Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = ensemble weather forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 31470 KB  
Article
Integrating Climate and Economic Predictors in Hybrid Prophet–(Q)LSTM Models for Sustainable National Energy Demand Forecasting: Evidence from The Netherlands
by Ruben Curiël, Ali Mohammed Mansoor Alsahag and Seyed Sahand Mohammadi Ziabari
Sustainability 2025, 17(19), 8687; https://doi.org/10.3390/su17198687 - 26 Sep 2025
Viewed by 418
Abstract
Forecasting national energy demand is challenging under climate variability and macroeconomic uncertainty. We assess whether hybrid Prophet–(Q)LSTM models that integrate climate and economic predictors improve long-horizon forecasts for The Netherlands. This study covers 2010–2024 and uses data from ENTSO-E (hourly load), KNMI and [...] Read more.
Forecasting national energy demand is challenging under climate variability and macroeconomic uncertainty. We assess whether hybrid Prophet–(Q)LSTM models that integrate climate and economic predictors improve long-horizon forecasts for The Netherlands. This study covers 2010–2024 and uses data from ENTSO-E (hourly load), KNMI and Copernicus/ERA5 (weather and climate indices), Statistics Netherlands (CBS), and the World Bank (macroeconomic and commodity series). We evaluate Prophet–LSTM and Prophet–QLSTM, each with and without stacking via XGBoost, under rolling-origin cross-validation; feature choice is guided by Bayesian optimisation. Stacking provides the largest and most consistent accuracy gains across horizons. The quantum-inspired variant performs on par with the classical ensemble while using a smaller recurrent core, indicating value as a complementary learner. Substantively, short-run variation is dominated by weather and calendar effects, whereas selected commodity and activity indicators stabilise longer-range baselines; combining both domains improves robustness to regime shifts. In sustainability terms, improved long-horizon accuracy supports renewable integration, resource adequacy, and lower curtailment by strengthening seasonal planning and demand-response scheduling. The pipeline demonstrates the feasibility of integrating quantum-inspired components into national planning workflows, using The Netherlands as a case study, while acknowledging simulator constraints and compute costs. Full article
Show Figures

Figure 1

25 pages, 10025 KB  
Article
Short-Term Photovoltaic Power Forecasting Based on ICEEMDAN-TCN-BiLSTM-MHA
by Yuan Li, Shiming Zhai, Guoyang Yi, Shaoyun Pang and Xu Luo
Symmetry 2025, 17(10), 1599; https://doi.org/10.3390/sym17101599 - 25 Sep 2025
Viewed by 268
Abstract
In this paper, an efficient hybrid photovoltaic (PV) power forecasting model is proposed to enhance the stability and accuracy of PV power prediction under typical weather conditions. First, the Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is employed to decompose [...] Read more.
In this paper, an efficient hybrid photovoltaic (PV) power forecasting model is proposed to enhance the stability and accuracy of PV power prediction under typical weather conditions. First, the Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is employed to decompose both meteorological features affecting PV power and the power output itself into intrinsic mode functions. This process enhances the stationarity and noise robustness of input data while reducing the computational complexity of subsequent model processing. To enhance the detail-capturing capability of the Bidirectional Long Short-Term Memory (BiLSTM) model and improve its dynamic response speed and prediction accuracy under abrupt irradiance fluctuations, we integrate a Temporal Convolutional Network (TCN) into the BiLSTM architecture. Finally, a Multi-head Self-Attention (MHA) mechanism is employed to dynamically weight multivariate meteorological features, enhancing the model’s adaptive focus on key meteorological factors while suppressing noise interference. The results show that the ICEEMDAN-TCN-BiLSTM-MHA combined model reduces the Mean Absolute Percentage Error (MAPE) by 78.46% and 78.59% compared to the BiLSTM model in sunny and cloudy scenarios, respectively, and by 58.44% in rainy scenarios. This validates the accuracy and stability of the ICEEMDAN-TCN-BiLSTM-MHA combined model, demonstrating its application potential and promotional value in the field of PV power forecasting. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 11907 KB  
Article
Towards Health Status Determination and Local Weather Forecasts from Vitis vinifera Electrome
by Alessandro Chiolerio, Federico Taranto and Giuseppe Piero Brandino
Biomimetics 2025, 10(9), 636; https://doi.org/10.3390/biomimetics10090636 - 22 Sep 2025
Viewed by 437
Abstract
Recent advances in plant electrophysiology and machine learning suggest that bioelectric signals in plants may encode environmentally relevant information beyond physiological processes. In this study, we present a novel framework to analyse waveforms from real-time bioelectrical potentials recorded in vascular plants. Using a [...] Read more.
Recent advances in plant electrophysiology and machine learning suggest that bioelectric signals in plants may encode environmentally relevant information beyond physiological processes. In this study, we present a novel framework to analyse waveforms from real-time bioelectrical potentials recorded in vascular plants. Using a multi-channel electrophysiological monitoring system, we acquired continuous data from Vitis vinifera samples in a vineyard plantation under natural conditions. Plants were in different health conditions: healthy; under the infection of Flavescence dorée; plants in recovery from the same disease; and dead stumps. These signals were used as input features for an ensemble of complex machine learning models, including recurrent neural networks, trained to infer short-term meteorological parameters such as temperature and humidity. The models demonstrated predictive capabilities, with accuracy comparable to sensor-based benchmarks between one and two degree Celsius for temperature, particularly in forecasting rapid weather transitions. Feature importance analysis revealed plant-specific electrophysiological patterns that correlated with ambient conditions, suggesting the existence of biological pre-processing mechanisms sensitive to microclimatic fluctuations. This bioinspired approach opens new directions for developing plant-integrated environmental intelligence systems, offering passive and biologically rooted strategies for ultra-local forecasting—especially valuable in remote, sensor-sparse, or climate-sensitive regions. Our findings contribute to the emerging field of plant-based sensing and biomimetic environmental monitoring, expanding the role of flora to biosensors, useful in Earth system observation tasks. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

