba increased, and a particle-swarm optimization algorithm was employed to conduct comprehensive structure [...] Read more.
Considering previous studies on the high-pressure phases and compressibility of Ba–Au alloys with stoichiometries Au2Ba, AuBa, and Au2Ba3, the concentration of the alkaline-earth metal Ba increased, and a particle-swarm optimization algorithm was employed to conduct comprehensive structure searches for the Ba4Au compound at 0, 10, 20, and 50 GPa. First-principles calculations were subsequently carried out to investigate its structural evolution and electronic properties under compression. Enthalpy-difference calculations indicate that the I4/mmm phase of Ba4Au transforms to the Cmmm phase at approximately 0.4 GPa. As pressure increases above 5.7 GPa, the I4/m structure becomes energetically more favorable than Cmmm-Ba4Au, indicating that the Cmmm phase transforms to the I4/m phase at 5.7 GPa. Both phase transitions are first-order and accompanied by discernible volume collapses. Additionally, a comparative analysis of the electronic properties of Ba4Au was performed before and after the phase transitions. In this study, theoretical guidance is provided for the exploration of the high-pressure structural evolution of Ba4Au, and critical insights are offered regarding the changes that occur in its physical and chemical properties under compression. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

9 pages, 1056 KB  
Article
Study of High-Altitude Coplanarity Phenomena in Super-High-Energy EAS Cores with a Thick Calorimeter
by Rauf Mukhamedshin, Turlan Sadykov, Vladimir Galkin, Alia Argynova, Aidana Almenova, Dauren Muratov, Khanshaiym Makhmet, Valery Zhukov, Vladimir Ryabov, Vyacheslav Piscal, Yernar Tautayev and Zhakypbek Sadykov
Particles 2025, 8(3), 74; https://doi.org/10.3390/particles8030074 - 4 Aug 2025
Viewed by 368
Abstract
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and [...] Read more.
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and hadrons in the cores of extensive air showers at E0 ≳ 2·1015 eV (√s ≳ 2 TeV). These effects are not described by theoretical models. To explain this phenomenon, it may be necessary to introduce a new process of generating the most energetic particles in the interactions of hadrons with the nuclei of atmospheric atoms. A new experimental array of cosmic ray detectors, including the ADRON-55 ionization calorimeter, has been created to study processes in EAS cores at ultra-high energies. The possibility of using it to study the coplanarity effect is being considered. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

27 pages, 5776 KB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 653
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

14 pages, 3283 KB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 475
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

20 pages, 3323 KB  
Review
The Structural Regulation and Properties of Energetic Materials: A Review
by Jin Yu, Siyu Xu, Weiqiang Pang, Hanyu Jiang and Zihao Zhang
Nanomaterials 2025, 15(15), 1140; https://doi.org/10.3390/nano15151140 - 23 Jul 2025
Viewed by 719
Abstract
Structural regulation is of great significance for improving the comprehensive performance of energetic materials (EMs). The structural regulation and properties of EMs were summarized. For single-component EMs, particle size control focuses on quality consistency and industrial scalability, morphology modification mainly improves sphericity through [...] Read more.
Structural regulation is of great significance for improving the comprehensive performance of energetic materials (EMs). The structural regulation and properties of EMs were summarized. For single-component EMs, particle size control focuses on quality consistency and industrial scalability, morphology modification mainly improves sphericity through monomers or aggregates and explores the possibility of layered energetic materials in improving mechanical properties, and polycrystalline regulation suppresses metastable phases and explores novel crystalline forms using simulation-guided design. Composite EMs (CEMs) employ core–shell structures to balance safety with performance via advanced coating materials, cocrystal engineering to tailor energy release through intermolecular interactions, and lattice strain modulation, and mixing structures integrates component advantages while enhancing the reaction efficiency. Future directions emphasize computational simulations and novel fabrication methods to guide the rational design and precise preparation of next-generation EMs with specific functions. Full article
Show Figures

