Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,321)

Search Parameters:
Keywords = ensemble forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2207 KB  
Article
Improving Operational Ensemble Streamflow Forecasting with Conditional Bias-Penalized Post-Processing of Precipitation Forecast and Assimilation of Streamflow Data
by Sunghee Kim and Dong-Jun Seo
Hydrology 2025, 12(9), 229; https://doi.org/10.3390/hydrology12090229 (registering DOI) - 31 Aug 2025
Abstract
This work aims at improving the accuracy of ensemble streamflow forecasts at short-to-medium ranges with the conditional bias-penalized regression (CBPR)-aided Meteorological Ensemble Forecast Processor (MEFP) and streamflow data assimilation (DA). To assess the potential impact of the CBPR-aided MEFP and streamflow DA, or [...] Read more.
This work aims at improving the accuracy of ensemble streamflow forecasts at short-to-medium ranges with the conditional bias-penalized regression (CBPR)-aided Meteorological Ensemble Forecast Processor (MEFP) and streamflow data assimilation (DA). To assess the potential impact of the CBPR-aided MEFP and streamflow DA, or CBPR-DA, 20-yr hindcast experiments were carried out using the Global Ensemble Forecast System version 12 reforecast dataset for 46 locations in the service areas of 11 River Forecast Centers of the US NWS. The results show that, relative to the current practice of using the MEFP and no DA, or MEFP-NoDA, CBPR-DA improves the accuracy of ensemble forecasts of 3-day flow over lead times of 0 to 3 days by over 40% for 4 RFCs and by over 20% for 9 of the 11 RFCs. The margin of improvement is larger where the predictability of precipitation is larger and the hydrologic memory is stronger. As the lead time increases, the margin of improvement decreases but still exceeds 10% for the prediction of 14-day flow over lead times of 0 to 14 days for all but 3 RFCs. Full article
37 pages, 4990 KB  
Article
Developing a Multi-Region Stacking Ensemble Framework via Scenario-Based Digital Twin Simulation for Short-Term Household Energy Demand Forecasting
by Akin Ozcift, Kivanc Basaran, George Cristian Lazaroiu, Awsan A. H. Khaled, Kasim Alpay Baykal and Oytun Tur
Appl. Sci. 2025, 15(17), 9569; https://doi.org/10.3390/app15179569 (registering DOI) - 30 Aug 2025
Abstract
Modern energy grids, with their regional diversity and complex consumption patterns, require accurate short-term forecasting for operational efficiency and reliability. This study introduces a Stacking Ensemble Forecasting (SEF) framework for multi-region household energy demand, utilizing an optimized stacking ensemble model tuned via Bayesian [...] Read more.
Modern energy grids, with their regional diversity and complex consumption patterns, require accurate short-term forecasting for operational efficiency and reliability. This study introduces a Stacking Ensemble Forecasting (SEF) framework for multi-region household energy demand, utilizing an optimized stacking ensemble model tuned via Bayesian Optimization to achieve superior predictive accuracy. The framework significantly improved accuracy across Diyarbakır, Istanbul, and Odemis, with a final model demonstrating up to 16.47% RMSE reduction compared to the best baseline models. The final model’s real-world performance was validated through a Simulated Digital Twin (SDT) environment, where scenario-based testing demonstrated its robustness against behavioral changes, data quality issues, and device failures. The proposed SEF-SDT framework offers a generalizable solution for managing diverse regions and consumption profiles, contributing to efficient and sustainable energy management. Full article
27 pages, 3325 KB  
Article
Forecasting Power Quality Parameters Using Decision Tree and KNN Algorithms in a Small-Scale Off-Grid Platform
by Ibrahim Jahan, Vojtech Blazek, Wojciech Walendziuk, Vaclav Snasel, Lukas Prokop and Stanislav Misak
Energies 2025, 18(17), 4611; https://doi.org/10.3390/en18174611 (registering DOI) - 30 Aug 2025
Abstract
This article presents the results of a performance comparison of four forecasting methods for prediction of electric power quality parameters (PQPs) in small-scale off-grid environments. Forecasting PQPs is crucial in supporting smart grid control and planning strategies by enabling better management, enhancing system [...] Read more.
This article presents the results of a performance comparison of four forecasting methods for prediction of electric power quality parameters (PQPs) in small-scale off-grid environments. Forecasting PQPs is crucial in supporting smart grid control and planning strategies by enabling better management, enhancing system reliability, and optimizing the integration of distributed energy resources. The following methods were compared: Bagging Decision Tree (BGDT), Boosting Decision Tree (BODT), and the K-Nearest Neighbor (KNN) algorithm with k5 and k10 nearest neighbors considered by the algorithm when making a prediction. The main goal of this study is to find a relation between the input variables (weather conditions, first and second back steps of PQPs, and consumed power of home appliances) and the power quality parameters as target outputs. The studied PQPs are the amplitude of power voltage (U), Voltage Total Harmonic Distortion (THDu), Current Total Harmonic Distortion (THDi), Power Factor (PF), and Power Load (PL). The Root Mean Square Error (RMSE) was used to evaluate the forecasting results. BGDT accomplished better forecasting results for THDu, THDi, and PF. Only BODT obtained a good forecasting result for PL. The KNN (k = 5) algorithm obtained a good result for PF prediction. The KNN (k = 10) algorithm predicted acceptable results for U and PF. The computation time was considered, and the KNN algorithm took a shorter time than ensemble decision trees. Full article
21 pages, 2124 KB  
Article
An Interpretable Stacked Ensemble Learning Framework for Wheat Storage Quality Prediction
by Xinze Li, Wenyue Wang, Bing Pan, Siyu Zhu, Junhui Zhang, Yunzhao Ma, Hongpeng Guo, Zhe Liu, Wenfu Wu and Yan Xu
