Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,314)

Search Parameters:
Keywords = enhanced oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5228 KB  
Article
Construction of Hollow TiO2/ZnS Heterojunction Photocatalysts for Highly Enhanced Photodegradation of Tetracycline Hydrochloride
by Ying Zhang, Anhui Su, Yuqin Ding, Yuhan Wu, Yapeng Tan and Jianguo Chang
Molecules 2025, 30(17), 3644; https://doi.org/10.3390/molecules30173644 (registering DOI) - 7 Sep 2025
Abstract
TiO2 photocatalysts exhibit great potential in solar fuel production and environmental remediation, yet their practical applications are often hindered by high electron-hole recombination rates. This study presents a novel strategy for fabricating hollow anatase TiO2-modified ZnS heterostructures (TiO2/ZnS) [...] Read more.
TiO2 photocatalysts exhibit great potential in solar fuel production and environmental remediation, yet their practical applications are often hindered by high electron-hole recombination rates. This study presents a novel strategy for fabricating hollow anatase TiO2-modified ZnS heterostructures (TiO2/ZnS) via a simple hydrothermal method. The heterostructure effectively combines the high electron mobility of ZnS, which facilitates rapid photogenerated electron transfer, with the high specific surface area of hollow TiO2, which enhances pollutant adsorption. As a result, TiO2/ZnS demonstrates superior tetracycline degradation efficiency due to optimized charge separation and improved accessibility to reactive sites, compared to pristine TiO2 and ZnS. Furthermore, the enhanced photocatalytic activity is attributed to efficient charge separation facilitated by Type-II heterojunctions between ZnS and anatase TiO2. Cycling tests reveal that TiO2/ZnS retains over 94% of its activity after 5 cycles. This work offers a versatile approach for stabilizing metal oxides through heterostructure engineering, with significant implications for scalable environmental catalysis. Full article
Show Figures

Figure 1

21 pages, 4279 KB  
Article
The Antimicrobial Effect and ROS Redox Activity of Nb2O5-Containing Powders Obtained by the Sol–Gel Method
by Kalina Ivanova, Elitsa Pavlova, Iliana Ivanova and Albena Bachvarova-Nedelcheva
Gels 2025, 11(9), 716; https://doi.org/10.3390/gels11090716 (registering DOI) - 7 Sep 2025
Abstract
The aim of the present paper is to study the antimicrobial effects of Nb2O5-containing nanosized powders. A combination of inorganic [telluric acid (H6TeO6)] and organic [Ti(IV) n-butoxide, Nb(V) ethoxide (C10H25NbO5 [...] Read more.
The aim of the present paper is to study the antimicrobial effects of Nb2O5-containing nanosized powders. A combination of inorganic [telluric acid (H6TeO6)] and organic [Ti(IV) n-butoxide, Nb(V) ethoxide (C10H25NbO5)] precursors was used to prepare gels. To allow for further hydrolysis, the gels were aged in air for a few days. The gels were amorphous, but at 600 °C the amorphous phase was absent, and only TiO2 (anatase) crystals were detected. The average crystallite size of TiO2 (anatase) was about 10 nm. The UV-Vis spectrum of the as-prepared gel showed red shifting in the cut-off region. The obtained nanopowders were evaluated for antimicrobial properties against E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. aureus ATCC 25923, and C. albicans 18804. Among these, only E. coli was examined in combination with the antibiotic ciprofloxacin to assess whether there was a potential synergistic effect. The results showed that the material exhibited antibacterial activity against the abovementioned bacterial strains but not against C. albicans. In the case of E. coli combined with ciprofloxacin, a concentration-dependent enhancement in antibacterial activity was observed. The obtained samples can be considered as prospective materials for use as environmental catalysts. The newly synthesized nanocomposite showed a balancing, modulating, and neutralizing effect on the generation of ROS. The inhibitory effect was preserved in all tested model chemical systems at pH 7.4 (physiological), indicating potential biological applications in inflammatory and oxidation processes in vivo. Full article
Show Figures

