Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,719)

Search Parameters:
Keywords = energy conversion and storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4078 KB  
Article
Visible-Light-Controlled Thermal Energy Storage and Release: A Tetra-Ortho-Fluorinated Azobenzene-Doped Composite Phase Change Material
by Yating Zhang, Jing Qi, Jun Xia, Fei Zhai and Liqi Dong
Molecules 2025, 30(17), 3576; https://doi.org/10.3390/molecules30173576 (registering DOI) - 31 Aug 2025
Abstract
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and [...] Read more.
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and release, existing systems require UV irradiation for E-to-Z isomerization. This UV dependency seriously hinders their development in practical solar applications. Herein, we develop a visible-light-responsive Azo@OPCM composite by doping tetra-ortho-fluorinated azobenzene into eicosane. Systematic characterization of composites with different dopant ratios via UV–visible spectroscopy and differential scanning calorimetry reveals that green-light irradiation drives E-to-Z isomerization, achieving 97–99% Z-isomer conversion. This photoisomerization could introduce supercooling through photo-responsive energy barriers generated by Z-isomer, allowing thermal energy storage at lower temperatures. Subsequent blue-light irradiation triggers Z-to-E reversion to eliminate supercooling and enable optically controlled heat release. Additionally, by regulating the molar ratios of dopant, the optimized composites achieved 280.76 J/g energy density at 20% molar doping ratio, which surpassed that of pure eicosane and the reported Azo-based photothermal energy storage system. This work establishes a complete visible-light-controlled energy harvesting–storage–release cycle with significant potential for near-room-temperature solar thermal storage applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
4 pages, 156 KB  
Editorial
Nanocomposite Design for Energy-Related Applications
by Qiu Jiang, Hanfeng Liang, Yizhou Zhang and Gang Huang
Nanomaterials 2025, 15(17), 1334; https://doi.org/10.3390/nano15171334 (registering DOI) - 29 Aug 2025
Viewed by 68
Abstract
Nanocomposites, which combine various nanomaterials, offer immense potential in the design of advanced materials for energy-related applications. These materials, engineered at the nanoscale, exhibit enhanced properties compared to their bulk counterparts, such as improved electrical conductivity, mechanical strength, and thermal stability. Nanocomposites have [...] Read more.
Nanocomposites, which combine various nanomaterials, offer immense potential in the design of advanced materials for energy-related applications. These materials, engineered at the nanoscale, exhibit enhanced properties compared to their bulk counterparts, such as improved electrical conductivity, mechanical strength, and thermal stability. Nanocomposites have emerged as promising candidates for use in energy storage systems, including batteries and supercapacitors, by improving energy density, cycle life, and charge–discharge rates. In renewable energy technologies such as fuel cells, nanocomposites play a crucial role in enhancing efficiency and stability, which are vital for reducing costs and promoting the adoption of clean energy solutions. The unique properties of nanocomposites, such as high surface area and tunable composition, allow for the integration of multiple functionalities, making them ideal for multifunctional catalysts in energy conversion and environmental remediation. Additionally, nanocomposites enable the development of energy harvesting systems with improved performance and durability. These materials can be tailored by adjusting the composition of the nanomaterials, opening new opportunities for energy applications. The increasing research into nanocomposites continues to drive innovation in energy-related technologies, positioning them as a key enabler for sustainable energy solutions and future advancements in renewable energy systems. Full article
(This article belongs to the Special Issue Nanocomposite Design for Energy-Related Applications)
40 pages, 3531 KB  
Review
Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
by Rashid Dallaev
Polymers 2025, 17(17), 2346; https://doi.org/10.3390/polym17172346 - 29 Aug 2025
Viewed by 291
Abstract
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive [...] Read more.
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Graphical abstract

13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 181
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

