Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,881)

Search Parameters:
Keywords = environmental challenge study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2246 KB  
Article
Super-Supportive Corporate Social Responsibility Behaviors in China’s Construction Enterprises
by Yuqing Zhang, Qian Zhang, Weiyan Jiang, Meiyue Sang and Kunhui Ye
Buildings 2025, 15(19), 3587; https://doi.org/10.3390/buildings15193587 (registering DOI) - 5 Oct 2025
Abstract
Super-supportive CSR behaviors (SSCBs) are integrative actions devised to enhance the effectiveness of CSR initiatives by harmonizing social, environmental, and economic efforts. Despite their strategic role in business operations, SSCBs remain insufficiently addressed, especially within the construction sector. This study utilizes text mining [...] Read more.
Super-supportive CSR behaviors (SSCBs) are integrative actions devised to enhance the effectiveness of CSR initiatives by harmonizing social, environmental, and economic efforts. Despite their strategic role in business operations, SSCBs remain insufficiently addressed, especially within the construction sector. This study utilizes text mining and association rule mining to analyze 211 CSR reports from Chinese construction firms spanning 2010 to 2021. The key findings highlight the pivotal role of 17 SSCBs in strengthening CSR initiatives, revealing three major characteristics: foundational, synergistic, and triggering. Within the construction industry, SSCBs primarily focus on corporate governance, community development, employee welfare, and environmental sustainability, evolving from isolated practices to integrated systems over time. Notably, construction firms tend to adopt SSCB portfolios instead of standalone initiatives. Furthermore, exceeding a certain threshold of SSCBs may increase challenges in coordination and resource allocation. These insights highlight SSCBs as a dynamic, multidimensional construct and provide construction firms with a practical framework to integrate complementary CSR actions, improving coordination, optimizing resources, and strengthening sustainability outcomes in practice. Full article
Show Figures

Figure 1

15 pages, 3711 KB  
Article
Consequences of the Construction of a Small Dam on the Water Quality of an Urban Stream in Southeastern Brazil
by Lucas Galli do Rosário, Ricardo Hideo Taniwaki and Luis César Schiesari
Limnol. Rev. 2025, 25(4), 48; https://doi.org/10.3390/limnolrev25040048 (registering DOI) - 5 Oct 2025
Abstract
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to [...] Read more.
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to urban settlements. However, concerns have arisen that, despite their small size, small dams may have environmental impacts similar to those known for large dams. The severe water crisis observed between 2014 and 2015 led to the multiplication of small dams in southeastern Brazil, such as the one built on the Fetá stream at the Capivari River basin in the municipality of Louveira. This study aimed to contribute to the assessment of the impacts of small dam construction on water quality by monitoring basic parameters and nutrients during the filling and stabilization period of the Fetá reservoir. As expected, the interruption of water flow and the increase in water residence time led to increases in temperature, pH, electrical conductivity, dissolved oxygen and concentrations of dissolved carbon and nitrogen, as well as a reduction in turbidity. Consistent with the shallow depth of the water column, neither thermal nor chemical stratification was observed. Nevertheless, the water quality of surface and bottom layers was markedly different. Over time, water volume and water quality tended to stabilize. This research clearly demonstrates that small dams and reservoirs cause qualitatively similar environmental impacts to those of large-scale dams and reservoirs worldwide. Full article
(This article belongs to the Special Issue Functional Ecology of Urban Streams)
Show Figures