Figure 1

19 pages, 4637 KB  
Article
Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism
by Xudong Li, Yunfeng Lin, Ruomei Niu, Siyuan Chen, Jingyun Pan, Yuquan Zhong, Junqiang Du, Qiuxia Dong, Hongfeng Zhang, Heng Fang, Huiyang Zhu and Wei Zhu
Antioxidants 2025, 14(9), 1093; https://doi.org/10.3390/antiox14091093 (registering DOI) - 7 Sep 2025
Abstract
Dysregulation of hepatic lipid metabolism constitutes a central mechanism in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). 3,3′-Diindolylmethane (DIM), a bioactive compound abundant in dietary Brassica vegetables, exhibited protective effects on hepatocellular carcinoma and metabolic/inflammatory pathologies. Nevertheless, the effects of DIM [...] Read more.
Dysregulation of hepatic lipid metabolism constitutes a central mechanism in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). 3,3′-Diindolylmethane (DIM), a bioactive compound abundant in dietary Brassica vegetables, exhibited protective effects on hepatocellular carcinoma and metabolic/inflammatory pathologies. Nevertheless, the effects of DIM on hepatic lipid metabolism and its underlying mechanisms remain unclear. Administration of DIM (50 mg/kg bw/day) prevented oxidative stress and hepatic lipid deposition in both high-fat diet (HFD)-fed wild-type (WT) and ob/ob mice. Lipidomics revealed that DIM diminished the lipogenesis and reshaped the hepatic lipid profile. Network pharmacology analysis identified the AMPK signaling pathway as the underlying mechanistic target for DIM in treating MASLD. In both HepG2 cells and mouse primary hepatocytes (MPH), DIM attenuated palmitic acid (PA)-induced cellular lipid accumulation, ROS generation, and reduction in oxygen consumption rate (OCR). These protective effects of DIM were diminished by co-treatment with Compound C (CC), a specific AMPK inhibitor. DIM administration enhanced AMPKα phosphorylation in vivo (WT/ob/ob mice) and in vitro (HepG2/MPH), concomitant with PPARα upregulation and SREBP1/ACC1 downregulation. CC abolished all DIM-induced molecular changes in vitro. Collectively, DIM alleviates hepatic lipid accumulation and oxidative stress in MASLD models through AMPK activation, subsequently modulating PPARα and SREBP1/ACC1 pathways. Full article
Show Figures

Graphical abstract

20 pages, 2449 KB  
Article
Suppressed Autoxidation, Enhanced Antioxidant Activity, and Improved Cytocompatibility of Epigallocatechin Gallate via Alginate Site-Specific Conjugation with Tunable Substitution Degree
by Nunnarpas Yongvongsoontorn, Maho Kihara, Masaya Inada, Joo Eun Chung and Motoichi Kurisawa
Int. J. Mol. Sci. 2025, 26(17), 8725; https://doi.org/10.3390/ijms26178725 (registering DOI) - 7 Sep 2025
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation [...] Read more.
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation preserved EGCG’s flavanic structure while enabling tunable degrees of substitution (DS). We systematically evaluated the oxidative stability, antioxidant activity, and cytocompatibility of alginate–EGCG conjugates in comparison with free EGCG and a mixture of EGCG and alginate. Alginate–EGCG conjugates significantly suppressed EGCG autoxidation, reduced hydrogen peroxide generation, and improved cytocompatibility in human renal epithelial cells, especially at a low DS. Furthermore, alginate–EGCG conjugates retained or even enhanced superoxide anion radical scavenging activity, with higher DS conjugates exhibiting greater antioxidant effects. In addition, dynamic light scattering analysis revealed DS-dependent particle formation via self-assembly. These findings demonstrate that covalent conjugation with natural polymers is an effective strategy to improve oxidative stability and biological functionality of plant-derived polyphenols, offering a promising approach for developing advanced antioxidant materials for food, cosmetic, and biomedical applications. Full article
Show Figures