13 pages, 2827 KB  
Article
Can Dicyanamide Ionic Liquids Boost Water Electrolysis?
by Juliane A. B. Tutsch, Jadranka Milikić, Diogo M. F. Santos, César A. C. Sequeira, Milan Vraneš, Slobodan Gadžurić and Biljana Šljukić
Processes 2025, 13(9), 2765; https://doi.org/10.3390/pr13092765 - 29 Aug 2025
Viewed by 182
Abstract
Room-temperature ionic liquids (RTILs) have attracted attention in engineering electrolytes for electrochemical energy conversion and storage devices. Within the present study, five different RTILs were prepared and subsequently investigated as additives to alkaline aqueous solutions for the oxygen evolution reaction (OER). Studied RTILs [...] Read more.
Room-temperature ionic liquids (RTILs) have attracted attention in engineering electrolytes for electrochemical energy conversion and storage devices. Within the present study, five different RTILs were prepared and subsequently investigated as additives to alkaline aqueous solutions for the oxygen evolution reaction (OER). Studied RTILs were based on dicyanamide ion as a green anion, suitable for electrochemical applications, and included 1-butyl-3-ethylimidazolium dicyanamide, 1,3-dibutylimidazolium dicyanamide, 1-butyl-3-hexylimidazolium dicyanamide, 1-butyl-3-octylimidazolium dicyanamide, and 1,3-diethylimidazolium dicyanamide. The OER studies were performed in 8 M KOH with RTILs (1 vol.%) using linear scan voltammetry, and the current densities were compared to those recorded in 8 M KOH with no RTILs added. Reaction parameters, such as the Tafel slope, were determined, enabling further evaluation and comparison of RTIL-containing electrolyte systems. Moreover, the influence of temperature on the OER efficiency of the system with mixed RTIL-KOH electrolytes was studied. Voltammetric studies were complemented by electrochemical impedance spectroscopy, which revealed a decrease in solution resistance with increasing temperature, as well as by chronoamperometry analysis. Full article
Show Figures

Graphical abstract

23 pages, 7901 KB  
Article
Coordination of Multiple BESS Units in a Low-Voltage Distribution Network Using Leader–Follower and Leaderless Control
by Margarita Kitso, Bagas Ihsan Priambodo, Joel Alpízar-Castillo, Laura Ramírez-Elizondo and Pavol Bauer
Energies 2025, 18(17), 4566; https://doi.org/10.3390/en18174566 - 28 Aug 2025
Viewed by 159
Abstract
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated [...] Read more.
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated control strategies as a solution. This paper proposes two coordination control strategies of batteries to address network overvoltage conditions caused by high penetration of photovoltaic systems. The leader–follower coordination strategy determines a battery’s utilization factor by using the node closest to a voltage violation as a reference. The leaderless control uses a shared utilization factor to avoid excessive usage of a particular agent in the network. We tested both approaches in the 18-node CIGRE network for scenarios when not all agents were available and when they had different starting states-of-charge. Our results demonstrate that both strategies are capable of voltage control; however, the leader–follower control leads to uneven storage usage, ultimately leading to short-time failure to comply with the voltage limits under extreme conditions where neighbouring agents must compensate for the unavailable one. Conversely, the leaderless approach presents more balanced use of the agents thanks to the distributed utilization factor, resulting in a more robust control strategy. Full article
Show Figures

Figure 1

28 pages, 2204 KB  
Review
Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture
by Salini Chandrasekharan Nair, Vineetha John, Renu Geetha Bai and Timo Kikas
Sustainability 2025, 17(17), 7738; https://doi.org/10.3390/su17177738 - 28 Aug 2025
Viewed by 404
Abstract
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role [...] Read more.
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role in sustainable energy production and circular economy frameworks. Drawing from recent literature, the review covers process fundamentals, feedstock characteristics and operational parameters—typically 200–300 °C, heating rates below 50 °C per minute, ~1 h residence time, and oxygen-deficient conditions. The impacts of torrefaction on fuel properties, such as increased energy density, improved grindability and pelletability, enhanced storage stability, and reduced microbial degradation are critically assessed along with its contribution to waste valorization and renewable energy conversion. Particular emphasis is placed on the application of torrefied biomass (biochar) in sustainable agriculture, where it can enhance nutrient retention, improve soil quality and promote long-term carbon sequestration. This review identifies an unresolved research gap in aligning large-scale techno-economic feasibility with environmental impacts, specifically concerning the high process energy requirements, emission mitigation and regulatory integration. Process optimization, reactor design and supportive policy frameworks are identified as key strategies that could significantly improve the economic viability and sustainability outcomes. Overall, torrefaction demonstrates substantial potential as a scalable pathway for converting waste agricultural and forest residues into carbon-neutral biofuels. By effectively linking biomass waste valorization with renewable energy production and sustainable agricultural practices, this review offers a practical route to reducing environmental impacts while supporting the broader objectives of the global circular economy. Full article
Show Figures

Figure 1

15 pages, 1843 KB  
Review
Current Status and Future Direction of Photovoltaics
by Masafumi Yamaguchi
Appl. Sci. 2025, 15(17), 9416; https://doi.org/10.3390/app15179416 - 27 Aug 2025
Viewed by 279
Abstract
Photovoltaic (PV) energy conversion is expected to contribute to the creation of a clean energy society. For realizing such a vision, various developments such as high-efficiency, low-cost and highly reliable materials, solar cells, modules and systems are necessary. Cooperation with storage batteries is [...] Read more.
Photovoltaic (PV) energy conversion is expected to contribute to the creation of a clean energy society. For realizing such a vision, various developments such as high-efficiency, low-cost and highly reliable materials, solar cells, modules and systems are necessary. Cooperation with storage batteries is also very important for regulation and self-consumption. The creation of new applications such as building integrated PV, vehicle integrated PV, agriculture PV and floating PV is also very important for further installation of PV and reducing CO2 emission. The sustainability of material consumption, along with reducing, reusing and recycling are also key issues for widespread deployment of PV. This paper provides an overview of the current status of photovoltaics and discusses future directions for photovoltaics from the view-points of high-efficiency, low-cost, reliability, and importance of integrated photovoltaics and sustainability. Full article
Show Figures

Figure 1

14 pages, 5390 KB  
Article
An S-Infused/S, F-Codoped PVDF-Derived Carbon as a High-Performance Anode for Sodium-Ion Batteries
by Jianjiao Wang, Qian Zhang, Pengyu Han, Jiakun Luo and Kui-Qing Peng
Materials 2025, 18(17), 4018; https://doi.org/10.3390/ma18174018 - 27 Aug 2025
Viewed by 187
Abstract
Heteroatom doping is an effective strategy for improving the sodium storage performance of hard carbon. However, the use of sulfur and fluorine codoped carbon materials as anodes for sodium-ion batteries has not been reported. Here, an S-infused/S, F-codoped PVDF-derived carbon SFC5 was prepared [...] Read more.
Heteroatom doping is an effective strategy for improving the sodium storage performance of hard carbon. However, the use of sulfur and fluorine codoped carbon materials as anodes for sodium-ion batteries has not been reported. Here, an S-infused/S, F-codoped PVDF-derived carbon SFC5 was prepared by one-step carbonization of PVDF and synchronously used as an anode for a sodium-ion battery. The prepared SFC5 containing 10.11 at% S and 9.54 at% F is a short-range ordered amorphous carbon with a microporous structure. Owing to the structural advantages of S, F codoping, and the high specific capacity of S, SFC5 exhibited an outstanding sodium storage performance of 365 mAh g−1 after 200 cycles at 50 mA g−1 and 212 mAh g−1 after 500 cycles at 400 mA g−1. Moreover, theoretical calculations based on density functional theory (DFT) verify that S and F codoping can considerably reduce the Na+ adsorption energy and increase the electronic conductivity of SFC5. The current study presents a viable and facile approach to prepare high-performance, low-cost anode materials for SIBs, supported by empirical evidence and theoretical computations. Full article
(This article belongs to the Special Issue Low Dimensional Materials for Batteries and Supercapacitors)
Show Figures

Figure 1

11 pages, 1632 KB  
Article
A Tb (Ⅲ) Coordination Polymer Based on 5-(2-(Pyrazole-1-yl) Pyridine-5-yl) Terephthalic Acid and Its Visual Detection of Quinolone Antibiotics
by Ai Wang, Yichong Li, Wei Zhao and Jia Liu
Polymers 2025, 17(17), 2277; https://doi.org/10.3390/polym17172277 - 22 Aug 2025
Viewed by 422
Abstract
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized [...] Read more.
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized via solvothermal reaction with Tb(NO3)3·6H2O. Luminescence studies revealed that complex 1 functions as a turn-on fluorescent probe for the selective detection of ofloxacin (OFX), levofloxacin (LFX), and norfloxacin (NFX), with detection limits of 27.9, 17.1, and 8.0 nM, respectively. Owing to its high selectivity and anti-interference capability, the complex was successfully applied for the determination of OFX and LFX in milk samples. Furthermore, a test strip impregnated with complex 1 enabled naked-eye fluorescence detection of OFX, LFX, and NFX under 254 nm UV light. Additionally, a fluorescence sensing film fabricated from complex 1 exhibited excellent recyclability, allowing for at least seven consecutive detection cycles without significant signal loss. This study innovatively designed and synthesized a novel Tb(III)-based coordination polymer fluorescent probe utilizing an original ligand scaffold, achieving the first reported visual detection of quinolone antibiotics with fluorescence test strips and agar films. Full article
(This article belongs to the Special Issue Coordination Polymers: Design, Preparation, and Application)
Show Figures