Agriculture 2025, 15(17), 1844; https://doi.org/10.3390/agriculture15171844 - 29 Aug 2025
Abstract
Accurate prediction of wheat storage quality is essential for ensuring storage safety and providing early warnings of quality deterioration. However, existing methods focus solely on storage environmental conditions, neglecting the spatial distribution of temperature within grain piles, lacking interpretability, and generally failing to [...] Read more.
Accurate prediction of wheat storage quality is essential for ensuring storage safety and providing early warnings of quality deterioration. However, existing methods focus solely on storage environmental conditions, neglecting the spatial distribution of temperature within grain piles, lacking interpretability, and generally failing to provide reliable forecasts of future quality changes. To overcome these challenges, an interpretable prediction framework for wheat storage quality based on stacked ensemble learning is proposed. Three key features, Effective Accumulated Temperature (EAT), Cumulative High Temperature Deviation (CHTD), and Cumulative Temperature Gradient (CTG), were derived from grain temperature data to capture the spatiotemporal dynamics of the internal temperature field. These features were then input into the stacked ensemble learning model to accurately predict historical quality changes. In addition, future grain temperatures were predicted with high precision using a Graph Convolutional Network-Temporal Fusion Transformer (GCN-TFT) model. The temperature prediction results were then employed to construct features and were fed into the stacked ensemble learning model to enable future quality change prediction. Baseline experiments indicated that the stacked model significantly outperformed individual models, achieving R2 = 0.94, MAE = 0.44 mg KOH/100 g, and RMSE = 0.59 mg KOH/100 g. SHAP interpretability analysis revealed that EAT constituted the primary driver of wheat quality deterioration, followed by CHTD and CTG. Moreover, in future quality prediction experiments, the GCN-TFT model demonstrated high accuracy in 60-day grain temperature forecasts, and although the prediction accuracy of fatty acid value changes based on features derived from predicted temperatures slightly declined compared to features based on actual temperature data, it remained within an acceptable precision range, achieving an MAE of 0.28 mg KOH/100 g and an RMSE of 0.33 mg KOH/100 g. The experiments validated that the overall technical route from grain temperature prediction to quality prediction exhibited good accuracy and feasibility, providing an efficient, stable, and interpretable quality monitoring and early warning tool for grain storage management, which assists managers in making scientific decisions and interventions to ensure storage safety. Full article
25 pages, 2339 KB  
Article
Projected Hydrological Regime Shifts in Kazakh Rivers Under CMIP6 Climate Scenarios: Integrated Modeling and Seasonal Flow Analysis
by Aliya Nurbatsina, Aisulu Tursunova, Lyazzat Makhmudova, Zhanat Salavatova and Fredrik Huthoff
Atmosphere 2025, 16(9), 1020; https://doi.org/10.3390/atmos16091020 - 29 Aug 2025
Viewed by 69
Abstract
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based [...] Read more.
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based on the integration of data from General Circulation Models (GCMs) of the sixth phase of the CMIP6 project, socio-economic development scenarios SSP2-4.5 and SSP5-8.5, as well as the results of hydrological modelling using the SWIM model. The studies were carried out with an integrated approach to hydrological change assessment, taking into account scenario modelling, uncertainty analysis and the use of bias correction methods for climate data. A calculation method was used to analyse the intra-annual distribution of runoff, taking into account climate change. Detailed forecasts of changes in runoff and intra-annual water distribution up to the end of the 21st century for key water bodies in Kazakhstan were obtained. While the projections of river flow and hydrological parameters under CMIP6 scenarios are actively pursued worldwide, few studies have explicitly focused on forecasting intra-annual flow distribution in Central Asia, calculated using a methodology appropriate for this region and using CMIP6 ensemble scenarios. There have been studies on changes in the intra-annual distribution of runoff for individual river basins or local areas, but for the historical period, there have also been studies on modelling runoff forecasts using CMIP6 climate models, but have been very few systematic publications on the distribution of predicted intra-annual runoff in Central Asia, and this issue has not been fully studied. The projections suggest an intensification of flow seasonality (1), earlier flood peaks (2), reduced summer discharges (3) and an increased likelihood of extreme hydrological events under future climatic conditions. Changes in the seasonal structure of river flow in Central Asia are caused by both climatic factors—temperature, precipitation and glacier degradation—and significant anthropogenic influences, including irrigation and water management structures. These changes directly affect the risks of flooding and water shortages, as well as the adaptive capacity of water management systems. Given the high level of water management challenges and interregional conflicts over water use, the intra-annual distribution of runoff is important for long-term planning, the development of adaptation measures, and the formulation of public policy on sustainable water management in the face of growing climate challenges. This is critically important for water, agricultural, energy, and environmental planning in a region that already faces annual water management challenges and conflicts due to the uneven seasonal distribution of resources. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (3rd Edition))
Show Figures