Figure 1

16 pages, 310 KB  
Review
Anabolic–Androgenic Steroids Induced Cardiomyopathy: A Narrative Review of the Literature
by Panagiotis Iliakis, Eleftheria Stamou, Alexandros Kasiakogias, Eleni Manta, Athanasios Sakalidis, Angeliki Vakka, Panagiotis Theofilis, Freideriki Eleni Kourti, Dimitrios Konstantinidis, Kyriakos Dimitriadis, Charalambos Vlachopoulos and Costas Tsioufis
Biomedicines 2025, 13(9), 2190; https://doi.org/10.3390/biomedicines13092190 (registering DOI) - 7 Sep 2025
Abstract
Anabolic–androgenic steroids (AASs) are synthetic derivatives of testosterone and are increasingly misused to enhance muscle growth and physical performance, particularly among athletes and recreational bodybuilders. Although AASs affect multiple organ systems, their severe and potentially life-threatening complications involve the cardiovascular system. This review [...] Read more.
Anabolic–androgenic steroids (AASs) are synthetic derivatives of testosterone and are increasingly misused to enhance muscle growth and physical performance, particularly among athletes and recreational bodybuilders. Although AASs affect multiple organ systems, their severe and potentially life-threatening complications involve the cardiovascular system. This review summarizes current knowledge on the pathophysiological mechanisms and clinical manifestations of AAS-induced cardiomyopathy. Chronic supraphysiologic AAS use promotes cardiac injury and adverse cardiac remodeling via oxidative stress, androgen receptor overactivation, RAAS dysregulation, and pro-apoptotic signaling. These changes could lead to hypertension, dyslipidemia and atherosclerosis, myocardial fibrosis and hypertrophy, arrhythmias, heart failure, and kidney injury. Vascular dysfunction, increased arterial stiffness, and a prothrombotic state further compound the cardiovascular risks. Diagnostic approaches involve biomarker evaluation, echocardiography, and cardiac magnetic resonance imaging, revealing structural and functional cardiac abnormalities such as reduced ejection fraction, concentric hypertrophy, myocardial fibrosis, and impaired diastolic function. Although cessation of AAS use may lead to partial or complete reversal of cardiac dysfunction in some individuals, others may experience irreversible myocardial damage. The reversibility appears to depend on dosage, duration of exposure, and early intervention. This review explores the cardiovascular consequences of AAS use, with a focus on the mechanisms, diagnosis, and management of AAS-induced cardiomyopathy, and underlines the importance of education and early detection. Full article
18 pages, 3074 KB  
Article
Dual-Function Fe3O4-Cu2O-Ag/GO Nanocomposites: Efficient Photocatalytic Degradation and Ultrasensitive SERS Detection of Methylene Blue and Malachite Green Dyes
by Boya Ma, Yu Wu, Wenshi Zhao, Shengyi Wang, Yuqing Xiao, Yongdan Wang, Jihui Lang, Chongya Ma and Yang Liu
Catalysts 2025, 15(9), 865; https://doi.org/10.3390/catal15090865 (registering DOI) - 7 Sep 2025
Abstract
The wastewater discharged from the aquaculture and textile industries often contains toxic organic dyes, such as methylene blue (MB) and malachite green (MG), which pose significant risk to public health and ecosystem stability due to their high chemical stability, bioaccumulation potential and resistance [...] Read more.
The wastewater discharged from the aquaculture and textile industries often contains toxic organic dyes, such as methylene blue (MB) and malachite green (MG), which pose significant risk to public health and ecosystem stability due to their high chemical stability, bioaccumulation potential and resistance to degradation. To address these challenges, the development of an integrated system capable of both efficient degradation and highly sensitive detection of organic dyes is essential for ecological restoration and early pollution monitoring. Herein, bifunctional Fe3O4-Cu2O-Ag-GO (FCA 2-GO) nanocomposites (NCs) were developed by depositing Cu2O, Ag nanocrystals and graphene oxide (GO) onto the surfaces of Fe3O4 nanocrystals. This multifunctional material acted as both a photocatalyst and a surface-enhanced Raman scattering (SERS) platform, enabling simultaneous degradation and ultrasensitive detection of organic dyes. Under simulated sunlight irradiation, FCA 2-GO NCs achieved over 98% degradation of both MB and MG within 60 min, driven by the synergistic action of reactive oxygen species (·O2 and ·OH). The degradation kinetics followed pseudo-first-order behavior, with rate constants of 0.0381 min−1 (MB) and 0.0310 min−1 (MG). Additionally, the FCA 2-GO NCs exhibited exceptional SERS performance, achieving detection limits as low as 10−12 M for both dyes, attributed to electromagnetic–chemical dual-enhancement mechanisms. Practical applicability was demonstrated in soil matrices, showcasing robust linear correlations (R2 > 0.95) between SERS signal intensity and dye concentration. This work provides a dual-functional platform that combines efficient environmental remediation with trace-level pollutant monitoring, offering a promising strategy for sustainable wastewater treatment and environmental safety. Full article
Show Figures