20 pages, 13318 KB  
Article
Evaluation of Tropospheric Delays over China from the High-Resolution Pangu-Weather Model at Multiple Forecast Scales
by Shuangping Li, Bin Zhang, Haohang Bi, Liangke Huang, Bo Shi and Qingsong Ai
Remote Sens. 2025, 17(18), 3164; https://doi.org/10.3390/rs17183164 - 12 Sep 2025
Viewed by 438
Abstract
Tropospheric delay is recognized as one of the main error sources affecting Global Navigation Satellite System (GNSS) positioning accuracy. Previous studies have only employed artificial intelligence-based weather models with low temporal resolution for comprehensive assessments. Therefore, this study proposes an ensemble forecasting approach [...] Read more.
Tropospheric delay is recognized as one of the main error sources affecting Global Navigation Satellite System (GNSS) positioning accuracy. Previous studies have only employed artificial intelligence-based weather models with low temporal resolution for comprehensive assessments. Therefore, this study proposes an ensemble forecasting approach based on multiple initial conditions from the Pangu-Weather model to obtain hourly resolution tropospheric delays. The ZTD data from 250 Crustal Movement Observation Network of China (CMONOC) GNSS stations across China in 2020 are used to validate the accuracy of the Pangu-Weather model. The findings show that the Pangu-Weather model exhibits strong performance under both forecast lead times compared to the traditional Global Forecast System (GFS) product, particularly in southern China. However, the Pangu-Weather model provides slightly inferior forecast accuracy compared to the GFS product in dry, low-humidity regions at stations located between 2 and 4 km in altitude, and for forecast lead times of less than 9 h. Nevertheless, a lower error accumulation trend is exhibited by the Pangu-Weather model, as its RMSE is larger than that of the Global Pressure and Temperature 3 (GPT3) empirical model after 240 h (10 days), demonstrating more stable accuracy over longer forecast periods. In summary, the Pangu-Weather model shows significant advantages in Chinese regions with complex climates and terrains, and it is of great potential in GNSS real-time positioning and meteorological monitoring. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation (Third Edition))
Show Figures