Graphical abstract

15 pages, 2667 KB  
Article
Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021
by Evgenia Belova, Simon Nils Persson, Victoria Barabash and Sheila Kirkwood
Atmosphere 2025, 16(8), 898; https://doi.org/10.3390/atmos16080898 - 23 Jul 2025
Viewed by 712
Abstract
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere [...] Read more.
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere and enhanced electron density. We have studied the characteristics of PMWEs and their dependence on solar and geophysical conditions using the ESrange RADar (ESRAD) located in northern Sweden during 1996–2021. We found that PMWEs start in mid-August and finish in late May. The mean daily occurrence rate varied significantly during the PMWE season, showing several relative maxima and a minimum in December. The majority of PMWEs were observed during sunlit hours at 60–75 km. Some echoes were detected at 50–60 km. The echo occurrence rate showed a pronounced maximum near local noon at 64–70 km. During nighttime, PMWEs were observed at about 75 km. PMWEs were observed on 47% of days with disturbed conditions (enhanced solar wind speed, Kp index, solar proton, and X-ray fluxes), and on only 14% of days with quiet conditions. Elevated solar wind speed and Kp index each accounted for 30% of the days with PMWE detections. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

13 pages, 3705 KB  
Article
Molecular Simulations of Interface-Driven Crosslinked Network Formation and Mechanical Response in Composite Propellants
by Chen Ling, Xinke Zhang, Xin Li, Guozhu Mou, Xiang Guo, Bing Yuan and Kai Yang
Polymers 2025, 17(13), 1863; https://doi.org/10.3390/polym17131863 - 3 Jul 2025
Viewed by 584
Abstract
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 [...] Read more.
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 components, including the polymer binder HTPB, curing agent IPDI, oxidizer particles AP/Al, bonding agents MAPO/T313, plasticizer DOS, etc.) and their influence on crosslinked network formation. In this study, we propose an integrated computational framework that combines coarse-grained simulations with reactive force fields to investigate these complex interactions at the molecular level. Our approach successfully elucidates the two-step reaction mechanism propagating along the AP interface in multicomponent propellants, comprising interfacial self-polymerization of bonding agents followed by the participation of curing agents in crosslinked network formation. Furthermore, we assess the mechanical performance through tensile simulations, systematically investigating both defect formation near the interface and the influence of key parameters, including the self-polymerization time, HTPB chain length, and IPDI content. Our results indicate that the rational selection of parameters enables the optimization of mechanical properties (e.g., ~20% synchronous improvement in tensile modulus and strength, achieved by selecting a side-chain ratio of 20%, a DOS molar ratio of 2.5%, a MAPO:T313 ratio of 1:2, a self-polymerization MAPO time of 260 ns, etc.). Overall, this study provides molecular-level insights into the structure–property relationships of composite propellants and offers a valuable computational framework for guided formulation optimization in propellant manufacturing. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

55 pages, 16837 KB  
Review
A Comprehensive Review of Plasma Cleaning Processes Used in Semiconductor Packaging
by Stephen Sammut
Appl. Sci. 2025, 15(13), 7361; https://doi.org/10.3390/app15137361 - 30 Jun 2025
Viewed by 2478
Abstract
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the [...] Read more.
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the process yield. Plasma cleaning is a vital process in semiconductor manufacturing, employed to enhance production yield through precise and efficient surface preparation essential for device fabrication. This paper explores the various facets of plasma cleaning, with a particular emphasis on its application in the cleaning of lead frames used in semiconductor packaging. To provide comprehensive context, this paper also reviews the critical role of plasma in advanced and emerging packaging technologies. This study investigates the fundamental physics governing plasma generation, the design of plasma systems, and the composition of the plasma medium. A central focus of this work is the comparative analysis of different plasma systems in terms of their effectiveness in removing organic contaminants and oxide residues from substrate surfaces. By utilizing reactive species generated within the plasma—such as oxygen radicals, hydrogen ions, and other chemically active constituents—these systems enable a non-contact, damage-free cleaning method that offers significant advantages over conventional wet chemical processes. Additionally, the role of non-reactive species, such as argon, in sputtering processes for surface preparation is examined. Sputtering is the ejection of individual atoms from a target surface due to momentum transfer from an energetic particle (usually an ion). Sputtering is therefore a physical process driven by momentum transfer. Energetic ions, such as argon (Ar+), are accelerated from the plasma to bombard a target surface. Upon impact, these ions transfer sufficient kinetic energy to atoms within the material’s lattice to overcome their surface binding energy, resulting in their physical ejection. This paper also provides a comparative assessment of various plasma sources, including direct current, dielectric barrier discharge, radio frequency, and microwave-based systems, evaluating their suitability and efficiency for lead frame cleaning applications. Furthermore, it addresses critical parameters affecting plasma cleaning performance, such as gas chemistry, power input, pressure regulation, and substrate handling techniques. The ultimate aim of this paper is to provide a concise yet comprehensive resource that equips technical personnel with the essential knowledge required to make informed decisions regarding plasma cleaning technologies and their implementation in semiconductor manufacturing. This paper provides various tables which provide the reader with comparative assessments of the various plasma sources and gases used. Scoring mechanisms are also introduced and utilized in this paper. The scores achieved by both the sources and the plasma gases are then summarized in this paper’s conclusions. Full article
Show Figures