Figure 1

35 pages, 4318 KB  
Article
Episode- and Hospital-Level Modeling of Pan-Resistant Healthcare-Associated Infections (2020–2024) Using TabTransformer and Attention-Based LSTM Forecasting
by Nicoleta Luchian, Camer Salim, Alina Plesea Condratovici, Constantin Marcu, Călin Gheorghe Buzea, Mădalina Nicoleta Matei, Ciprian Adrian Dinu, Mădălina Duceac (Covrig), Eva Maria Elkan, Dragoș Ioan Rusu, Lăcrămioara Ochiuz and Letiția Doina Duceac
Diagnostics 2025, 15(17), 2138; https://doi.org/10.3390/diagnostics15172138 - 25 Aug 2025
Viewed by 340
Abstract
Background: Pan-drug-resistant (PDR) Acinetobacterinfections are an escalating ICU threat, demanding both patient-level triage and facility-wide forecasting. Objective: The aim of this study was to build a dual-scale AI framework that (i) predicts PDR status at infection onset and (ii) forecasts hospital-level [...] Read more.
Background: Pan-drug-resistant (PDR) Acinetobacterinfections are an escalating ICU threat, demanding both patient-level triage and facility-wide forecasting. Objective: The aim of this study was to build a dual-scale AI framework that (i) predicts PDR status at infection onset and (ii) forecasts hospital-level PDR burden through 2027. Methods: We retrospectively analyzed 270 Acinetobacter infection episodes (2020–2024) with 65 predictors spanning demographics, timelines, infection type, resistance-class flags, and a 25-drug antibiogram. TabTransformer and XGBoost were trained on 2020–2023 episodes (n = 210), evaluated by stratified 5-fold CV, and externally tested on 2024 episodes (n = 60). Metrics included AUROC, AUPRC, accuracy, and recall at 90% specificity; AUROC was optimism-corrected via 0.632 + bootstrap and DeLong-tested for drift. SHAP values quantified feature impact. Weekly PDR incidence was forecast with an attention–LSTM model retrained monthly (200 weekly origins, 4-week horizon) and benchmarked against seasonal-naïve, Prophet, and SARIMA models (MAPE and RMSE). Quarterly projections (TFT-lite) extended forecasts to 2027. Results: The CV AUROC was 0.924 (optimism-corrected 0.874); an ensemble of TabTransformer + XGBoost reached 0.958. The 2024 AUROC fell to 0.586 (p < 0.001), coinciding with a PDR prevalence drop (75→38%) and three covariates with PSIs > 1.0. Isotonic recalibration improved the Brier score from 0.326 to 0.207 and yielded a net benefit equivalent to 26 unnecessary isolation-days averted per 100 ICU admissions at a 0.20 threshold. SHAP highlighted Ampicillin/Sulbactam resistance, unknown acquisition mode, and device-related infection as dominant drivers. The attention–LSTM achieved a median weekly MAE of 0.10 (IQR: 0.028–0.985) vs. 1.00 for the seasonal-naïve rule, outperforming it on 48.5% of weeks and surpassing Prophet and SARIMA (MAPE = 6.2%, RMSE = 0.032). TFT-lite projected a ≥ 25% PDR tipping point in 2025 Q1 with a sustained rise in 2027. Conclusions: The proposed framework delivers explainable patient-level PDR risk scores and competitive 4-week and multi-year incidence forecasts despite temporal drift, supporting antimicrobial stewardship and ICU capacity planning. Shrinkage and bootstrap correction were applied to address the small sample size (EPV = 2.1), which poses an overfitting risk. Continuous recalibration and multi-center validation remain priorities. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