Figure 1

27 pages, 3320 KB  
Article
Forecasting Power Quality Parameters Using Decision Tree and KNN Algorithms in a Small-Scale Off-Grid Platform
by Ibrahim Jahan, Vojtech Blazek, Wojciech Walendziuk, Vaclav Snasel, Lukas Prokop and Stanislav Misak
Energies 2025, 18(17), 4611; https://doi.org/10.3390/en18174611 - 30 Aug 2025
Viewed by 1097
Abstract
This article presents the results of a performance comparison of four forecasting methods for prediction of electric power quality parameters (PQPs) in small-scale off-grid environments. Forecasting PQPs is crucial in supporting smart grid control and planning strategies by enabling better management, enhancing system [...] Read more.
This article presents the results of a performance comparison of four forecasting methods for prediction of electric power quality parameters (PQPs) in small-scale off-grid environments. Forecasting PQPs is crucial in supporting smart grid control and planning strategies by enabling better management, enhancing system reliability, and optimizing the integration of distributed energy resources. The following methods were compared: Bagging Decision Tree (BGDT), Boosting Decision Tree (BODT), and the K-Nearest Neighbor (KNN) algorithm with k5 and k10 nearest neighbors considered by the algorithm when making a prediction. The main goal of this study is to find a relation between the input variables (weather conditions, first and second back steps of PQPs, and consumed power of home appliances) and the power quality parameters as target outputs. The studied PQPs are the amplitude of power voltage (U), Voltage Total Harmonic Distortion (THDu), Current Total Harmonic Distortion (THDi), Power Factor (PF), and Power Load (PL). The Root Mean Square Error (RMSE) was used to evaluate the forecasting results. BGDT accomplished better forecasting results for THDu, THDi, and PF. Only BODT obtained a good forecasting result for PL. The KNN (k = 5) algorithm obtained a good result for PF prediction. The KNN (k = 10) algorithm predicted acceptable results for U and PF. The computation time was considered, and the KNN algorithm took a shorter time than ensemble decision trees. Full article
Show Figures

Figure 1

22 pages, 3507 KB  
Article
An Ensemble Model of Attention-Enhanced N-BEATS and XGBoost for District Heating Load Forecasting
by Shaohua Yu, Xiaole Yang, Hengrui Ye, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 3984; https://doi.org/10.3390/en18153984 - 25 Jul 2025
Viewed by 586
Abstract
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining [...] Read more.
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining an attention-enhanced Neural Basis Expansion Analysis for Time Series (N-BEATS) model and eXtreme Gradient Boosting (XGBoost). The N-BEATS component, with a multi-head self-attention mechanism, captures temporal dynamics, while XGBoost models non-linear impacts of external variables. Predictions are integrated using an optimized weighted averaging strategy. Evaluated on a dataset from 103 heating units, the model outperformed 13 baselines, achieving an MSE of 0.4131, MAE of 0.3732, RMSE of 0.6427, and R2 of 0.9664. This corresponds to a reduction of 32.6% in MSE, 32.0% in MAE, and 17.9% in RMSE, and an improvement of 5.1% in R2 over the best baseline. Ablation studies and statistical tests confirmed the effectiveness of the attention mechanism and ensemble strategy. This model provides an efficient solution for DHS load forecasting, facilitating optimized energy dispatch and enhancing system performance. Full article
Show Figures

Figure 1

33 pages, 3902 KB  
Article
A Predictive Method for Temperature Based on Ensemble EMD with Linear Regression
by Yujun Yang, Yimei Yang and Huijuan Liao
Algorithms 2025, 18(8), 458; https://doi.org/10.3390/a18080458 - 23 Jul 2025
Viewed by 413
Abstract
Temperature prediction plays a crucial role across various sectors, including agriculture and climate research. Understanding weather patterns, seasonal shifts, and climate dynamics heavily relies on accurate temperature forecasts. This paper presents an innovative hybrid method, EEMD-LR, that combines ensemble empirical mode decomposition (EEMD) [...] Read more.
Temperature prediction plays a crucial role across various sectors, including agriculture and climate research. Understanding weather patterns, seasonal shifts, and climate dynamics heavily relies on accurate temperature forecasts. This paper presents an innovative hybrid method, EEMD-LR, that combines ensemble empirical mode decomposition (EEMD) with linear regression (LR) for temperature prediction. EEMD is used to decompose temperature signals into stable sub-signals, enhancing their predictability. LR is then applied to forecast each sub-signal, and the resulting predictions are integrated to obtain the final temperature forecast. The proposed EEMD-LR model achieved RMSE, MAE, and R2 values of 0.000027, 0.000021, and 1.000000, respectively, on the sine simulation time-series data used in this study. For actual temperature time-series data, the model achieved RMSE, MAE, and R2 values of 0.713150, 0.512700, and 0.994749, respectively. The experimental results on these two datasets indicate that the EEMD-LR model demonstrates superior predictive performance compared to alternative methods. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

19 pages, 3205 KB  
Article
A Climatology of Errors in HREF MCS Precipitation Objects
by William A. Gallus, Anna Duhachek, Kristie J. Franz and Tyreek Frazier
Water 2025, 17(15), 2168; https://doi.org/10.3390/w17152168 - 22 Jul 2025
Viewed by 437
Abstract
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less [...] Read more.
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less is known about how such errors compare to other sources of error, particularly within forecasts from convection-allowing ensembles. The present study uses the Method for Object-based Diagnostic Evaluation to develop a climatology of errors for precipitation objects from High-Resolution Ensemble Forecasting forecasts for mesoscale convective systems during the warm seasons from 2018 to 2023 in the United States. It is found that displacement errors in all ensemble members are generally not systematic, and on average are between 100 and 150 km. Errors are somewhat smaller in September, possibly reflecting increased forcing from synoptic-scale systems. Although most ensemble members have a negative error for the 10th percentile of rainfall intensity, the error becomes positive for heavier amounts. However, the total system rainfall is less than that observed for all members except the 12 UTC NAM. This is likely due to the negative errors for area that are present in all models, except again in the 12 UTC NAM. Full article
(This article belongs to the Special Issue Analysis of Extreme Precipitation Under Climate Change)
Show Figures

Figure 1

24 pages, 3950 KB  
Article
Dynamic Model Selection in a Hybrid Ensemble Framework for Robust Photovoltaic Power Forecasting
by Nakhun Song, Roberto Chang-Silva, Kyungil Lee and Seonyoung Park
Sensors 2025, 25(14), 4489; https://doi.org/10.3390/s25144489 - 19 Jul 2025
Viewed by 771
Abstract
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of [...] Read more.
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of its dependence on weather conditions and decentralized infrastructure. To address this challenge, this study proposes a flexible hybrid ensemble (FHE) framework that dynamically selects the most appropriate base model based on prediction error patterns. Unlike traditional ensemble methods that aggregate all base model outputs, the FHE employs a meta-model to leverage the strengths of individual models while mitigating their weaknesses. The FHE is evaluated using data from four solar power plants and is benchmarked against several state-of-the-art models and conventional hybrid ensemble techniques. Experimental results demonstrate that the FHE framework achieves superior predictive performance, improving the Mean Absolute Percentage Error by 30% compared to the SVR model. Moreover, the FHE model maintains high accuracy across diverse weather conditions and eliminates the need for preliminary validation of base and ensemble models, streamlining the deployment process. These findings highlight the FHE framework’s potential as a robust and scalable solution for forecasting in small-scale distributed solar power systems. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

27 pages, 3704 KB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Cited by 1 | Viewed by 790
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

21 pages, 5785 KB  
Article
Impacts of the Assimilation of Radar Radial Velocity Data Using the Ensemble Kalman Filter (EnKF) on the Analysis and Forecast of Typhoon Lekima (2019)
by Jiping Guan, Jiajun Chen, Xinya Li, Mengting Liu and Mingyang Zhang
Remote Sens. 2025, 17(13), 2258; https://doi.org/10.3390/rs17132258 - 30 Jun 2025
Viewed by 578
Abstract
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar [...] Read more.
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar radial velocity observations via the Ensemble Kalman Filter (EnKF) on the typhoon’s analysis and forecast performance. The results demonstrate that the EnKF method significantly improves forecast accuracy for Typhoon Lekima, including track, intensity and the 24 h cumulative precipitation. To be specific, the control experiment significantly underestimated typhoon intensity, while EnKF-based radar radial velocity assimilation markedly improved near-surface winds (>48 m/s) in the typhoon core, refined vortex structure and reduced track forecast errors by 50–60%. Compared with the control and 3DVAR experiments, EnKF assimilation better captured typhoon precipitation patterns, with the highest ETS scores, especially for moderate-to-high precipitation intensities. Moreover, the detailed analysis and diagnostics of Lekima show that the warm core structure is better captured in the assimilation experiment. The typhoon system is also improved, as reflected by enhanced potential temperature and a more robust wind field analysis. Full article
Show Figures

Figure 1

23 pages, 12403 KB  
Article
A Comprehensive Ensemble Model for Marine Atmospheric Boundary-Layer Prediction in Meteorologically Sparse and Complex Regions: A Case Study in the South China Sea
by Yehui Chen, Tao Luo, Gang Sun, Wenyue Zhu, Qing Liu, Ying Liu, Xiaomei Jin and Ningquan Weng
Remote Sens. 2025, 17(12), 2046; https://doi.org/10.3390/rs17122046 - 13 Jun 2025
Cited by 2 | Viewed by 883
Abstract
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, [...] Read more.
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, accurately determining the MABLH remains challenging. Coherent Doppler wind lidar (CDWL), as a laser-based active remote sensing technology, provides high-resolution wind profiling by transmitting pulsed laser beams and analyzing backscattered signals from atmospheric aerosols. In this study, we developed a stacking optimal ensemble model (SOEM) to estimate MABLH in the vicinity of the site by integrating CDWL measurements from a representative SCS site with ERA5 (fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts) data from December 2019 to May 2021. Based on the categorization of the total cloud cover data into weather conditions such as clear/slightly cloudy, cloudy/transitional, and overcast/rainy, the SOEM demonstrates enhanced performance with an average mean absolute percentage error of 3.7%, significantly lower than the planetary boundary-layer-height products of ERA5. The SOEM outperformed random forest, extreme gradient boosting, and histogram-based gradient boosting models, achieving a robustness coefficient (R2) of 0.95 and the lowest mean absolute error of 32 m under the clear/slightly cloudy condition. The validation conducted in the coastal city of Qingdao further confirmed the superiority of the SOEM in resolving meteorological heterogeneity. The predictions of the SOEM aligned well with CDWL observations during Typhoon Sinlaku (2020), capturing dynamic disturbances in MABLH. Overall, the SOEM provides a precise approach for estimating convective boundary-layer height, supporting marine meteorology, onshore wind power, and coastal protection applications. Full article
Show Figures

Graphical abstract

17 pages, 3660 KB  
Article
Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada
by Pia Leminski, Enzo Pinheiro and Taha B. M. J. Ouarda
Energies 2025, 18(11), 2975; https://doi.org/10.3390/en18112975 - 5 Jun 2025
Viewed by 678
Abstract
Efficient utilization of wind energy resources, including advances in weather and seasonal forecasting and climate projections, is imperative for the sustainable progress of wind power generation. Although temperature and precipitation data receive considerable attention in interannual variability and seasonal forecasting studies, there is [...] Read more.
Efficient utilization of wind energy resources, including advances in weather and seasonal forecasting and climate projections, is imperative for the sustainable progress of wind power generation. Although temperature and precipitation data receive considerable attention in interannual variability and seasonal forecasting studies, there is a notable gap in exploring correlations between climate indices and wind speeds. This paper proposes the use of an ensemble of artificial neural networks to forecast wind speeds based on climate oscillation indices and assesses its performance. An initial examination indicates a correlation signal between the climate indices and wind speeds of ERA5 for the selected case study in eastern Canada. Forecasts are made for the season April–May–June (AMJ) and are based on most correlated climate indices of preceding seasons. A pointwise forecast is conducted with a 20-member ensemble, which is verified by leave-on-out cross-validation. The results obtained are analyzed in terms of root mean squared error, bias, and skill score, and they show competitive performance with state-of-the-art numerical wind predictions from SEAS5, outperforming them in several regions. A relatively simple model with a single unit in the hidden layer and a regularization rate of 102 provides promising results, especially in areas with a higher number of indices considered. This study adds to global efforts to enable more accurate forecasting by introducing a novel approach. Full article
(This article belongs to the Special Issue New Progress in Electricity Demand Forecasting)
Show Figures