Figure 1

23 pages, 5636 KB  
Article
Design and Implementation of Novel DC-DC Converter with Step-Up Ratio and Soft-Switching Technology
by Kuei-Hsiang Chao and Thi-Thanh-Truc Bau
Electronics 2025, 14(16), 3335; https://doi.org/10.3390/electronics14163335 - 21 Aug 2025
Viewed by 353
Abstract
This paper focuses on the development of a high-conversion-efficiency DC/DC boost converter, which features high-voltage boost ratio conversion and employs soft-switching technology to reduce conversion losses. In the proposed design, the conventional energy storage inductor used in traditional boost converters is replaced with [...] Read more.
This paper focuses on the development of a high-conversion-efficiency DC/DC boost converter, which features high-voltage boost ratio conversion and employs soft-switching technology to reduce conversion losses. In the proposed design, the conventional energy storage inductor used in traditional boost converters is replaced with a coupled inductor, and an additional boost circuit is introduced. This configuration allows the converter to achieve a higher voltage conversion ratio under the same duty cycle, thereby enhancing the voltage gain of the converter. Additionally, a resonance branch is incorporated into the converter, and by applying a simple switching signal control, zero-voltage switching (ZVS) of the main switch is realized. To decrease the switching losses typically found in hard-switching high-voltage boost ratio converters, the proposed design enhances overall power conversion efficiency. The operation principle of this novel high-voltage boost ratio soft-switching converter is first examined, followed by the component design process. The converter’s effectiveness is then confirmed through simulation in PSIM. Finally, experimental testing using the TMS320F2809 digital signal processor demonstrates that the main switch achieves ZVS, validating the practical viability of the design. The converter operates under a full load of 340 W, achieving a conversion efficiency of 92.7%, demonstrating the excellent conversion performance of the developed converter. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

29 pages, 12570 KB  
Article
Sustainable Zinc-Ion Battery Separators Based on Silica and Cellulose Fibers Derived from Coffee Parchment Waste
by Vorrada Loryuenyong, Buntita Plongmai, Nitikorn Pajantorn, Prasit Pattananuwat and Achanai Buasri
J. Compos. Sci. 2025, 9(8), 452; https://doi.org/10.3390/jcs9080452 - 21 Aug 2025
Viewed by 521
Abstract
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding [...] Read more.
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding in order to promote a circular economy and sustainable materials. This research focuses on the usage of cellulose fibers obtained from coffee parchment (CP) waste. The extracted cellulose fibers are produced via both mechanical and chemical methods. The sustainable separators are fabricated through vacuum filtration using a polymer filter membrane. The impact of incorporating silica particles and varying silica content on the physical and electrochemical properties of a cellulose-based separator is examined. The optimum amount of silica integrated into the cellulose separator is determined to be 5 wt%. This content led to an effective distribution of the silica particles, enhanced wettability, and improved fire resistance. The ZIBs incorporating cellulose/recycled silica at 5 wt% demonstrate exceptional cycle stability and the highest capacity retention (190% after 400 cycles). This study emphasizes the promise of sustainable polymers as a clean energy resource, owing to their adaptability and simplicity of processing, serving as a substitute for synthetic polymers sourced from fossil fuels. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

28 pages, 1354 KB  
Article
Factors Affecting Energy Consumption in Hydrogen Liquefaction Plants
by Jin Xue and Fathi Boukadi
Processes 2025, 13(8), 2611; https://doi.org/10.3390/pr13082611 - 18 Aug 2025
Viewed by 417
Abstract
Hydrogen energy is valued for its diverse sources and clean, low-carbon nature and is a promising secondary energy source with wide-ranging applications and a significant role in the global energy transition. Nonetheless, hydrogen’s low energy density makes its large-scale storage and transport challenging. [...] Read more.
Hydrogen energy is valued for its diverse sources and clean, low-carbon nature and is a promising secondary energy source with wide-ranging applications and a significant role in the global energy transition. Nonetheless, hydrogen’s low energy density makes its large-scale storage and transport challenging. Liquid hydrogen, with its high energy density and easier transport, offers a practical solution. This study examines the global hydrogen liquefaction methods, with a particular emphasis on the liquid nitrogen pre-cooling Claude cycle process. It also examines the factors in the helium refrigeration cycle—such as the helium compressor inlet temperature, outlet pressure, and mass—that affect energy consumption in this process. Using HYSYS software, the hydrogen liquefaction process is simulated, and a complete process system is developed. Based on theoretical principles, this study explores the pre-cooling, refrigeration, and normal-to-secondary hydrogen conversion processes. By calculating and analyzing the process’s energy consumption, an optimized flow scheme for hydrogen liquefaction is proposed to reduce the total power used by energy equipment. The study shows that the hydrogen mass flow rate and key helium cycle parameters—like the compressor inlet temperature, outlet pressure, and flow rate—mainly affect energy consumption. By optimizing these parameters, notable decreases in both the total and specific energy consumption were attained. The total energy consumption dropped by 7.266% from the initial 714.3 kW, and the specific energy consumption was reduced by 11.94% from 11.338 kWh/kg. Full article
Show Figures

Figure 1

28 pages, 6397 KB  
Review
Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review
by Miaomiao Zhu, Qi Wang and Shuang Wang
Sustainability 2025, 17(16), 7370; https://doi.org/10.3390/su17167370 - 14 Aug 2025
Viewed by 589
Abstract
Biomass gasification represents a pivotal technology for sustainable energy and chemical production, yet its efficiency and product quality are critically dependent on catalyst performance. This comprehensive review systematically synthesizes recent advancements in catalyst design, mechanistic insights, and process integration in biomass gasification. Firstly, [...] Read more.
Biomass gasification represents a pivotal technology for sustainable energy and chemical production, yet its efficiency and product quality are critically dependent on catalyst performance. This comprehensive review systematically synthesizes recent advancements in catalyst design, mechanistic insights, and process integration in biomass gasification. Firstly, it details the development and performance of catalysts in diverse categories, including metal-based catalysts, Ca-based catalysts, natural mineral catalysts, composite/supported catalysts, and emerging waste-derived catalysts. Secondly, this review delves into the fundamental catalytic reaction mechanisms governing key processes such as tar cracking/reforming, water–gas shift, and methane reforming. It further explores sophisticated strategies for catalyst structure optimization, focusing on pore structure/surface area control, strong metal–support interactions (SMSIs), alloying effects, nanodispersion, and crystal phase design. The critical challenges of catalyst deactivation mechanisms and the corresponding activation, regeneration strategies, and post-regeneration performance evaluation are thoroughly discussed. Thirdly, this review addresses the crucial integration of zero CO2 emission concepts, covering in situ CO2 adsorption/conversion, carbon capture and storage (CCS) integration, catalytic CO2 reduction/valorization, multi-energy system synergy, and environmental impact/life cycle analysis (LCA). By synthesizing cutting-edge research, this review identifies key knowledge gaps and outlines future research directions towards designing robust, cost-effective, and environmentally benign catalysts for next-generation, carbon-neutral biomass gasification systems. Full article
Show Figures

Figure 1

16 pages, 2324 KB  
Article
A Stability Study of [Cu(I)(dmby)2]TFSI in Biopolymer-Based Aqueous Quasi-Solid Electrolytes
by Giulia Adriana Bracchini, Elvira Maria Bauer, Claudia Mazzuca and Marilena Carbone
Gels 2025, 11(8), 645; https://doi.org/10.3390/gels11080645 - 14 Aug 2025
Viewed by 287
Abstract
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which [...] Read more.
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which to overcome the typical drawbacks of common liquid electrolytes such as corrosion, volatility or leakage. Despite the promising results obtained so far, redox-active species such as bis(6,6′-dimethyl-2,2′-bipyridine)copper(I) trifluoromethanesulfonylimide, ([Cu(I)(dmby)2]TFSI), still present inherent challenges associated with their poor water solubility and oxidative lability, which prevents their employment in cheap and sustainable aqueous electrolytes. The present study investigates the stabilization of the Cu(I) complex ([Cu(I)(dmby)2]TFSI) within two natural hydrogels based on the biopolymers κ-carrageenan and galactomannan, using ZnO nanoparticles as gelling agents. These eco-friendly and biocompatible systems are proposed as potential matrices for quasi-solid electrolytes (QSEs), offering a promising platform for advanced electrolyte design in electrochemical applications. Both hydrogels effectively stabilized and retained the redox species within their networks. In order to shed light on distinct stabilization mechanisms, complementary FTIR and SEM analyses were relevant to reveal the structural rearrangements, specific to each matrix, upon complex incorporation. Furthermore, thermogravimetric analysis confirmed notable thermal resilience in both systems, with the galactomannan-based gel demonstrating enhanced performance. Altogether, this work introduces a novel strategy for embedding copper-based redox couples into gelled electrolytes, paving the way toward their integration in real electrochemical devices, where long-term stability, redox retention, and energy conversion efficiency are critical evaluation criteria. Full article
Show Figures

Graphical abstract

Back to TopTop