21 pages, 2914 KB  
Article
Machine Learning-Based Short-Term Forecasting of Significant Wave Height During Typhoons Using SWAN Data: A Case Study in the Pearl River Estuary
by Mengdi Ma, Guoliang Chen, Sudong Xu, Weikai Tan and Kai Yin
J. Mar. Sci. Eng. 2025, 13(9), 1612; https://doi.org/10.3390/jmse13091612 - 23 Aug 2025
Viewed by 332
Abstract
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon [...] Read more.
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon events. Ten representative typhoons were reserved for independent testing. Results show that the LSTM model outperforms RF in 3 h forecasts, achieving a lower mean RMSE and higher R2, particularly in capturing wave peaks under highly dynamic conditions. For 6 h forecasts, both models exhibit decreased accuracy, with RF performing slightly better in stable scenarios, while LSTM remains more responsive in complex wave evolution. Generalization tests at three nearby stations demonstrate that both models, especially LSTM, retain strong predictive skill beyond the training location. These findings highlight the potential of combining numerical wave models with machine learning for short-term, data-driven wave forecasting in typhoon-prone and observation-sparse regions. The study also points to future improvements through integration of wind field predictors, model updating strategies, and ensemble meteorological data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 13156 KB  
Article
Exchange Rate Forecasting: A Deep Learning Framework Combining Adaptive Signal Decomposition and Dynamic Weight Optimization
by Xi Tang and Yumei Xie
Int. J. Financial Stud. 2025, 13(3), 151; https://doi.org/10.3390/ijfs13030151 - 22 Aug 2025
Viewed by 295
Abstract
Accurate exchange rate forecasting is crucial for investment decisions, multinational corporations, and national policies. The nonlinear nature and volatility of the foreign exchange market hinder traditional forecasting methods in capturing exchange rate fluctuations. Despite advancements in machine learning and signal decomposition, challenges remain [...] Read more.
Accurate exchange rate forecasting is crucial for investment decisions, multinational corporations, and national policies. The nonlinear nature and volatility of the foreign exchange market hinder traditional forecasting methods in capturing exchange rate fluctuations. Despite advancements in machine learning and signal decomposition, challenges remain in high-dimensional data handling and parameter optimization. This study mitigates these constraints by introducing an innovative enhanced prediction framework that integrates the optimal complete ensemble empirical mode decomposition with adaptive noise (OCEEMDAN) method and a strategically optimized combination weight prediction model. The grey wolf optimizer (GWO) is employed to autonomously modify the noise parameters of OCEEMDAN, while the zebra optimization algorithm (ZOA) dynamically fine-tunes the weights of predictive models—Bi-LSTM, GRU, and FNN. The proposed methodology exhibits enhanced prediction accuracy and robustness through simulation experiments on exchange rate data (EUR/USD, GBP/USD, and USD/JPY). This research improves the precision of exchange rate forecasts and introduces an innovative approach to enhancing model efficacy in volatile financial markets. Full article
Show Figures

