Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,862)

Search Parameters:
Keywords = environmental DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5517 KB  
Article
Comparing eDNA Metabarcoding and Morphological Surveys Reveals Distinct Fish Community Patterns in the Gaya River
by Jingwen Xu, Weishuai Li, Qihang Gao and Mi Wang
Fishes 2025, 10(9), 430; https://doi.org/10.3390/fishes10090430 (registering DOI) - 1 Sep 2025
Abstract
Assessing fish biodiversity is essential for freshwater ecosystem conservation. This study compares environmental DNA (eDNA) metabarcoding and traditional morphological surveys to investigate fish communities in the Gaya River, China. A total of 42 fish species were identified, with 13 detected only by eDNA, [...] Read more.
Assessing fish biodiversity is essential for freshwater ecosystem conservation. This study compares environmental DNA (eDNA) metabarcoding and traditional morphological surveys to investigate fish communities in the Gaya River, China. A total of 42 fish species were identified, with 13 detected only by eDNA, 7 exclusively by morphology, and 11 by both methods. A comparative analysis of species composition, functional diversity, and phylogenetic diversity revealed significant differences between the two approaches. Notably, eDNA data indicated higher phylogenetic diversity (PD), while morphological surveys captured greater functional evenness (FEve). Multivariate analyses indicated that total phosphorus (TP), total suspended solids (TSS), electrical conductivity (EC), temperature (T), and pH significantly influenced fish community composition, while dissolved oxygen (DO) was a key driver of species richness (SR), functional richness (FRic), and PD. These findings highlight the methodological differences and complementary strengths of eDNA and morphological approaches in biodiversity assessments. By providing comparative insights into fish diversity patterns, this study underscores the importance of using multi-method approaches to improve freshwater biodiversity monitoring and conservation strategies. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

23 pages, 2096 KB  
Review
Epigenetic Mechanisms Associated with Livestock Adaptation to Heat Stress
by Sundar Aravindh, Mullakkalparambil Velayudhan Silpa, Santhi Priya Voggu, Ebenezer Binuni Rebez, Gajendirane Kalaignazhal, Mouttou Vivek Srinivas, Frank Rowland Dunshea and Veerasamy Sejian
Biology 2025, 14(9), 1154; https://doi.org/10.3390/biology14091154 - 1 Sep 2025
Abstract
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet [...] Read more.
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet the global demand and sustain the livelihoods of farmers. The main factor affecting livestock’s productivity is heat stress. However, animals develop various adaptive mechanisms to cope with the effects of heat stress. Cellular and molecular responses act as key defense mechanisms, enabling animals adapt to environmental changes. The recent advancements in molecular biology have opened up opportunities for extensive research on epigenetics, which has a key role in regulating gene expression in animals in response to environmental stimuli. Such studies have gained considerable attention regarding heat acclimation in animals due to the fact that epigenetic mechanisms have been recognized as key players in long-term adaptation to high temperatures in farm animals. This review summarizes the different mechanisms and methodologies used to assess heat stress-associated epigenetic changes, including DNA methylation, which is an extensively studied epigenetic regulatory mechanism in relation to gene expression. The review also highlights the mechanisms and regulation of adaptation to heat stress in animals and collates information related to various epigenetic markers to assess the heat stress response, thereby aiding in improving thermal resilience in animals. Full article
Show Figures

Figure 1

24 pages, 2945 KB  
Article
Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
by Muhammad Riaz Ejaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani and Samir Jaoua
Microbiol. Res. 2025, 16(9), 196; https://doi.org/10.3390/microbiolres16090196 - 1 Sep 2025
Abstract
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S [...] Read more.
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S rRNA amplicon sequencing and soil chemical analysis. Soil samples from five different locations in Qatar (three coastal and two inland) identified 26 bacterial phyla, which were dominated by Actinomycetota (35–43%), Pseudomonadota (12–16%), and Acidobacteriota (4–13%). Species-level analysis discovered taxa such as Rubrobacter tropicus, Longimicrobium terrae, Gaiella occulta, Kallotenue papyrolyticum, and Sphingomonas jaspsi, suggesting the presence of possible novel microbial families. The functional predictions showed development in pathways related to amino acid metabolism, carbohydrate metabolism, and stress tolerance. In addition, heavy-metal-related taxa, which are known to harbor genes for metal resistance mechanisms including efflux pumps, metal chelation, and oxidative stress tolerance. The presence of Streptomyces, Pseudomonas, and Bacillus highlights their roles in stress tolerance, biodegradation, and metabolite production. These findings improve the understanding of microbial roles in dry soils, especially in nutrient cycling and ecosystem resilience. They highlight the importance of local bacteria for sustaining desert soil functions. Further research is needed to validate these relationships, using metabolomic approaches while monitoring microbial-community-changing aspects under fluctuating environmental conditions. Full article
Show Figures