Figure 1

19 pages, 3398 KB  
Article
Polynucleotides Enhance Collagen Synthesis via Modulating Phosphoenolpyruvate Carboxykinase 1 in Senescent Macrophages: Experimental Evidence
by Kyung-A Byun, Hyun Jun Park, Seyeon Oh, Kuk Hui Son and Kyunghee Byun
Int. J. Mol. Sci. 2025, 26(17), 8720; https://doi.org/10.3390/ijms26178720 (registering DOI) - 7 Sep 2025
Abstract
Polynucleotide (PN), a high-molecular-weight DNA fragment derived from salmon and other fish sources, shows promising anti-aging and regenerative effects on the skin. This study investigated how PN enhances collagen synthesis, focusing on its effect on phosphoenolpyruvate carboxykinase 1 (PCK1) in senescent macrophages and [...] Read more.
Polynucleotide (PN), a high-molecular-weight DNA fragment derived from salmon and other fish sources, shows promising anti-aging and regenerative effects on the skin. This study investigated how PN enhances collagen synthesis, focusing on its effect on phosphoenolpyruvate carboxykinase 1 (PCK1) in senescent macrophages and its downstream effects on fibroblasts. Using in vitro senescent cell models and in vivo aged animal models, PN significantly upregulated the adenosine 2A receptor (A2AR), adenylate cyclase (AC), cyclic AMP (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) in senescent macrophages. This led to increased PCK1 expression, which reduced oxidative stress and promoted M2 macrophage polarization, associated with elevated levels of interleukin-10 and tumor growth factor-β. Conditioned media from PN-treated macrophages enhanced SMAD family member 2 and signal transducer and activator of transcription 3 phosphorylation in senescent fibroblasts, increasing collagen I and III synthesis and reducing nuclear factor-κB activity. In vivo, PN administration elevated expression of the A2AR/AC/PKA/CREB/PCK1 pathway, reduced oxidative stress, increased M2 macrophage markers, and significantly improved collagen density and skin elasticity over time. Use of a PCK1 inhibitor attenuated these effects, highlighting the pivotal role of PCK1. Overall, PN modulates macrophage-fibroblast interactions via the CREB/PCK1 axis, enhancing collagen synthesis and counteracting age-related skin changes. PN has emerged as a promising therapeutic agent for skin rejuvenation by targeting cellular senescence and promoting extracellular matrix restoration. Full article
(This article belongs to the Section Biochemistry)
23 pages, 1086 KB  
Review
From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review
by Mohamed-Zakaria Assani, Lidia Boldeanu, Maria-Magdalena Manolea, Mihail Virgil Boldeanu, Isabela Siloși, Alexandru-Dan Assani, Constantin-Cristian Văduva and Anda Lorena Dijmărescu
Int. J. Mol. Sci. 2025, 26(17), 8719; https://doi.org/10.3390/ijms26178719 (registering DOI) - 7 Sep 2025
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, affecting up to 14% of pregnancies globally. GDM is characterized by glucose intolerance that arises or is first identified during pregnancy and is linked to significant short- and long-term [...] Read more.
Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, affecting up to 14% of pregnancies globally. GDM is characterized by glucose intolerance that arises or is first identified during pregnancy and is linked to significant short- and long-term adverse outcomes for both mothers and their offspring. The pathophysiology of GDM involves more than maternal insulin resistance and β-cell dysfunction. It is influenced by complex interactions among placental hormones, adipokines, inflammatory mediators, and oxidative stress pathways. Additionally, placental-derived exosomes and metabolomic signatures have emerged as promising biomarkers for early prediction and monitoring of the disease. Despite advancements in clinical diagnosis and management, including lifestyle interventions and pharmacological treatments, current strategies are still inadequate to prevent complications for both mothers and newborns entirely. Recent molecular insights into GDM development have been explored, along with emerging biomarkers and potential therapies. This synthesis also considers prospects for precision medicine strategies that could significantly improve GDM management. The urgent need for improved prevention and treatment of GDM is evident. A deeper understanding of the molecular foundations of GDM is essential and urgent, as it may enhance clinical outcomes and provide opportunities for early prevention of intergenerational metabolic disease risk. Full article
18 pages, 4479 KB  
Article
RecA Inhibitor Mitigates Bacterial Antibiotic Resistance