Figure 1

22 pages, 3330 KB  
Article
Predicting the Bearing Capacity of Shallow Foundations on Granular Soil Using Ensemble Machine Learning Models
by Husein Ali Zeini, Mohammed E. Seno, Esraa Q. Shehab, Emad A. Abood, Hamza Imran, Luís Filipe Almeida Bernardo and Tiago Pinto Ribeiro
Geotechnics 2025, 5(3), 57; https://doi.org/10.3390/geotechnics5030057 - 20 Aug 2025
Viewed by 498
Abstract
Shallow foundations are widely used in both terrestrial and marine environments, supporting critical structures such as buildings, offshore wind turbines, subsea platforms, and infrastructure in coastal zones, including piers, seawalls, and coastal defense systems. Accurately determining the soil bearing capacity for shallow foundations [...] Read more.
Shallow foundations are widely used in both terrestrial and marine environments, supporting critical structures such as buildings, offshore wind turbines, subsea platforms, and infrastructure in coastal zones, including piers, seawalls, and coastal defense systems. Accurately determining the soil bearing capacity for shallow foundations presents a significant challenge, as it necessitates considerable resources in terms of materials and testing equipment, as well as a substantial amount of time to perform the necessary evaluations. Consequently, our research was designed to approximate the forecasting of soil bearing capacity for shallow foundations using machine learning algorithms. In our research, four ensemble machine learning algorithms were employed for the prediction process, benefiting from previous experimental tests. Those four models were AdaBoost, Extreme Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRTs), and Light Gradient Boosting Machine (LightGBM). To enhance the model’s efficacy and identify the optimal hyperparameters, grid search was conducted in conjunction with k-fold cross-validation for each model. The models were evaluated using the R2 value, MAE, and RMSE. After evaluation, the R2 values were between 0.817 and 0.849, where the GBRT model predicted more accurately than other models in training, testing, and combined datasets. Moreover, variable importance was analyzed to check which parameter is more important. Foundation width was the most important parameter affecting the shallow foundation bearing capacity. The findings obtained from the refined machine learning approach were compared with the well-known empirical and modern machine learning equations. In the end, the study designed a web application that helps geotechnical engineers from all over the world determine the ultimate bearing capacity of shallow foundations. Full article
Show Figures

Figure 1

27 pages, 1604 KB  
Review
A Review of State-of-the-Art AI and Data-Driven Techniques for Load Forecasting
by Jian Liu, Xiaotian He, Kangji Li and Wenping Xue
Energies 2025, 18(16), 4408; https://doi.org/10.3390/en18164408 - 19 Aug 2025
Viewed by 553
Abstract
With the gradual penetration of new energy generation/storage, accurate and reliable load forecasting (LF) plays an increasingly important role in different energy management applications (e.g., power resource allocation, peak demand response, energy supply and demand optimization). In recent years, data-driven and artificial intelligence [...] Read more.
With the gradual penetration of new energy generation/storage, accurate and reliable load forecasting (LF) plays an increasingly important role in different energy management applications (e.g., power resource allocation, peak demand response, energy supply and demand optimization). In recent years, data-driven and artificial intelligence (AI) technologies have received considerable attention in the field of LF. This study provides a comprehensive review on the existing advanced AI and data-driven techniques used for LF tasks. First, the reviewed studies are classified from the load’s spatial scale and forecasting time scale, and the research gap that this study aims to fill in the existing reviews is revealed. It was found that short-term forecasting dominates in the time scale (accounting for about 83.1%). Second, based on the summary of basic preprocessing methods, some advanced preprocessing methods are presented and analyzed. These advanced methods have greatly increased complexity compared with basic methods, while they can bring significant performance improvements such as adaptability and accuracy. Then, various LF models using the latest AI techniques, including deep learning, reinforcement learning, transfer learning, and ensemble learning, are reviewed and analyzed. These models are also summarized from several aspects, such as computational cost, interpretability, application scenarios, and so on. Finally, from the perspectives of data, techniques, and operations, a detailed discussion is given on some challenges and opportunities for LF. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

31 pages, 3109 KB  
Article
Spatial-Temporal Forecasting of Air Pollution in Saudi Arabian Cities Based on a Deep Learning Framework Enabled by AI
by Rafat Zrieq, Souad Kamel, Faris Al-Hamazani, Sahbi Boubaker, Rozan Attili and Marcos J. Araúzo-Bravo
Toxics 2025, 13(8), 682; https://doi.org/10.3390/toxics13080682 - 16 Aug 2025
Viewed by 479
Abstract
Air pollution is steadily increasing due to industrialization, economic activities, and transportation. High levels pose a significant threat to human health and well-being worldwide. Saudi Arabia is a growing country with air quality indices ranging from moderate to unhealthy. Although there are many [...] Read more.
Air pollution is steadily increasing due to industrialization, economic activities, and transportation. High levels pose a significant threat to human health and well-being worldwide. Saudi Arabia is a growing country with air quality indices ranging from moderate to unhealthy. Although there are many monitoring stations distributed throughout the country, mathematical modeling of air pollution is still crucial for health and environmental decision-making. From this perspective, in this study, a data-driven approach based on pollutant records and a Deep Learning (DL) Long Short-Term Memory (LSTM) algorithm is carried out to perform temporal modeling of selected pollutants (PM10, PM2.5, CO and O3) based on time series combined with a spatial modeling focused on selected cities (Riyadh, Jeddah, Mecca, Rabigh, Abha, Dammam and Taif), covering ~48% of the total population of the country. The best forecasts were provided by LSTM in cases where the datasets used were of relatively large size. Numerically, the obtained performance metrics such as the coefficient of determination (R2) ranged from 0.2425 to 0.8073. The best LSTM results were compared to those provided by two ensemble methods, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), where the merits of LSTM were confirmed mainly in terms of its ability to capture hidden relationships. We also found that overall, meteorological factors showed a weak association with pollutant concentrations, with ambient temperature exerting a moderate influence. However, incorporating ambient temperature into LSTM models did not lead to a significant improvement in predictive accuracy. The developed approach can be used to support decision-making in environmental and health domains, as well as to monitor pollutant concentrations based on historical time series records. Full article
Show Figures

Figure 1

21 pages, 2639 KB  
Article
A Hybrid Model of Multi-Head Attention Enhanced BiLSTM, ARIMA, and XGBoost for Stock Price Forecasting Based on Wavelet Denoising
by Qingliang Zhao, Hongding Li, Xiao Liu and Yiduo Wang
Mathematics 2025, 13(16), 2622; https://doi.org/10.3390/math13162622 - 15 Aug 2025
Viewed by 410
Abstract
The stock market plays a crucial role in the financial system, with its price movements reflecting macroeconomic trends. Due to the influence of multifaceted factors such as policy shifts and corporate performance, stock prices exhibit nonlinearity, high noise, and non-stationarity, making them difficult [...] Read more.
The stock market plays a crucial role in the financial system, with its price movements reflecting macroeconomic trends. Due to the influence of multifaceted factors such as policy shifts and corporate performance, stock prices exhibit nonlinearity, high noise, and non-stationarity, making them difficult to model accurately using a single approach. To enhance forecasting accuracy, this study proposes a hybrid forecasting framework that integrates wavelet denoising, multi-head attention-based BiLSTM, ARIMA, and XGBoost. Wavelet transform is first employed to enhance data quality. The multi-head attention BiLSTM captures nonlinear temporal dependencies, ARIMA models linear trends in residuals, and XGBoost improves the recognition of complex patterns. The final prediction is obtained by combining the outputs of all models through an inverse-error weighted ensemble strategy. Using the CSI 300 Index as an empirical case, we construct a multidimensional feature set including both market and technical indicators. Experimental results show that the proposed model clearly outperforms individual models in terms of RMSE, MAE, MAPE, and R2. Ablation studies confirm the importance of each module in performance enhancement. The model also performs well on individual stock data (e.g., Fuyao Glass), demonstrating promising generalization ability. This research provides an effective solution for improving stock price forecasting accuracy and offers valuable insights for investment decision-making and market regulation. Full article
Show Figures

Figure 1

18 pages, 10727 KB  
Article
Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration
by Lu Gao, Zia Ud Din, Kinam Kim and Ahmed Senouci
Constr. Mater. 2025, 5(3), 55; https://doi.org/10.3390/constrmater5030055 - 14 Aug 2025
Viewed by 312
Abstract
This study investigates the deterioration of skid resistance and surface macrotexture following preventive maintenance using micro-milling techniques. Field data were collected from 31 asphalt pavement sections located across four climatic zones in Texas. The data encompasses a variety of surface types, milling depths, [...] Read more.
This study investigates the deterioration of skid resistance and surface macrotexture following preventive maintenance using micro-milling techniques. Field data were collected from 31 asphalt pavement sections located across four climatic zones in Texas. The data encompasses a variety of surface types, milling depths, operational speeds, and drum configurations. A standardized data collection protocol was followed, with measurements taken before milling, immediately after treatment, and at 3, 6, 12, and 18 months post-treatment. Skid number and Mean Profile Depth (MPD) were used to evaluate surface friction and texture characteristics. The dataset was reformatted into a time-series structure with 930 observations, including contextual variables such as climatic zone, treatment parameters, and baseline surface condition. A comparative modeling framework was applied to predict the deterioration trends of both skid resistance and macrotexture over time. Eight regression models, including linear, tree-based, and ensemble methods, were evaluated alongside a time series Transformer model. The results show that the Transformer model achieved the highest prediction accuracy for skid resistance (R2 = 0.981), while Random Forest performed best for macrotexture prediction (R2 = 0.838). The findings indicate that the degradation of surface characteristics after preventive maintenance is non-linear and influenced by a combination of environmental and operational factors. This study demonstrates the effectiveness of data-driven modeling in supporting transportation agencies with pavement performance forecasting and maintenance planning. Full article
Show Figures