Graphical abstract

22 pages, 362 KB  
Review
Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact
by Sandeep R Reddy, Manjunatha Bangeppagari and Sang Joon Lee
Curr. Issues Mol. Biol. 2025, 47(9), 703; https://doi.org/10.3390/cimb47090703 (registering DOI) - 1 Sep 2025
Abstract
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB [...] Read more.
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB signalling, NLRP3 inflammasome activity, and reactive oxygen species-driven cascades. Evidence from cellular, animal, and epidemiological studies indicates that these pathways may converge on chromatin regulators such as DNA methyltransferases, histone deacetylases, and EZH2, leading to DNA methylation shifts, histone modifications, and altered chromatin accessibility. Pollutants are also reported to modulate non-coding RNAs, including miR-21, miR-155, and several lncRNAs, which can act as intermediaries between cytokine signalling and epigenetic remodelling. Findings from transgenerational models suggest that pollutant-linked immune–epigenetic alterations might persist across generations, raising the possibility of long-term consequences for immune and neurodevelopmental health. Comparative analyses further indicate convergence across diverse pollutant classes, pointing to a shared mechanistic axis of immune–epigenetic disruption. Overall, these insights suggest that pollutant-induced immune–epigenetic signatures may contribute to inflammation, altered immune responses, and heritable disease risks, and their clarification could inform biomarker discovery and future precision approaches in immunotoxicology. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

18 pages, 8709 KB  
Case Report
Local Expression of Epigenetic Candidate Biomarkers of Adolescent Idiopathic Scoliosis Progression
by Simona Neri, Alberto Ruffilli, Elisa Assirelli, Marco Manzetti, Giovanni Viroli, Matteo Traversari, Marco Ialuna, Susanna Naldi, Jacopo Ciaffi, Francesco Ursini and Cesare Faldini
Int. J. Mol. Sci. 2025, 26(17), 8453; https://doi.org/10.3390/ijms26178453 (registering DOI) - 30 Aug 2025
Viewed by 87
Abstract
Adolescent idiopathic scoliosis (AIS) is a multifactorial disease with environmental and genetic components. AIS clinical management is complicated by the lack of reliable predictive markers of progression. Recent studies have highlighted a potential role for epigenetic mechanisms in disease progression. However, most findings [...] Read more.
Adolescent idiopathic scoliosis (AIS) is a multifactorial disease with environmental and genetic components. AIS clinical management is complicated by the lack of reliable predictive markers of progression. Recent studies have highlighted a potential role for epigenetic mechanisms in disease progression. However, most findings derive from peripheral blood analyses, with little data available on musculoskeletal tissues directly affected by AIS. Given the tissue-specific nature of epigenetic regulation, validating blood-based biomarkers in disease-relevant tissues is essential. We performed a comparative multi-gene RT-qPCR analysis, arranged in a custom array format, to assess the local expression of candidate epigenetically regulated genes associated with AIS progression across bone, paravertebral muscle, spinal ligament, and peripheral blood, all collected from the same patients. Tissue- and gene-specific expression patterns were observed, supporting the presence of local regulatory mechanisms. Peripheral blood expression of HAS2, PCDH10, H19, ADIPOQ, ESR1, GREM1, SOX9, FRZB, LRP6, and FBN1 resembled bone expression, while PITX1, CRTC1, APC, CTNNB1, FZD1, and AXIN1 reflected muscle and ligament; WNT1 reflected only muscle. In contrast, GREM1 and SOX9 were expressed only in muscle and ligament and FGF4 and NPY only in muscle, suggesting limited systemic biomarker potential. Compared to non-AIS tissues, AIS samples showed downregulation of PCDH10 and FBN2 in bone and CRTC1, FRZB, LRP6, and MSTN in muscle. WNT1 and WNT10 were upregulated in muscle and FBN1 in ligament. In conclusion, the results highlight differential gene expression across AIS tissues, supporting tissue-specific regulation in some of the genes analyzed. Only a subset of markers exhibited blood expression patterns that reflected those in specific tissues, suggesting that certain blood biomarkers may act as surrogates for distinct tissue compartments. These results lay the groundwork for future DNA-based studies to confirm the epigenetic nature of this regulation and to identify reliable biomarkers for AIS progression. Full article
Show Figures