by Jin Ma, Liwen Xu, Keke Shang, Qing-Yu He and Gong Zhang
Microorganisms 2025, 13(9), 2087; https://doi.org/10.3390/microorganisms13092087 (registering DOI) - 7 Sep 2025
Abstract
Bacterial antibiotic resistance (AR) has become a critical global health threat. AR is mainly driven by adaptive resistance mutations and the horizontal gene transfer of resistance genes, both of which are enhanced by genome recombination. We previously discovered that genome recombination-mediated tRNA upregulation [...] Read more.
Bacterial antibiotic resistance (AR) has become a critical global health threat. AR is mainly driven by adaptive resistance mutations and the horizontal gene transfer of resistance genes, both of which are enhanced by genome recombination. We previously discovered that genome recombination-mediated tRNA upregulation is important for AR, especially in the early stages. RecA is a crucial bacterial factor mediating genome recombination and the DNA damage response. Therefore, RecA inhibitors should be effective in reducing AR. In this study, we found that BRITE-338733 (BR), a RecA inhibitor, can prevent ciprofloxacin (CIP) resistance in subculturing Escherichia coli strain BW25113 in the early stages (up to the 7th generation). In the presence of BR, the tRNA was decreased, so the bacteria cannot evolve resistance via the tRNA upregulation-mediated AR mechanism. The RecA expression level was also not increased when treated with BR. Transcriptome sequencing revealed that BR could inhibit oxidative phosphorylation, the electron transport chain process, and translation, thereby reducing the bacterial energy state and protein synthesis. Also, the effective concentrations of BR do not harm human cell viability, indicating its clinical safety. These findings demonstrate that BR effectively delays the emergence of spontaneous AR by targeting RecA-mediated pathways. Our findings shed light on a new strategy to counteract clinical AR: applying BR with the antibiotics together at the beginning. Full article
19 pages, 4113 KB  
Article
Epigallocatechin Gallate Ameliorates Granulosa Cell Developmental via the Eukaryotic Initiation Factor 2 Alpha/Activating Transcription Factor 4 Pathway in Hyperthyroid Female Rats
by Ying Sun, Mingqi Wu, Haoyuan Feng, Yilin Yao, Rui Chen, Yanzhou Yang and Cheng Zhang
Antioxidants 2025, 14(9), 1092; https://doi.org/10.3390/antiox14091092 (registering DOI) - 6 Sep 2025
Abstract
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of [...] Read more.
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of green tea, possesses strong antioxidant properties. Numerous studies have demonstrated that EGCG positively influences reproductive function in both humans and animals. However, whether EGCG directly affects follicular development under conditions of TH dysregulation remains poorly understood. The primary objective of this study was to investigate the impact of hyperthyroidism on ovarian development, examine whether EGCG could mitigate the adverse effects of TH dysregulation, and elucidate the underlying molecular mechanisms. In the T4-induced hyperthyroidism rat model, ovarian tissues were serially sectioned for Hematoxylin-Eosin (HE) and Masson’s trichrome staining to assess morphological changes, and follicle numbers were quantified at each developmental stage. Granulosa cell (GC) viability, proliferation, and apoptosis induced by T3 were evaluated using CCK8, EdU, and TUNEL assays, respectively. Antioxidant enzyme activity was measured, and the expression levels of related proteins were analyzed via Western blotting. Results showed that hyperthyroidism altered ovarian structure, significantly increasing the number of atretic follicles. Levels of antioxidant enzymes, including Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-PX), and Catalase (CAT), were markedly decreased, whereas the lipid peroxidation product malondialdehyde (MDA) was significantly elevated. Furthermore, all ERS-related proteins, phosphorylated Eukaryotic Initiation Factor 2 Alpha (p-eIF2α), Activating Transcription Factor 4 (ATF4), C/EBP homologous protein (CHOP), and Caspase-3, were upregulated, accompanied by decreased glucose-regulated protein 78 (GRP78) expression. Treatment with EGCG alleviated these detrimental effects of hyperthyroidism. At the cellular level, high concentrations of T3 reduced GC viability and proliferation while increasing apoptosis. Reactive oxygen species levels were elevated, and GRP78 expression was decreased. Notably, all T3-induced effects were reversed by EGCG treatment. In summary, this study demonstrates that hyperthyroidism induces oxidative stress in GCs, which triggers endoplasmic reticulum stress via the eIF2α/ATF4 pathway and leads to apoptosis. EGCG mitigates apoptosis by enhancing antioxidant capacity, thereby preserving ovarian function. These findings establish EGCG as a protective agent for maintaining ovarian health and fertility. Full article