Figure 1

22 pages, 11417 KB  
Article
Hybrid Deep Learning and Stacking Ensemble Model for Time Series-Based Global Temperature Forecasting
by Gökalp Çınarer
Electronics 2025, 14(16), 3213; https://doi.org/10.3390/electronics14163213 - 13 Aug 2025
Viewed by 508
Abstract
Variations in global surface temperatures serve as critical indicators of climate change, and making accurate predictions regarding these patterns is essential for designing effective mitigation strategies. This study utilized a time series prediction methodology, leveraging annual temperature anomaly records from 1880 to 2022 [...] Read more.
Variations in global surface temperatures serve as critical indicators of climate change, and making accurate predictions regarding these patterns is essential for designing effective mitigation strategies. This study utilized a time series prediction methodology, leveraging annual temperature anomaly records from 1880 to 2022 provided by NASA’s GISTEMP v4 dataset. Following an extensive preprocessing phase, multiple deep learning models, namely, LSTM, DNN, CNN, and Transformer, were trained and analyzed separately. The individual model outputs were subsequently combined using a weighted averaging strategy grounded in linear regression, forming a novel LSTM and Transformer-based hybrid forecasting model. Model performance was assessed through widely recognized metrics including MSE, MAE, RMSE, and R2. By integrating the distinct advantages of each model, the ensemble framework aimed to improve the overall predictive capability. The findings revealed that this hybrid design delivered more stable and accurate forecasts compared to any single model. The integration of diverse neural network structures proved effective in boosting predictive reliability and underscored the viability of deep learning-based hybrid modeling for climate trend forecasting. Full article
Show Figures

Figure 1

17 pages, 1234 KB  
Article
Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms
by Yevgeniy Fedkin, Natalya Denissova, Gulzhan Daumova, Ruslan Chettykbayev and Saule Rakhmetullina
Algorithms 2025, 18(8), 505; https://doi.org/10.3390/a18080505 - 13 Aug 2025
Viewed by 277
Abstract
The study is devoted to the construction of an avalanche susceptibility map based on ensemble machine learning algorithms (random forest, XGBoost, LightGBM, gradient boosting machines, AdaBoost, NGBoost) for the conditions of the East Kazakhstan region. To train these models, data were collected on [...] Read more.
The study is devoted to the construction of an avalanche susceptibility map based on ensemble machine learning algorithms (random forest, XGBoost, LightGBM, gradient boosting machines, AdaBoost, NGBoost) for the conditions of the East Kazakhstan region. To train these models, data were collected on avalanche path profiles, meteorological conditions, and historical avalanche events. The quality of the trained machine learning models was assessed using metrics such as accuracy, precision, true positive rate (recall), and F1-score. The obtained metrics indicated that the trained machine learning models achieved reasonably accurate forecasting performance (forecast accuracy from 67% to 73.8%). ROC curves were also constructed for each obtained model for evaluation. The resulting AUCs for these ROC curves showed acceptable levels (from 0.57 to 0.73), which also indicated that the presented models could be used to predict avalanche danger. In addition, for each machine learning model, we determined the importance of the indicators used to predict avalanche danger. Analysis of the importance of the indicators showed that the most significant indicators were meteorological data, namely temperature and snow cover level in avalanche paths. Among the indicators that characterized the avalanche paths’ profiles, the most important were the minimum and maximum slope elevations. Thus, within the framework of this study, a highly accurate model was built using geospatial and meteorological data that allows identifying potentially dangerous slope areas. These results can support territorial planning, the design of protective infrastructure, and the development of early warning systems to mitigate avalanche risks. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

Back to TopTop