Figure 1

15 pages, 1891 KB  
Article
Investigating PRDM8 DNA Methylation in Peripheral Tissues in Borderline Personality Disorder: Association with Symptom Severity but Not Adverse Childhood Experiences
by Annika Bender, Laila Bertele, Mirac Nur Musaoglu, Sarah Pasche, Susanne Edelmann and Vanessa Nieratschker
Brain Sci. 2025, 15(9), 950; https://doi.org/10.3390/brainsci15090950 (registering DOI) - 30 Aug 2025
Viewed by 132
Abstract
Background: Borderline Personality Disorder (BPD) is a complex psychiatric condition with multifactorial origins, with a high proportion of patients reporting early trauma. Stressors such as adverse childhood experiences (ACEs) can shape the epigenetic landscape including DNA methylation (DNAm) and act on gene expression. [...] Read more.
Background: Borderline Personality Disorder (BPD) is a complex psychiatric condition with multifactorial origins, with a high proportion of patients reporting early trauma. Stressors such as adverse childhood experiences (ACEs) can shape the epigenetic landscape including DNA methylation (DNAm) and act on gene expression. DNAm is increasingly being investigated as a molecular link between environmental exposures such as ACE and psychiatric outcomes. Differential DNAm of the gene PR domain zinc finger protein 8 (PRDM8), a histone methyltransferase, has recently been reported to be sensitive to early life trauma. Its role in BPD, especially in the context of ACE, remains to be elucidated. Methods: This study investigated DNAm patterns of PRDM8 in peripheral blood and saliva obtained from BPD patients undergoing Dialectic Behavioral Therapy (DBT) compared to healthy control (HC) participants. Associations with ACE and BPD symptom severity were assessed, and therapy-related changes in DNAm were examined. Results: At baseline, BPD patients demonstrated significant hypomethylation of PRDM8 in blood relative to the HC group. Following DBT, a nominally significant increase in DNAm was observed, aligning with inversely correlated symptom severity. No significant differences in saliva were detected. ACE was not associated with PRDM8 DNAm. Conclusions: Our findings suggest that PRDM8 DNAm might be associated with BPD and therapeutic intervention but not with ACE. Together with prior research, the results underscore the importance of future investigation of gene–environment interactions and the functional significance of PRDM8 regulation in the pathophysiology of BPD. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

24 pages, 1532 KB  
Review
DNA Methylation in Rice: Mechanisms, Regulatory Roles, and Beyond
by Ting Li, Wen-Jing Li and Jian-Hong Xu
Int. J. Mol. Sci. 2025, 26(17), 8454; https://doi.org/10.3390/ijms26178454 (registering DOI) - 30 Aug 2025
Viewed by 152
Abstract
As a crucial aspect of epigenetic research, DNA methylation is fundamental to genomic stability, gene transcription regulation, and chromatin remodeling. Rice is a staple food source for roughly half of the world’s population. Therefore, optimizing rice yield and stress tolerance is vital for [...] Read more.
As a crucial aspect of epigenetic research, DNA methylation is fundamental to genomic stability, gene transcription regulation, and chromatin remodeling. Rice is a staple food source for roughly half of the world’s population. Therefore, optimizing rice yield and stress tolerance is vital for global food security. With the continuous advancement of DNA methylation detection technologies, studies have shown that DNA methylation regulates various rice growth and development processes, including root differentiation and grain development, through the dynamic equilibrium of de novo methylation, maintenance methylation, and demethylation. Furthermore, DNA methylation is crucial in the plant’s response to environmental stressors like high or low temperature, drought and salinity. The patterns of DNA methylation modifications are also closely linked to rice domestication and heterosis formation. Therefore, a comprehensive investigation of the DNA methylation regulatory network holds significant theoretical value for rice genetic improvement and molecular breeding. This review offers a systematic analysis of the molecular mechanisms and detection technologies of DNA methylation, as well as its regulatory roles in rice growth and development, stress responses, and other biological processes, aiming to provide a theoretical foundation for rice genetic improvement research. Full article
(This article belongs to the Special Issue Latest Reviews in Molecular Plant Science 2025)
Show Figures