Figure 1

25 pages, 3180 KB  
Article
Advanced Wind Speed Forecasting: A Hybrid Framework Integrating Ensemble Methods and Deep Neural Networks for Meteorological Data
by Daniel Díaz-Bedoya, Mario González-Rodríguez, Oscar Gonzales-Zurita, Xavier Serrano-Guerrero and Jean-Michel Clairand
Smart Cities 2025, 8(3), 94; https://doi.org/10.3390/smartcities8030094 - 4 Jun 2025
Viewed by 1344
Abstract
The adoption of wind energy is pivotal for advancing sustainable power systems, particularly in off-grid microgrids where infrastructure limitations hinder conventional energy solutions. The inherent variability of wind generation, however, challenges grid reliability and demand–supply balance, necessitating accurate forecasting models. This study proposes [...] Read more.
The adoption of wind energy is pivotal for advancing sustainable power systems, particularly in off-grid microgrids where infrastructure limitations hinder conventional energy solutions. The inherent variability of wind generation, however, challenges grid reliability and demand–supply balance, necessitating accurate forecasting models. This study proposes a hybrid framework for short-term wind speed prediction, integrating deep learning (Long Short-Term Memory, LSTM) and ensemble methods (random forest, Extra Trees) to exploit their complementary strengths in modeling temporal dependencies. A multivariate approach is adopted using meteorological data (including wind speed, temperature, humidity, and pressure) to capture complex weather interactions through a structured time-series design. The framework also includes a feature selection stage to identify the most relevant predictors and a hyperparameter optimization process to improve model generalization. Three wind speed variables, maximum, average, and minimum, are forecasted independently to reflect intra-day variability and enhance practical usability. Validated with real-world data from Cuenca, Ecuador, the LSTM model achieves superior accuracy across all targets, demonstrating robust performance for real-world deployment. Comparative results highlight its advantage over tree-based ensemble techniques, offering actionable strategies to optimize wind energy integration, enhance grid stability, and streamline renewable resource management. These insights support the development of resilient energy systems in regions reliant on sustainable microgrid solutions. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

24 pages, 2626 KB  
Article
A Novel Approach for Improving Cloud Liquid Water Content Profiling with Machine Learning
by Anas Amaireh, Yan (Rockee) Zhang, Pak Wai Chan and Dusan Zrnic
Remote Sens. 2025, 17(11), 1836; https://doi.org/10.3390/rs17111836 - 24 May 2025
Viewed by 1169
Abstract
Accurate prediction of Cloud Liquid Water Content (CLWC) is critical for understanding and forecasting weather phenomena, particularly in regions with complex microclimates. This study integrates high-resolution ERA5 climatic data from the European Centre for Medium-Range Weather Forecasts (ECMWF) with radiosonde observations from the [...] Read more.
Accurate prediction of Cloud Liquid Water Content (CLWC) is critical for understanding and forecasting weather phenomena, particularly in regions with complex microclimates. This study integrates high-resolution ERA5 climatic data from the European Centre for Medium-Range Weather Forecasts (ECMWF) with radiosonde observations from the Hong Kong area to address data accuracy and resolution challenges. Machine learning (ML) models—specifically Fine Tree regressors—were employed to interpolate radiosonde data, resolving temporal and spatial discrepancies and enhancing data coverage. A metaheuristic algorithm was also applied for data cleansing, significantly improving correlations between input features (temperature, pressure, and humidity) and CLWC. The methodology was tested across multiple ML algorithms, with ensemble models such as Bagged Trees demonstrating superior predictive accuracy and robustness. The approach substantially improved CLWC profile reliability, outperforming traditional methods and addressing the nonlinear complexities of atmospheric data. Designed for scalability, this methodology extends beyond Hong Kong’s unique conditions, offering a flexible framework for improving weather prediction models globally. By advancing CLWC estimation techniques, this work contributes to enhanced weather forecasting and atmospheric science in diverse climatic regions. Full article
Show Figures

Figure 1

Back to TopTop