Figure 1

41 pages, 8474 KB  
Article
GITT Limitations and EIS Insights into Kinetics of NMC622
by Intizar Abbas, Huyen Tran Tran, Tran Thi Ngoc Tran, Thuy Linh Pham, Eui-Chol Shin, Chan-Woo Park, Sung-Bong Yu, Oh Jeong Lee, An-Giang Nguyen, Daeho Jeong, Bok Hyun Ka, Hoon-Hwe Cho, Jongwoo Lim, Namsoo Shin, Miran Gaberšček, Su-Mi Hur, Chan-Jin Park, Jaekook Kim and Jong-Sook Lee
Batteries 2025, 11(6), 234; https://doi.org/10.3390/batteries11060234 - 19 Jun 2025
Cited by 2 | Viewed by 1277
Abstract
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential [...] Read more.
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential electrode reaction and diffusion processes. In this work, a quasi-equilibrium criterion of 0.1 mV h−1 was applied to NMC622 electrodes, yielding 8–9 h relaxations below 3.8 V, but above 3.8 V, voltage decayed linearly and indefinitely, even upon discharging titration, showing unusual nonmonotonic relaxation behavior. The initial 36-s transients of a 10-min galvanostatic pulse and diffusion impedance in series with the electrode reaction yielded consistent diffusivity values. However, solid-state diffusion in spherical active particles within porous electrodes, where ambipolar diffusion occurs in the pore electrolyte with t+=0.3, requires a physics-based three-rail transmission line model (TLM). The corrected diffusivity may be three to four times higher. An analytic two-rail TLM approximating the three-rail numerical model was applied to temperature- and frequency-dependent EIS data. This approach mitigates parameter ambiguity and unphysical correlations in EIS. Physics-based EIS enables the identification of multistep energetics and the diagnosis of performance and degradation mechanisms. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

16 pages, 2333 KB  
Article
Potential of DMC and PODE as Fuel Additives for Industrial Diesel Engines
by Nicholas O’Connell, Dominik Stümpfl, Rudolf Höß and Raphael Lechner
Fuels 2025, 6(2), 44; https://doi.org/10.3390/fuels6020044 - 4 Jun 2025
Cited by 1 | Viewed by 885
Abstract
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In [...] Read more.
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In this study both DMC and PODE were investigated as drop-in diesel fuel additives regarding material compatibility, injection behavior, as well as particle and exhaust emissions. Both DMC and PODE are known to be incompatible with certain materials used as seals in the fuel injection system. Therefore, the material compatibility of both neat DMC and PODE as well as blends with B0 was investigated, with both PFTE and FFKM showing good compatibility. The hydraulic injection behavior of DMC–diesel and PODE–diesel blends was investigated experimentally, showing the need for compensating injection quantities for DMC and PODE blends to match neat diesel power output due to their lower calorific values. Energetic compensation can be achieved by higher injection pressures or longer injection durations. Engine tests have been conducted with both DMC–diesel and PODE–diesel blends, demonstrating the potential to mitigate the particle–NOX trade-off. Full article
Show Figures

Figure 1

Back to TopTop