16 pages, 2934 KB  
Article
Functional Analysis of PdbERF109 Gene Regulation of Salt Tolerance in Populus davidiana × P. bolleana
by Nan Jiang, Shixian Liao, Ruiqi Wang, Wenjing Yao, Yuting Wang, Guanzheng Qu and Tingbo Jiang
Plants 2025, 14(17), 2800; https://doi.org/10.3390/plants14172800 (registering DOI) - 6 Sep 2025
Abstract
ERF family transcription factors are crucial regulators in plants, playing a central role in abiotic stress responses and serving as important targets for stress-tolerant crop breeding. Populus davidiana × P. bolleana, an elite hybrid poplar cultivar artificially selected in northern China, holds [...] Read more.
ERF family transcription factors are crucial regulators in plants, playing a central role in abiotic stress responses and serving as important targets for stress-tolerant crop breeding. Populus davidiana × P. bolleana, an elite hybrid poplar cultivar artificially selected in northern China, holds significant research value encompassing ecological restoration, economic industries, genetic resource development, and environmental adaptability. This study identified that PdbERF109 expression was significantly upregulated in P. davidiana × P. bolleana response to salt treatment. Furthermore, transgenic poplar lines overexpressing PdbERF109 (OE) were generated. Salt stress assays demonstrated that PdbERF109 overexpression significantly enhanced salt tolerance in transgenic poplar. Compared to wild-type (WT) plants, PdbERF109-OE lines exhibited a significant enhancement in the activities of antioxidant enzymes, with increases of 2.3-fold, 1.2-fold, and 0.5-fold for superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), respectively, while the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were markedly reduced by 39.89% and 40.03%, indicating significantly enhanced reactive oxygen species (ROS) scavenging capacity and reduced oxidative damage. Concurrently, PdbERF109 overexpression reduced the natural leaf relative water loss (%). Meanwhile, yeast one-hybrid assays confirmed that the PdbERF109 protein specifically binds to GCC-box and DRE cis-acting elements. This study established PdbERF109 as a positive regulator of salt stress responses, highlighting its potential as a target gene for improving plant tolerance to high salinity, providing a promising candidate gene for the molecular breeding of salt-tolerant crops. Full article
14 pages, 6680 KB  
Article
In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
by Fei Zhou, Jinwei Tan, Feixiang Wang and Meiling Sun
Batteries 2025, 11(9), 334; https://doi.org/10.3390/batteries11090334 (registering DOI) - 6 Sep 2025
Abstract
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial [...] Read more.
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial compatibility, and low processing costs; however, their practical deployment is hindered by poor oxidative stability especially under high-voltage conditions. In this study, we report the rational design of a bilayer electrolyte architecture featuring an in situ solidified LiClO4-doped succinonitrile (LiClO4–SN) plastic–crystal interlayer between a Li1.2Mn0.6Ni0.2O2 (LMNO) cathode and a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based PISSE. This PISSE/SN–LiClO4 configuration exhibits a wide electrochemical stability window up to 4.7 V vs. Li+/Li and delivers a high ionic conductivity of 5.68 × 10−4 S cm−1 at 25 °C. The solidified LiClO4-SN layer serves as an effective physical barrier, shielding the PVDF-HFP matrix from direct interfacial contact with LMNO and thereby suppressing its oxidative decomposition at elevated potentials. As a result, the bilayer polymer-based cells with the LMNO cathode demonstrate an initial discharge capacity of ∼206 mAh g−1 at 0.05 C and exhibit good cycling stability with 85.7% capacity retention after 100 cycles at 0.5 C under a high cut-off voltage of 4.6 V. This work not only provides a promising strategy to enhance the compatibility of PVDF-HFP-based electrolytes with high-voltage cathodes through the facile in situ solidification of plastic interlayers but also promotes the application of LMNO cathode material in high-energy ASSLBs. Full article
Show Figures