Figure 1

22 pages, 1975 KB  
Article
TO-SYN-FUEL Project to Convert Sewage Sludge in Value-Added Products: A Comparative Life Cycle Assessment
by Serena Righi, Filippo Baioli, Andrea Contin and Diego Marazza
Energies 2025, 18(19), 5283; https://doi.org/10.3390/en18195283 (registering DOI) - 5 Oct 2025
Abstract
Second-, third-, and fourth-generation biofuels represent an important response to the challenges of clean energy supply and climate change. In this context, the Horizon 2020 “TO-SYN-FUEL” project aimed to produce advanced biofuels together with phosphorus from municipal wastewater sludge through a combination of [...] Read more.
Second-, third-, and fourth-generation biofuels represent an important response to the challenges of clean energy supply and climate change. In this context, the Horizon 2020 “TO-SYN-FUEL” project aimed to produce advanced biofuels together with phosphorus from municipal wastewater sludge through a combination of technologies including a Thermo-Catalytic Reforming system, Pressure Swing Adsorption for hydrogen separation, Hydrodeoxygenation, and biochar gasification for phosphorous recovery. This article presents the environmental performance results of the demonstrator installed in Hohenberg (Germany), with a capacity of 500 kg per hour of dried sewage sludge. In addition, four alternative scenarios are assessed, differing in the source of additional thermal energy used for sludge drying: natural gas, biogas, heat pump, and a hybrid solar greenhouse. The environmental performance of these scenarios is then compared with that of conventional fuel. The comparative study of these scenarios demonstrates that the biofuel obtained through wood gasification complies with the Renewable Energy Directive, while natural gas remains the least sustainable option. Heat pumps, biogas, and greenhouse drying emerge as promising alternatives to align biofuel production with EU sustainability targets. Phosphorus recovery from sewage sludge ash proves essential for compliance, offering clear environmental benefits. Although sewage sludge is challenging due to its high water content, it represents a valuable feedstock whose sustainable management can enhance both energy recovery and nutrient recycling. Full article
Show Figures

Figure 1

52 pages, 1056 KB  
Review
Advancements in Microbial Applications for Sustainable Food Production
by Alane Beatriz Vermelho, Verônica da Silva Cardoso, Levy Tenório Sousa Domingos, Ingrid Teixeira Akamine, Bright Amenu, Bernard Kwaku Osei and Athayde Neves Junior
Foods 2025, 14(19), 3427; https://doi.org/10.3390/foods14193427 (registering DOI) - 5 Oct 2025
Abstract
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in [...] Read more.
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in the food industry. Additionally, it explores food preservation strategies and methods for controlling microbial contamination. These biotechnological approaches are increasingly replacing synthetic additives, contributing to enhanced food safety, nutritional functionality, and product shelf stability. Examples include bacteriocins from lactic acid bacteria, biodegradable microbial pigments, and exopolysaccharide-based biopolymers, such as pullulan and xanthan gum, which are used in edible coatings and films. A comprehensive literature search was conducted across Scopus, PubMed, ScienceDirect, and Google Scholar, covering publications from 2014 to 2025. A structured Boolean search strategy was applied, targeting core concepts in microbial fermentation, bio-based food additives, and contamination control. The initial search retrieved 5677 articles, from which 370 studies were ultimately selected after applying criteria such as duplication removal, relevance to food systems, full-text accessibility, and scientific quality. This review highlights microbial biotransformation as a route to minimize reliance on synthetic inputs, valorize agri-food byproducts, and support circular bioeconomy principles. It also discusses emerging antimicrobial delivery systems and regulatory challenges. Overall, microbial innovations offer viable and scalable pathways for enhancing food system resilience, functionality, and environmental stewardship. Full article
Show Figures

Graphical abstract

17 pages, 3863 KB  
Article
Adsorption of Cr(III) by IRA-900 Resin in Sodium Phosphite and Sulfuric Acid System
by Tingjie Xu, Dahuan Gan, Guowang Wei, Yingjie Yang, Qiankun Wei and Chunlin He
Separations 2025, 12(10), 270; https://doi.org/10.3390/separations12100270 (registering DOI) - 5 Oct 2025
Abstract
Chromium (Cr), a toxic heavy metal, poses significant environmental and health risks when industrial effluents containing Cr are discharged untreated. Addressing this challenge, this study developed a selective chromium removal strategy using IRA-900 resin in a sulfuric acid system with sodium phosphite (NaH [...] Read more.
Chromium (Cr), a toxic heavy metal, poses significant environmental and health risks when industrial effluents containing Cr are discharged untreated. Addressing this challenge, this study developed a selective chromium removal strategy using IRA-900 resin in a sulfuric acid system with sodium phosphite (NaH2PO3) as a complexing agent. In the NaH2PO3-H2SO4 system, IRA-900 resin exhibited exceptional selectivity for Cr3+ with minimal co-adsorption of competing ions. The adsorption process followed the Langmuir isotherm model (R2 > 0.99), indicating monolayer chemisorption dominated by homogeneous active sites, and achieved a maximum capacity of 103.56 mg·g−1. Characterization via XPS, FT-IR, and SEM-EDS revealed a two-step mechanism: Cr3+ reacts with H2PO3 to form an anionic complex, and then the complex undergoes electrostatic interaction and ion exchange with chloride ions (Cl) on the quaternary ammonium groups of the resin. The chromium-loaded resin demonstrated remarkable structural stability, resisting Cr3+ desorption under conventional elution conditions. This property provides a novel pathway for chromium solidification in industrial wastewater, effectively minimizing secondary pollution risks. This work advances the design of ligand-assisted ion-exchange systems for targeted heavy metal removal, offering both high selectivity and environmental compatibility in wastewater treatment. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

23 pages, 4505 KB  
Article
Preparation and Performance Study of Uniform Silver–Graphene Composite Coatings via Zeta Potential Regulation and Electrodeposition Process Optimization
by Luyi Sun, Hongrui Zhang, Xiao Li, Dancong Zhang, Yuxin Chen, Taiyu Su and Ming Zhou
Nanomaterials 2025, 15(19), 1523; https://doi.org/10.3390/nano15191523 (registering DOI) - 5 Oct 2025
Abstract
High-performance electrical contact materials are crucial for electric power systems, new energy vehicles, and rail transportation, as their properties directly impact the reliability and safety of electronic devices. Enhancing these materials not only improves energy efficiency but also offers notable environmental and economic [...] Read more.
High-performance electrical contact materials are crucial for electric power systems, new energy vehicles, and rail transportation, as their properties directly impact the reliability and safety of electronic devices. Enhancing these materials not only improves energy efficiency but also offers notable environmental and economic advantages. However, traditional composite contact materials often suffer from poor dispersion of the reinforcing phase, which restricts further performance improvement. Graphene (G), with its unique two-dimensional structure and exceptional electrical, mechanical, and tribological properties, is considered an ideal reinforcement for metal matrix composites. Yet, its tendency to agglomerate poses a significant challenge to achieving uniform dispersion. To overcome this, the study introduces a dual approach: modulation of the zeta potential (ζ) in the silver-plated liquid to enhance G’s dispersion stability, and concurrent optimization of the composite electrodeposition process. Experimental results demonstrate that this synergistic strategy enables the uniform distribution of G within the silver matrix. The resulting silver–graphene (Ag-G) composite coatings exhibit outstanding overall performance at both micro and macro levels. This work offers a novel and effective pathway for the design of advanced electrical contact materials with promising application potential. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

59 pages, 4837 KB  
Article
A Human–AI Compass for Sustainable Art Museums: Navigating Opportunities and Challenges in Operations, Collections Management, and Visitor Engagement
by Charis Avlonitou, Eirini Papadaki and Alexandros Apostolakis
Heritage 2025, 8(10), 422; https://doi.org/10.3390/heritage8100422 (registering DOI) - 5 Oct 2025
Abstract
This paper charts AI’s transformative path toward advancing sustainability within art museums, introducing a Human–AI compass as a conceptual framework for navigating its integration. It advocates for human-centric AI that optimizes operations, modernizes collection management, and deepens visitor engagement—anchored in meaningful human–technology synergy [...] Read more.
This paper charts AI’s transformative path toward advancing sustainability within art museums, introducing a Human–AI compass as a conceptual framework for navigating its integration. It advocates for human-centric AI that optimizes operations, modernizes collection management, and deepens visitor engagement—anchored in meaningful human–technology synergy and thoughtful human oversight. Drawing on extensive literature review and real-world museum case studies, the paper explores AI’s multifaceted impact across three domains. Firstly, it examines how AI improves operations, from audience forecasting and resource optimization to refining marketing, supporting conservation, and reshaping curatorial practices. Secondly, it investigates AI’s influence on digital collection management, highlighting its ability to improve organization, searchability, analysis, and interpretation through automated metadata and advanced pattern recognition. Thirdly, the study analyzes how AI elevates the visitor experience via chatbots, audio guides, and interactive applications, leveraging personalization, recommendation systems, and co-creation opportunities. Crucially, this exploration acknowledges AI’s complex challenges—technical-operational, ethical-governance, socioeconomic-cultural, and environmental—underscoring the indispensable role of human judgment in steering its implementation. The Human-AI compass offers a balanced, strategic approach for aligning innovation with human values, ethical principles, museum mission, and sustainability. The study provides valuable insights for researchers, practitioners and policymakers, enriching the broader discourse on AI’s growing role in the art and cultural sector. Full article
Show Figures

Figure 1

34 pages, 4943 KB  
Review
Microbial and Chemical Water Quality Assessments Across the Rural and Urban Areas of Nepal: A Scoping Review
by Suhana Chattopadhyay, Alex Choiniere, Nedelina Tchangalova, Yunika Acharya, Amy R. Sapkota and Leena Malayil
Int. J. Environ. Res. Public Health 2025, 22(10), 1526; https://doi.org/10.3390/ijerph22101526 (registering DOI) - 5 Oct 2025
Abstract
Nepal is currently facing critical water quality challenges due to urbanization, water management and governance issues, as well as natural disasters. This has resulted in the presence of harmful contaminants (e.g., pathogens, nitrates, arsenic) across multiple water sources, subsequently leading to waterborne disease [...] Read more.
Nepal is currently facing critical water quality challenges due to urbanization, water management and governance issues, as well as natural disasters. This has resulted in the presence of harmful contaminants (e.g., pathogens, nitrates, arsenic) across multiple water sources, subsequently leading to waterborne disease risks (e.g., cholera and typhoid). In response to these environmental and public health concerns, we conducted a scoping review to assess microbial and chemical contaminants in drinking and irrigation water in Nepal, as well as their potential impacts on public health. Following the JBI Manual for Evidence Synthesis and the PRISMA-SCR guidelines, we systematically searched for peer-reviewed literature on Nepal’s water quality in seven databases. Of 3666 unique records screened using predefined inclusion criteria, 140 met our criteria. The studies encompassed a variety of methodological designs, with the majority focusing on water sources in the Bagmati province. Bacteria and arsenic emerged as the most prevalent contaminants. Additionally, diseases such as arsenicosis and typhoid remain widespread and may be linked to contaminated water sources. The review identified key gaps in Nepal’s water quality management, including limited geographic research coverage, inconsistent testing protocols, weak regulatory enforcement, and a lack of integration of water quality with public health planning. Our findings underscore the urgent need for effective surveillance systems and a robust regulatory framework to promptly respond to water contamination events in Nepal. Full article
20 pages, 2313 KB  
Review
Citrus Waste Valorisation Processes from an Environmental Sustainability Perspective: A Scoping Literature Review of Life Cycle Assessment Studies
by Grazia Cinardi, Provvidenza Rita D’Urso, Giovanni Cascone and Claudia Arcidiacono
AgriEngineering 2025, 7(10), 335; https://doi.org/10.3390/agriengineering7100335 (registering DOI) - 5 Oct 2025
Abstract
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, [...] Read more.
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, driving growing scientific interest in exploring environmentally sustainable and profitable valorisation strategies. This study aimed at mapping the sustainability of post-processing citrus valorisation strategies documented in the scientific literature, through a scoping literature review based on the PRISMA-ScR model. Only peer-reviewed studies in English were selected from Scopus and Web of Science; in detail, 29 life cycle assessment studies (LCAs) focusing on the valorisation of citrus by-products have been analysed. Most of the studies were focused on essential oil extraction and energy production. Most of the biorefinery systems and valorisation aims proposed were found to be better than the business-as-usual solution. However, results are strongly influenced by the functional unit and allocation method. Economic allocation to the main product resulted in better environmental performances. The major environmental hotspot is the agrochemicals required for crop management. The analysis of LCAs facilitated the identification of valorisation strategies that deserve greater interest from the scientific community to propose sustainable bio-circular solutions in the agro-industrial and agricultural sectors. Full article
Show Figures

Figure 1

19 pages, 1254 KB  
Review
Silver Nanoparticle–Silk Protein Nanocomposites: A Synergistic Biomimetic Approach for Advanced Antimicrobial Applications
by Mauro Pollini, Fabiana D’Urso, Francesco Broccolo and Federica Paladini
Biomimetics 2025, 10(10), 669; https://doi.org/10.3390/biomimetics10100669 (registering DOI) - 5 Oct 2025
Abstract
The escalating global crisis of antimicrobial resistance demands innovative therapeutic strategies that transcend conventional approaches. This comprehensive review examines the groundbreaking synergistic integration of silver nanoparticles (AgNPs) with silk proteins (fibroin and sericin from Bombyx mori) to create advanced nanocomposite materials for [...] Read more.
The escalating global crisis of antimicrobial resistance demands innovative therapeutic strategies that transcend conventional approaches. This comprehensive review examines the groundbreaking synergistic integration of silver nanoparticles (AgNPs) with silk proteins (fibroin and sericin from Bombyx mori) to create advanced nanocomposite materials for biomedical applications. While extensive literature exists for AgNPs and silk proteins individually, a limited number of studies have explored their synergistic combination. This review consolidates this fragmented knowledge to establish the foundational framework for an emerging field. The unique properties of silk proteins as natural reducing, stabilizing, and capping agents enable environmentally friendly AgNPs synthesis while creating intelligent therapeutic platforms with emergent properties. These hybrid materials demonstrate superior performance in terms of antimicrobial efficacy, biocompatibility, and accelerated wound healing compared to the individual components. The nanocomposites exhibit broad-spectrum activity against multidrug-resistant pathogens while maintaining exceptional biocompatibility and promoting tissue regeneration. This integration represents a promising evolution toward biomimetic therapeutic platforms that work in harmony with biological systems, offering sustainable solutions to contemporary healthcare challenges. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

11 pages, 211 KB  
Article
Sustainable Community Services, Community Working Methods and Practices
by Maria Arapovics
Societies 2025, 15(10), 282; https://doi.org/10.3390/soc15100282 (registering DOI) - 5 Oct 2025
Abstract
The Community and Civil Research Group of Eötvös Loránd University (Budapest) investigated sustainable community activities in Hungary and abroad to identify local responses to global challenges. Using qualitative research methods, focus groups and interviews, this research defined the concepts of community service, community [...] Read more.
The Community and Civil Research Group of Eötvös Loránd University (Budapest) investigated sustainable community activities in Hungary and abroad to identify local responses to global challenges. Using qualitative research methods, focus groups and interviews, this research defined the concepts of community service, community practice and working methods by analysing nearly 80 practical examples and 65 interviews in Hungary. The practical examples were used to create a “sustainable community model” and a methodological guide for community developers on how to implement community services. The steps of the process presented in the model are based on building community involvement and participation, mobilising local resources and capacities, creating community-based services, building sustainability and self-sufficiency and consolidating innovative training and community working practices. The research resulted in the creation of an online Community Repository, which provides community responses to the 17 UN Global Sustainability Challenges and Goals —economic growth, social inclusion and environmental protection—by organising the collected community services, small community practices and working methods around seven community development perspectives: governance, place, sustainable livelihoods, culture (and the arts), identity (belonging and connection), human rights and resilience and engagement and knowledge. This study provides a methodological foundation for developing resilient community-based services that contribute to sustainability, inclusivity and innovation. Full article
57 pages, 5274 KB  
Article
Aerospace Bionic Robotics: BEAM-D Technical Standard of Biomimetic Engineering Design Methodology Applied to Mechatronics Systems
by Jose Cornejo, Alfredo Weitzenfeld, José Baca and Cecilia E. García Cena
Biomimetics 2025, 10(10), 668; https://doi.org/10.3390/biomimetics10100668 (registering DOI) - 5 Oct 2025
Abstract
The origin of life initiated an evolutionary continuum yielding biologically optimized systems capable of operating under extreme environmental constraints. Biomimetics, defined as the systematic abstraction and transfer of biological principles into engineering domains, has become a strategic design paradigm for addressing the multifactorial [...] Read more.
The origin of life initiated an evolutionary continuum yielding biologically optimized systems capable of operating under extreme environmental constraints. Biomimetics, defined as the systematic abstraction and transfer of biological principles into engineering domains, has become a strategic design paradigm for addressing the multifactorial challenges of space systems. This study introduces two core contributions to formally establish the discipline of Aerospace Bionic Robotics (ABR): First, it elucidates the relevance of biologically derived functionalities such as autonomy, adaptability, and multifunctionality to enhance the efficiency of space robotic platforms operating in microgravity environments. Second, it proposed the BEAM-D (Biomimetic Engineering and Aerospace Mechatronics Design), a standard for the development of Aerospace Bionic Robotics. By integrating biological abstraction levels (morphological, functional, and behavioral) with engineering protocols including ISO, VDI, and NASA’s TRL, BEAM-D enables a structured design pathway encompassing subsystem specification, cyber–physical integration, in situ testing, and full-scale mission deployment. It is implemented through a modular BEAM-DX framework and reinforced by iterative BIOX design steps. This study thus establishes formalized bio-inspired design tools for advanced orbital and planetary robotic systems capable of sustained autonomous operations in deep space exploration scenarios. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

27 pages, 1330 KB  
Review
Radon Exposure Assessment: IoT-Embedded Sensors
by Phoka C. Rathebe and Mota Kholopo
Sensors 2025, 25(19), 6164; https://doi.org/10.3390/s25196164 (registering DOI) - 5 Oct 2025
Abstract
Radon exposure is the second leading cause of lung cancer worldwide, yet monitoring strategies remain limited, expensive, and unevenly applied. Recent advances in the Internet of Things (IoT) offer the potential to change radon surveillance through low-cost, real-time, distributed sensing networks. This review [...] Read more.
Radon exposure is the second leading cause of lung cancer worldwide, yet monitoring strategies remain limited, expensive, and unevenly applied. Recent advances in the Internet of Things (IoT) offer the potential to change radon surveillance through low-cost, real-time, distributed sensing networks. This review consolidates emerging research on IoT-based radon monitoring, drawing from both primary radon studies and analogous applications in environmental IoT. A search across six major databases and relevant grey literature yielded only five radon-specific IoT studies, underscoring how new this research field is rather than reflecting a shortcoming of the review. To enhance the analysis, we delve into sensor physics, embedded system design, wireless protocols, and calibration techniques, incorporating lessons from established IoT sectors like indoor air quality, industrial safety, and volcanic gas monitoring. This interdisciplinary approach reveals that many technical and logistical challenges, such as calibration drift, power autonomy, connectivity, and scalability, have been addressed in related fields and can be adapted for radon monitoring. By uniting pioneering efforts within the broader context of IoT-enabled environmental sensing, this review provides a reference point and a future roadmap. It outlines key research priorities, including large-scale validation, standardized calibration methods, AI-driven analytics integration, and equitable deployment strategies. Although radon-focused IoT research is still at an early stage, current progress suggests it could make continuous exposure assessment more reliable, affordable, and widely accessible with clear public health benefits. Full article
(This article belongs to the Special Issue Advances in Radiation Sensors and Detectors)
Show Figures

Figure 1

43 pages, 1439 KB  
Review
Advances in Algae-Based Bioplastics: From Strain Engineering and Fermentation to Commercialization and Sustainability
by Nilay Kumar Sarker and Prasad Kaparaju
Fermentation 2025, 11(10), 574; https://doi.org/10.3390/fermentation11100574 (registering DOI) - 4 Oct 2025
Abstract
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis [...] Read more.
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis is placed on integrated biorefinery models, innovative processing techniques, and the role of government–industry–academia partnerships in accelerating commercialization. The analysis incorporates both demonstrated algal systems and theoretical applications derived from established microbial processes, reflecting the emerging nature of this field. The environmental advantages, market readiness, and scalability challenges of algal bioplastics are critically evaluated, with reference to peer-reviewed studies and industrial pilot projects. The analysis underscores that while technical feasibility has been demonstrated, economic viability and large-scale adoption depend on optimizing yield, reducing production costs, and fostering collaborative frameworks. Future research priorities include enhancing strain performance via AI-enabled screening, expanding product valorization streams, and aligning regulatory standards to support global market integration. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

32 pages, 6180 KB  
Review
Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies
by Armstrong Ighodalo Omoregie, Muhammad Oliver Ensor Silini, Lin Sze Wong and Adharsh Rajasekar
Nitrogen 2025, 6(4), 92; https://doi.org/10.3390/nitrogen6040092 (registering DOI) - 4 Oct 2025
Abstract
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments [...] Read more.
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments such as lakes, rivers, and coastal waters. The primary sources of nitrogen enrichment are excessive fertilizer application, livestock manure discharge, industrial emissions, and untreated industrial and municipal wastewater. These inputs have led to severe ecological consequences, including harmful algal blooms, hypoxia, loss of biodiversity, and deteriorating water quality, threatening ecosystem health and human well-being. The review also examines mitigation strategies implemented in China, encompassing regulatory policies such as the “Zero Growth” fertilizer initiative, as well as technological advancements in wastewater treatment and sustainable farming practices. Case studies highlighting successful interventions, such as lake restoration projects and integrated watershed management, demonstrate the potential for effective nitrogen control. However, persistent challenges remain, including uneven policy enforcement, insufficient public awareness, and gaps in scientific understanding of nitrogen cycling dynamics. This review aims to inform future efforts toward achieving sustainable nitrogen management in China by synthesizing current research and identifying key knowledge gaps. Addressing these issues is crucial for safeguarding China’s aquatic ecosystems and promoting global nutrient stewardship. Full article
Back to TopTop