Figure 1

36 pages, 6438 KB  
Review
Structural and Functional Studies on Key Epigenetic Regulators in Asthma
by Muhammad Fakhar, Mehreen Gul and Wenjin Li
Biomolecules 2025, 15(9), 1255; https://doi.org/10.3390/biom15091255 - 29 Aug 2025
Viewed by 79
Abstract
Asthma is a chronic inflammatory airway disease influenced by both genetic and environmental factors. Recent insights have underscored the pivotal role of epigenetic regulation in the pathogenesis and heterogeneity of asthma. This review focuses on key epigenetically important regulators categorized as writers, erasers, [...] Read more.
Asthma is a chronic inflammatory airway disease influenced by both genetic and environmental factors. Recent insights have underscored the pivotal role of epigenetic regulation in the pathogenesis and heterogeneity of asthma. This review focuses on key epigenetically important regulators categorized as writers, erasers, and readers that govern DNA methylation, histone modifications, and RNA modifications. These proteins modulate gene expression without altering the underlying DNA sequence, thereby influencing immune responses, airway remodeling, and disease severity. We highlight the structural and functional dynamics of histone acetyltransferases (e.g., p300/CBP), histone deacetylases (e.g., SIRT family), DNA methyltransferases (DNMT1, DNMT3A), demethylases (TET1), and methyl-CpG-binding proteins (MBD2) in shaping chromatin accessibility and transcriptional activity. Additionally, the m6A RNA modification machinery including METTL3, METTL14, FTO, YTHDF1/2, IGF2BP2, and WTAP is explored for its emerging significance in regulating post-transcriptional gene expression during asthma progression. Structural characterizations of these proteins reveal conserved catalytic domains and interaction motifs, mirroring their respective families such as SIRTs, p300/CBP, DNMT1/3A, and YTHDF1/2 critical to their epigenetic functions, offering mechanistic insight into their roles in airway inflammation and immune modulation. By elucidating these pathways, this review provides a framework for the development of epigenetic biomarkers and targeted therapies. Future directions emphasize phenotype-specific epigenomic profiling and structure-guided drug design to enable precision medicine approaches in asthma management. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

35 pages, 938 KB  
Review
Dynamics and Malleability of Plant DNA Methylation During Abiotic Stresses
by Niraj Lodhi and Rakesh Srivastava
Epigenomes 2025, 9(3), 31; https://doi.org/10.3390/epigenomes9030031 - 29 Aug 2025
Viewed by 222
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo dynamic changes in DNA methylation patterns. These modifications are orchestrated by DNA methyltransferases and demethylases with variations depending on plant species, genetic background, and ontogenic phase. DNA methylation affects the expression of key genes involved in cellular, physiological, and metabolic processes essential for stress tolerance. Furthermore, it contributes to the establishment of stress memory, which can be transmitted across generations, thereby enhancing long-term plant resilience. The interaction of DNA methylation with other epigenetic mechanisms, including histone modifications, small RNAs, and chromatin remodeling, adds layers of regulatory complexity. Recent discoveries concerning N6-methyladenine have opened new avenues for understanding the epigenetic landscape in plant responses to abiotic stress. Overall, this review addresses the central role of DNA methylation in regulating plant stress responses and emphasizes its potential for application in crop improvement through epigenetic and advanced biotechnological approaches. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

18 pages, 5537 KB  
Article
Effect of Singlet Oxygen on the Stomatal and Cell Wall of Rice Seedling Under Different Stresses
by Yao Xiao, Zhong-Wei Zhang, Xin-Yue Yang, Lin-Bei Xie, Li-Ping Chen, Yang-Er Chen, Ming Yuan, Guang-Deng Chen and Shu Yuan
Int. J. Mol. Sci. 2025, 26(17), 8382; https://doi.org/10.3390/ijms26178382 (registering DOI) - 28 Aug 2025
Viewed by 139
Abstract
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a [...] Read more.
Singlet oxygen (1O2), a reactive oxygen species, can oxidize lipids, proteins, and DNA at high concentrations, leading to cell death. Despite its extremely short half-life (10−5 s), 1O2 acts as a critical signaling molecule, triggering a retrograde pathway from chloroplasts to the nucleus to regulate nuclear gene expression. In this study, rice seeds were treated with 0, 5, 20 and 80 μM Rose Bengal (RB, a photosensitizer) under moderate light for 3 days to induce 1O2 generation. Treatment with 20 μM RB reduced stomatal density by approximately 25% in three-leaf-stage rice seedlings, while increasing the contents of pectin, hemicellulose, and cellulose in root cell walls by 30–40%. Under drought, salinity, or shading stress, 20 μM RB treatment significantly improved rice tolerance, as evidenced by higher relative water contents (49–58%) and chlorophyll contents (60–76%) and lower malondialdehyde (37–43%) and electrolyte leakage (29–37%) compared to the control. Moreover, RT-qPCR analysis revealed that the significant up-regulation of stomatal development genes (OsTMM and OsβCA1) and cell wall biosynthesis genes (OsF8H and OsLRX2) was associated with RB-induced 1O2 production. Thus, under controlled environmental conditions, 1O2 may regulate stomatal development and cell wall remodeling to enhance rice tolerance to multiple abiotic stresses. These results provide new perspectives for the improvement of rice stress tolerance. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition: 2nd Edition)
Show Figures

Figure 1

16 pages, 2615 KB  
Article
Identification of a Red Pigment-Producing Strain of Arthrobacter spp. and the Stability of Its Pigments
by Jinjun Wang, Mingliang Yang and Xinru Gao
Microorganisms 2025, 13(9), 2003; https://doi.org/10.3390/microorganisms13092003 - 27 Aug 2025
Viewed by 164
Abstract
With the rise of environmental protection and health topics in recent years, microbial production of red pigments has gradually become a research hotspot. Red pigment possesses biological properties such as anticancer and antioxidant activities and has a wide range of potential applications in [...] Read more.
With the rise of environmental protection and health topics in recent years, microbial production of red pigments has gradually become a research hotspot. Red pigment possesses biological properties such as anticancer and antioxidant activities and has a wide range of potential applications in the fields of food and medicine. In this paper, a red pigment-producing strain was screened from rice soil to provide a reserve for obtaining natural and safe red pigments. Methods: The strain LSY1-2 was identified using morphological and 16S rDNA molecular biological identification. The fermentation conditions for red pigment production were optimised to improve pigment yield, and the best conditions were analysed using response surface methodology. Finally, the stabilisation conditions of red pigment were analysed to determine the difficulty of retention. Results: The molecular ecology was identified as the bacterium Arthrobacter sp. of the genus Arthrobacter. The optimal red pigment production medium for the strain was determined by a one-way test with the carbon source beef extract, the nitrogen source peptone, the inoculum size 2%, the temperature 27 °C, the pH value 7, and the rotational speed 160 rpm. Response surface optimisation determined the optimal red pigment production conditions as the incubation temperature of 26.43 °C, the pH value of 6.89, and the rotational speed of 162.77 rpm, which resulted in the yield of red pigment under these optimal conditions as 0.883 U/mL. The stability of red pigment was best under the condition without light, and poorer under conditions of above 50 °C, strong acid, strong alkali, and more than 3% oxidant, and Fe3+ had a greater effect on the stability. Conclusions: Strain LSY-1 can produce stable red pigment under the optimised red pigment-producing conditions, which provides a reference for the large-scale production of natural red pigment and subsequent related research. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 5547 KB  
Article
High-Throughput Sequencing Reveals Fungal Microbiome of Apricots Grown Under Organic and Integrated Pest Management Systems
by Milan Navrátil, Dana Šafářová, Radek Čmejla, Martin Duchoslav and Jiří Sedlák
Agriculture 2025, 15(17), 1825; https://doi.org/10.3390/agriculture15171825 - 27 Aug 2025
Viewed by 242
Abstract
Apricots are affected by many abiotic and biotic factors that could negatively impact their vitality and yield, leading to branch and tree dieback. Knowledge of the microbiome composition is key to choosing the optimal measurement strategy. The effect of the two different growing [...] Read more.
Apricots are affected by many abiotic and biotic factors that could negatively impact their vitality and yield, leading to branch and tree dieback. Knowledge of the microbiome composition is key to choosing the optimal measurement strategy. The effect of the two different growing systems, i.e., organic (ORG) and integrated pest management (IPM), on the apricot fungal microbiome was studied. The inner bark was used to isolate DNA, and the present fungi were analyzed using a metagenomics high-throughput sequencing (HTS) profiling approach of the data obtained based on the Illumina sequencing of the ITS1-ITS2 amplicons of the 18S rRNA gene. Of the 20 analyzed samples, Ascomycota was the dominant phylum, and Dothiomycetes was the most abundant. Basidiomycota was the less frequent, with Tremellomycetes being the predominant within this phylum. PCA analysis showed the complete separation of the samples obtained from the orchards grown under the ORG and IPM systems. Cladosporia, Alternaria, Aureobasidium, and Visniacozyma were detected in all samples, but they dominated the IPM samples. Filobasiadiales were recognized as an indicator species for ORG management, while Caliciales, Lecanorales, Lichinales, Mycosphaerellales, Myriangiales, Phacidiales, Teloschistales, and Thelebolales were identified as indicator species for IPM management. Based on the order and genus levels, a significantly higher fungal microbiome richness was detected in the ORG samples. This could be connected to the environmentally beneficial growing system applied in the orchard, but it is impossible to assess the risk of trunk disease development or premature apricot tree decline. Full article
Show Figures

Figure 1

23 pages, 3322 KB  
Article
Genetic Diversity, Extended-Spectrum Beta-Lactamase (ESBL) Screening, and Potential Public Health Implications of Gram-Negative Bacteria Recovered from Man-Made Lakes and Surrounding Vegetables
by Ahou Cinthia Inès Yebouet, Kouakou Romain Fossou, Zaka Ghislaine Claude Kouadjo-Zézé, Anthony Ifeanyi Okoh and Adolphe Zézé
Microorganisms 2025, 13(9), 1997; https://doi.org/10.3390/microorganisms13091997 - 27 Aug 2025
Viewed by 281
Abstract
The emergence and dissemination of extended-spectrum beta-lactamase (ESBL)-producing bacteria pose a major public health threat, necessitating a One Health approach to addressing this threat. Thus, the diversity, ESBL production, and potential public health implications of Gram-negative bacteria recovered from man-made lakes and surrounding [...] Read more.
The emergence and dissemination of extended-spectrum beta-lactamase (ESBL)-producing bacteria pose a major public health threat, necessitating a One Health approach to addressing this threat. Thus, the diversity, ESBL production, and potential public health implications of Gram-negative bacteria recovered from man-made lakes and surrounding lettuce in Yamoussoukro, Côte d’Ivoire were assessed in this study. Also, the lakes’ physicochemical parameters were assessed and correlated with bacteria community using Pearson correlation. A total of 68 Gram-negative bacterial isolates were recovered from the samples and identified via 16S rDNA gene sequencing. Phylogenetic analysis suggested multiple genus-/species-level variations within the isolates. Escherichia coli was the most prevalent in lake water (39.5%), while Acinetobacter was the dominant genus in lettuce (30%). E. coli isolates showed high resistance to ampicillin (90.9%), cefepime (72.7%), cefotaxime (68.2%), and aztreonam (63.6%). Moreover, ESBL production was confirmed in E. coli isolates (22.05%), predominantly mediated by the blaCTX-M gene. Multidrug-resistant phenotypes were widespread, yielding similar multiple antibiotic resistance index (MARI) values in water (0.27–0.63) and lettuce (0.27–0.81). These data indicate high environmental contamination, which unfortunately is not being taken into account by lettuce producers according to an interview. Statistical analyses showed a significant relationship between bacterial diversity and lakes’ physicochemical parameters, including dissolved oxygen, pH, and turbidity. The basic education level of farmers, the prevalence of ESBL-producing E. coli, and the high prevalence of MDR Gram-negative bacteria in both environmental and crop sources in Yamoussoukro underscore the need for both integrated surveillance and management strategies to mitigate potential microbial public health risks within a One Health framework. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance, Second Edition)
Show Figures

Graphical abstract

12 pages, 2472 KB  
Article
Variations in the Fecal Microbiota of Red Deer in Relation to the Hunting Area in the Friuli-Venezia Giulia Region, Italy
by Bruno Stefanon, Valentina Cecchini, Sandy Sgorlon and Monica Colitti
Animals 2025, 15(17), 2517; https://doi.org/10.3390/ani15172517 - 27 Aug 2025
Viewed by 229
Abstract
The gut microbiota of red deer is a topic of growing interest, particularly with regard to its ecological and physiological importance. The diversity and composition of these microbial communities is influenced by environmental variables, diet and interactions with other organisms in their habitat. [...] Read more.
The gut microbiota of red deer is a topic of growing interest, particularly with regard to its ecological and physiological importance. The diversity and composition of these microbial communities is influenced by environmental variables, diet and interactions with other organisms in their habitat. Fecal samples were collected in 10 hunting reserves in the Friuli-Venezia Giulia region, Italy. In each hunting reserve, five individual samples were taken from the ground for a total of 50 samples. After DNA extraction, the V3–V4 16s rRNA regions were sequenced. The raw data were uploaded to QIIME2 and taxonomic annotation was performed. Significant differences between the deer sampled in the hunting reserves (p < 0.05) were calculated for the phyla Firmicutes and Cyanobacteriota and for the ratio of Firmicutes to Bacteroidota, especially for the mountain reserves in the north and northeast compared to the reserves in the hills in the west. Shannon and Chao1 alpha diversity indices varied between reserves (p < 0.01) and the Bray–Curtis beta diversity index also indicated differences in microbiota between hunting reserves. The different habitats and vegetation of the reserves could explain the differences observed. Understanding the dynamics of the microbiota of red deer provides important information about their health and feeding behavior and also has far-reaching implications for species conservation. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

13 pages, 538 KB  
Article
The Skin Microbiome Profile of Contact Sports Athletes—Focus on Sexual Dimorphism and Athlete–Non-Athlete Differences
by Irina Kalabiska, Dorina Annar, Gergely Babszky, Matyas Jokai, Zoltan Borbas, Gergely Hajdu, Fanny Zselyke Ratz-Sulyok, Csilla Jang-Kapuy, Gergely Palinkas, Harjit Pal Bhattoa and Annamaria Zsakai
Sports 2025, 13(9), 288; https://doi.org/10.3390/sports13090288 - 26 Aug 2025
Viewed by 950
Abstract
Background: Athletes’ skin is exposed to increased microbial challenges due to rigorous physical activity, perspiration, constant “skin-to-skin” contact, frequent showering, use of hygiene products, and environmental factors present in training settings. This study aims to characterize the skin microbiome communities of young wrestlers [...] Read more.
Background: Athletes’ skin is exposed to increased microbial challenges due to rigorous physical activity, perspiration, constant “skin-to-skin” contact, frequent showering, use of hygiene products, and environmental factors present in training settings. This study aims to characterize the skin microbiome communities of young wrestlers and kickboxers in comparison with their non-athlete age-peers. Methods: A total of 56 combat sport athletes (30 males and 26 females, mean age ± SD = 18.2 ± 1.5 years) and 25 non-athlete youths (control group: 13 males and 12 females, mean age ± SD = 19.8 ± 1.2 years) voluntarily consented to participate in the study conducted by our research team in 2023 and 2024. The skin microbiome analysis involved standardized sampling, DNA isolation, molecular sequencing, and bioinformatic analysis, thus enabling detailed characterization and comparison of the skin microbial community in contact sports athletes and the control group. Results: Our results revealed notable sexual dimorphism in the skin microbiome composition of youth. Males showed a higher relative abundance of bacterial genera associated with nosocomial infections and respiratory diseases, while females had more skin inflammation- and infection-related genera (relative abundances in males vs. in females: Corynebacterium—12.0 vs. 7.2; Luteimonas—4.4. vs. 1.4; Paracoccus—8.8 vs. 5.0; Psychrobacter—6.3 vs. 4.4; Cutibacterium—6.4 vs. 11.4; Kocuria—1.6 vs. 3.9; Micrococcus—5.8 vs. 8.5; Pseudomonas—1.2 vs. 3.4; Streptococcus 3.3 vs. 6.2). We also found skin microbiome differences between athletes and non-athletes in both sexes: wrestlers, who experience frequent skin-to-skin contact and wear less covering sportswear, had microbiome profiles distinct from both kickboxers and non-athletes (relative abundances in athletes vs. in non-athletes: Psychrobacter—7.3 vs. 0.4; Staphylococcus 9.5 vs. 18.5; predominance of genera by sports type: relative abundance of Cutibacterium and Streptococcus was higher in kickboxers, and relative abundance of Acinetobacter, Enhydrobacter, Micrococcus, and Enhydrobacter was higher in wrestlers). Bacteria linked to skin infections (e.g., Aliterella, Arthrobacter, and Empedobacter) were present in around 30% of wrestlers and kickboxers but were absent in the control group. Conclusions: These results underscore the heightened risk of skin infections in contact sports and highlight the importance of regular microbiome monitoring and hygiene protocols among young athletes. Full article
Show Figures

Figure 1

Back to TopTop