Graphical abstract

18 pages, 1649 KB  
Article
Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles
by Bruna Zanatta Pereira, Regina Caetano Quisen, Juliana Degenhardt and Ivar Wendling
Forests 2025, 16(9), 1429; https://doi.org/10.3390/f16091429 (registering DOI) - 6 Sep 2025
Abstract
Ilex paraguariensis (yerba mate), a culturally and economically important South American species, faces significant challenges in vitro, including contamination, phenolic oxidation, and low regeneration rates. Nanoparticles have recently emerged as promising tools to overcome such limitations. This study evaluated silver (AgNPs) and chitosan [...] Read more.
Ilex paraguariensis (yerba mate), a culturally and economically important South American species, faces significant challenges in vitro, including contamination, phenolic oxidation, and low regeneration rates. Nanoparticles have recently emerged as promising tools to overcome such limitations. This study evaluated silver (AgNPs) and chitosan nanoparticles (ChNPs) in eight experiments using nodal, leaf, and internodal explants. Surface disinfection with 1% colloidal silver solution 20 ppm significantly reduced contamination (17.2% and 15%) while maintaining viability (62.1%). However, supplementation of culture media with AgNPs (4–75 mg·L−1) or ChNPs (5–120 mg·L−1) did not improve nodal segment responses. In leaf explants, 4 mg·L−1 AgNPs proved most effective, reducing contamination and markedly decreasing callus oxidation from 63.3% to 10.0%. Callogenesis was enhanced when AgNPs were combined with growth regulators, with the highest induction at 6 mg·L−1 AgNPs + zeatin (38.1%) and 4 mg·L−1 AgNPs + BAP (42.9%). Conversely, in internodal segments, AgNPs combined with BAP completely inhibiting callus formation. The resulting calli exhibited compact and friable morphologies but no signs of somatic embryogenesis. Overall, the effectiveness of AgNPs depends on their formulation, explant type, and interaction with cytokinins. Optimization of nanoparticle formulation and hormonal balance remains essential to maximize efficacy while minimizing toxicity. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species: 2nd Edition)
Show Figures

Figure 1

22 pages, 1446 KB  
Review
Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression
by Arnulfo Ramos-Jiménez, Mariazel Rubio-Valles, Javier A. Ramos-Hernández, Everardo González-Rodríguez and Verónica Moreno-Brito
Int. J. Mol. Sci. 2025, 26(17), 8697; https://doi.org/10.3390/ijms26178697 (registering DOI) - 6 Sep 2025
Abstract
Mitochondrial dysfunction is a key factor in the pathophysiology of major depressive disorder (MDD) and treatment-resistant depression (TRD), connecting oxidative stress, neuroinflammation, and reduced neuroplasticity. Physical exercise induces specific mitochondrial changes linked to improvements in mental health. The aim of this paper was [...] Read more.
Mitochondrial dysfunction is a key factor in the pathophysiology of major depressive disorder (MDD) and treatment-resistant depression (TRD), connecting oxidative stress, neuroinflammation, and reduced neuroplasticity. Physical exercise induces specific mitochondrial changes linked to improvements in mental health. The aim of this paper was to examine emerging evidence regarding the effects of physical exercise on mitochondrial function and treatment-resistant depression, highlighting the clinical importance of the use of mitochondrial biomarkers to personalize exercise prescriptions for patients with depression, particularly those who cannot tolerate standard treatments. Physical exercise improves mitochondrial function, enhances biogenesis and neuroplasticity, and decreases oxidative stress and neuroinflammation. Essential signaling pathways, including brain-derived neurotrophic factor, AMP-activated protein kinase, active peroxisome proliferator-activated receptor-γ coactivator-1α, and Ca2+/calmodulin-dependent protein kinase, support these effects. Most studies have concentrated on the impact of low- and moderate-intensity aerobic exercise on general health. However, new evidence suggests that resistance exercise and high-intensity interval training also promote healthy mitochondrial adaptations, although the specific exercise intensity required to achieve this goal remains to be determined. There is strong evidence that exercise is an effective treatment for MDD, particularly for TRD, by promoting specific mitochondrial adaptations. However, key gaps remain in our understanding of the optimal exercise dose and which patient subgroups are most likely to benefit from it (Graphical Abstract). Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

57 pages, 11196 KB  
Review
Continuous Electrocoagulation Processes for Industrial Inorganic Pollutants Removal: A Critical Review of Performance and Applications
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Enshirah Da’na, Mohammad Al-Shannag, Khalid Bani-Melhem and Eman Assirey
Water 2025, 17(17), 2639; https://doi.org/10.3390/w17172639 (registering DOI) - 6 Sep 2025
Abstract
This review provides a critical and technically grounded assessment of continuous electrocoagulation processes (CEPs) for the treatment of industrial inorganic pollutants, emphasizing recent innovations, methodological developments, and practical outcomes. A comprehensive literature survey indicates that 53 studies published over the past 25 years [...] Read more.
This review provides a critical and technically grounded assessment of continuous electrocoagulation processes (CEPs) for the treatment of industrial inorganic pollutants, emphasizing recent innovations, methodological developments, and practical outcomes. A comprehensive literature survey indicates that 53 studies published over the past 25 years have investigated CEPs for inorganic contaminant removal, with 36 focusing on standalone electrocoagulation systems and 17 exploring integrated CEPs approaches. Recent advancements in reactor design, such as enhanced internal mixing, optimized electrode geometry, and modular configurations, have significantly improved treatment efficiency, scalability, and operational stability. Evidence indicates that CEPs can achieve high removal efficiencies for a wide range of inorganic contaminants, including fluoride, arsenic, heavy metals (e.g., chromium, lead, nickel, iron), nitrates, and phosphates, particularly under optimized operating conditions. Compared to conventional treatment methods, CEPs offer several advantages, such as simplified operation, reduced chemical consumption, lower sludge generation, and compatibility with renewable energy sources and complementary processes like membrane filtration, flotation, and advanced oxidation. Despite these promising outcomes, industrial-scale implementation remains constrained by non-standardized reactor designs, variable operational parameters, electrode passivation, high energy requirements, and limited long-term field data. Furthermore, few studies have addressed the modeling and optimization of integrated CEPs systems, highlighting critical research gaps for process enhancement and reliable scale-up. In conclusion, CEPs emerge as a novel, adaptable, and potentially sustainable approach to industrial inorganic wastewater treatment. Its future deployment will rely on continued technological refinement, standardization, validation under real-world conditions, and alignment with regulatory and economic frameworks. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop