Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,437)

Search Parameters:
Keywords = environmental life cycle assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4311 KB  
Article
Mycomaterials from Agave Bagasse: A Valorization Strategy for Sustainable Tequila Packaging
by Flavio A. de Anda-Rodríguez, Mariana R. Corona-Ramírez, Carlos D. Patiño-Arévalo, Marco A. Zárate-Navarro, Ana I. Zárate-Guzmán and Luis A. Romero-Cano
Fermentation 2025, 11(9), 500; https://doi.org/10.3390/fermentation11090500 (registering DOI) - 26 Aug 2025
Abstract
A sustainable strategy is proposed for the valorization of solid waste from the Tequila industry through the development of bio-packaging for Tequila bottles using mycelium from Ganoderma lucidum. The fungus was isolated from Bosque de la Primavera (Jalisco, Mexico) and cultivated on [...] Read more.
A sustainable strategy is proposed for the valorization of solid waste from the Tequila industry through the development of bio-packaging for Tequila bottles using mycelium from Ganoderma lucidum. The fungus was isolated from Bosque de la Primavera (Jalisco, Mexico) and cultivated on lignocellulosic substrates: agave bagasse and corn stover. These agricultural residues were dried, ground, and pasteurized to optimize their performance as growth media. Their structural integration before and after fermentation was evaluated using optical microscopy. The high cellulose and hemicellulose content of both substrates supported robust mycelial development, enabling the formation of moldable materials through solid-state fermentation. After growth, the mycelium colonized the substrate, forming a functional mold adapted to the geometry of a Tequila bottle prototype. The molded parts were dried to halt fungal activity, prevent fruiting, and stabilize the structure. Physical and mechanical characterization showed competitive performance with regard to bulk density (0.11 ± 0.1 g cm−3), water absorption (78.1 ± 4.2%), and high impact resistance (evaluated via Solidworks simulation). A life cycle assessment revealed that mycelium packaging has a significantly lower environmental impact than expanded polystyrene. The material supports circular economy principles within the Tequila production chain. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

24 pages, 8247 KB  
Article
Life Cycle Assessment of Different Powertrain Alternatives for a Clean Urban Bus Across Diverse Weather Conditions
by Benedetta Peiretti Paradisi, Luca Pulvirenti, Matteo Prussi, Luciano Rolando and Afanasie Vinogradov
Energies 2025, 18(17), 4522; https://doi.org/10.3390/en18174522 - 26 Aug 2025
Abstract
At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon [...] Read more.
At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon footprint. However, a comprehensive Life Cycle Assessment (LCA) is essential to compare the most viable solutions for public mobility, accounting for variations in weather conditions, geographic locations, and time horizons. Therefore, the present work compares the life cycle environmental impact of different powertrain configurations for urban buses. In particular, a series hybrid architecture featuring two possible hydrogen-fueled Auxiliary Power Units (APUs) is considered: an H2-Internal Combustion Engine (ICE) and a Fuel Cell (FC). Furthermore, a Battery Electric Vehicle (BEV) is considered for the same application. The global warming potential of these powertrains is assessed in comparison to both conventional and hybrid diesel over a typical urban mission profile and in a wide range of external ambient conditions. Given that cabin and battery conditioning significantly influence energy consumption, their impact varies considerably between powertrain options. A sensitivity analysis of the BEV battery size is conducted, considering the effect of battery preconditioning strategies as well. Furthermore, to evaluate the potential of hydrogen and electricity in achieving cleaner public mobility throughout Europe, this study examines the effect of different grid carbon intensities on overall emissions, based also on a seasonal variability and future projections. Finally, the present study demonstrates the strong dependence of the carbon footprint of various technologies on both current and future scenarios, identifying a range of boundary conditions suitable for each analysed powertrain option. Full article
Show Figures

Figure 1

20 pages, 700 KB  
Article
Comparative Life Cycle Assessment of Animal Feed Formulations Containing Conventional and Insect-Based Protein Sources
by Anna Vatsanidou, Styliani Konstantinidi, Eleftherios Bonos and Ioannis Skoufos
AgriEngineering 2025, 7(9), 275; https://doi.org/10.3390/agriengineering7090275 - 26 Aug 2025
Abstract
The environmental burden of widely used protein sources in animal feeds, such as soybean and fishmeal, has raised concerns about the sustainability of current livestock production systems. In response, alternative protein sources are being explored, with insect meal emerging as a promising candidate. [...] Read more.
The environmental burden of widely used protein sources in animal feeds, such as soybean and fishmeal, has raised concerns about the sustainability of current livestock production systems. In response, alternative protein sources are being explored, with insect meal emerging as a promising candidate. This study conducted a comparative Life Cycle Assessment (LCA) of four compound pig feed formulations differing in protein composition, incorporating soybean meal, fishmeal, and Tenebrio molitor (insect) meal. The LCA followed ISO 14040/44 standards and applied both mass-based and protein-based functional units (FUs) to examine how FU choice influences environmental outcomes. Results showed that crop-derived ingredients, particularly soybean meal, drove most environmental burdens due to land use change and fertilizer inputs. Replacing soybean with insect meal led to impact reductions in key environmental categories. Insect meal’s scalability, efficient land use, and potential waste valorisation supported its role as a sustainable alternative. The study also highlighted key sustainability issues not assessed by LCA, such as overfishing and ecosystem disruption, associated with fishmeal. Overall, insect meal appeared to be a strong replacement for soybean and fishmeal, with soy substitution proving key to reducing environmental burdens. Finally, the protein-based FU was more relevant given the study’s nutritional focus. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
19 pages, 1835 KB  
Article
Key Construction Materials for a Streamlined Building Life Cycle Assessment: A Meta-Analysis of 100 G-SEED Projects
by Sungmo Seo, Taehyoung Kim, Chang U Chae and Jin-chul Park
Buildings 2025, 15(17), 3039; https://doi.org/10.3390/buildings15173039 - 26 Aug 2025
Abstract
As operational emissions decrease due to improved energy efficiency, reducing embodied carbon in buildings has become increasingly important. Life cycle assessment (LCA) is a widely used method to quantify these impacts. However, its implementation often remains data-intensive and time-consuming due to the need [...] Read more.
As operational emissions decrease due to improved energy efficiency, reducing embodied carbon in buildings has become increasingly important. Life cycle assessment (LCA) is a widely used method to quantify these impacts. However, its implementation often remains data-intensive and time-consuming due to the need for detailed material inventories. This study analyzes 100 LCA reports submitted for G-SEED certification in South Korea to identify a core set of construction materials that accounts for most of the total material mass. Unlike previous approaches that relied on 99% cumulative mass thresholds, this study introduces a function-based classification framework considering both material roles and environmental impact intensity, offering a novel pathway for simplifying LCA. The findings reveal 12 key material categories, such as ready-mixed concrete, cement-based products, structural steel, wood, and interior finishes, that dominate embodied carbon contributions, with concrete alone composing over 85% of the total mass based on the analyzed G-SEED dataset. A material classification framework is then developed, organized by functional role and carbon impact. By focusing on these high-impact materials, future LCA efforts can be significantly streamlined without compromising accuracy. This approach offers data-driven guidance for LCA practitioners, designers, and green building certification bodies aiming for efficient and reliable carbon assessments. Full article
Show Figures

Figure 1

17 pages, 3901 KB  
Article
Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification
by Georgia Altiparmaki, Dimitrios Liakos, Andreas Artikopoulos and Stergios Vakalis
Processes 2025, 13(9), 2713; https://doi.org/10.3390/pr13092713 - 26 Aug 2025
Abstract
Municipal sewage sludge (S.S.) and abundant olive-tree pruning on Lesvos Island present both a disposal challenge and an untapped energy resource. This study proposes and evaluates on a preliminary level an integrated system that utilizes both sewage sludge and pruning. The integrated system [...] Read more.
Municipal sewage sludge (S.S.) and abundant olive-tree pruning on Lesvos Island present both a disposal challenge and an untapped energy resource. This study proposes and evaluates on a preliminary level an integrated system that utilizes both sewage sludge and pruning. The integrated system converts sewage sludge into Hydrochar (HC) via Hydrothermal Carbonization (HTC), removes the aqueous phase using passive solar distillation, and co-gasifies the dried HC with olive pruning in an autothermal downdraft gasifier. HTC experiments on anaerobically digested sludge produced HC with higher heating values exceeding 20 MJ kg−1 while reducing the chemical oxygen demand of the process liquor. Gasification modelling, using the MAGSY equilibrium model, demonstrated that replacing up to 50% of lignocellulosic biomass with HC increased hydrogen content and the Lower Heating Value (LHV) of syngas. Mass and energy balances suggest that the system could provide approximately 590 kW of continuous power, contributing around 4720 MWh to the island’s annual electricity generation. These results indicate that combining HTC, solar distillation, and co-gasification offers a viable pathway to close waste loops, reduce landfill needs, and deliver renewable energy. Future work will focus on Aspen Plus design and optimization, along with a life-cycle assessment in order to assess the environmental benefits. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

17 pages, 1091 KB  
Article
Cradle-to-Grave LCA of In-Person Conferences: Hotspots, Trade-Offs and Mitigation Pathways
by Alessio Castagnoli, Silvia Simi, Ilaria Pulvirenti and Andrea Valese
Sustainability 2025, 17(17), 7604; https://doi.org/10.3390/su17177604 - 23 Aug 2025
Viewed by 270
Abstract
Scientific conferences are invaluable for knowledge exchange, yet pose growing environmental concerns, especially through long-distance travel. This work quantifies and compares the environmental burdens of a national conference (30 delegates, Pisa, Italy) and an international conference (50 delegates, Athens, Greece) using ISO 14040/44-compliant [...] Read more.
Scientific conferences are invaluable for knowledge exchange, yet pose growing environmental concerns, especially through long-distance travel. This work quantifies and compares the environmental burdens of a national conference (30 delegates, Pisa, Italy) and an international conference (50 delegates, Athens, Greece) using ISO 14040/44-compliant Life-Cycle Assessment (LCA). A cradle-to-grave inventory combined primary data on participant travel, venue utilities, catering materials and waste handling with secondary datasets from Ecoinvent 3.8. Sixteen midpoint impact categories were calculated with the Environmental Footprint 3.1 method and normalized per delegate. The international meeting incurred 130 kg CO2eq per delegate, compared with 11 kg CO2eq per delegate for the domestic event, reflecting a ten-fold rise in fossil energy demand and comparable multiples across acidification, eutrophication and toxicity categories. Participant travel explained >85% of every global indicator in both cases, while venue energy and material flows together accounted for ≤12%. Further developments require harmonized functional units, improved digital-infrastructure inventories and integration of social impact metrics. The findings provide preliminary input for evidence-based guidelines for organizers and contribute to the standardization of LCA in the emerging field of event sustainability. Full article
(This article belongs to the Special Issue Life Cycle Assessment (LCA) and Sustainability)
Show Figures

Figure 1

36 pages, 2737 KB  
Article
Sustainability Assessment of Rice Farming: Insights from Four Italian Farms Under Climate Stress
by Savoini Guglielmo, De Marinis Pietro, Casson Andrea, Abhishek Dattu Narote, Riccardo Guidetti, Stefano Bocchi and Valentina Vaglia
Agriculture 2025, 15(17), 1797; https://doi.org/10.3390/agriculture15171797 - 22 Aug 2025
Viewed by 258
Abstract
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a [...] Read more.
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a sustainable agricultural transition under extreme climate stress. To this aim, the study employed economic analysis, Life Cycle Assessment (LCA) for environmental impact, and the OASIS framework for broader social and resilience indicators. The study revealed tradeoffs between the economic efficiency of conventional rice farming and the ecological resilience of organic systems, a conclusion made possible only through its integrated assessment methodology. By combining different methods, the research suggested that while conventional farms achieved clear financial superiority and greater efficiency per ton of rice, organic systems showcased superior ecological performance per hectare, greater biodiversity, and enhanced resilience. This highlights a crucial research frontier focused on designing hybrid systems or new economic models that can translate the environmental resilience of organic methods into tangible market value, effectively resolving the very tradeoffs this comprehensive assessment suggested. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Graphical abstract

26 pages, 1541 KB  
Article
Assessing the Socioeconomic and Environmental Impact of Hybrid Renewable Energy Systems for Sustainable Power in Remote Cuba
by Israel Herrera Orozco, Santacruz Banacloche, Yolanda Lechón and Javier Dominguez
Sustainability 2025, 17(17), 7592; https://doi.org/10.3390/su17177592 - 22 Aug 2025
Viewed by 314
Abstract
This study evaluates the viability of a specific hybrid renewable energy system (HRES) installation designed for a remote community as a case study in Cuba. The system integrates solar, wind, and biomass resources to address localised challenges of energy insecurity and environmental degradation. [...] Read more.
This study evaluates the viability of a specific hybrid renewable energy system (HRES) installation designed for a remote community as a case study in Cuba. The system integrates solar, wind, and biomass resources to address localised challenges of energy insecurity and environmental degradation. Rather than offering a generalised evaluation of HRES technologies, this work focuses on the performance, impacts, and viability of this particular configuration within its unique geographical, social, and technical context. Using life cycle assessment (LCA) and input–output modelling, the research assesses environmental and socioeconomic impacts. The proposed HRES reduces greenhouse gas emissions by 60% (from 1.14 to 0.47 kg CO2eq/kWh) and fossil energy consumption by 50% compared to diesel-based systems. Socioeconomic analysis reveals that the system generates 40.3 full-time equivalent (FTE) jobs, with significant employment opportunities in operation and maintenance. However, initial investments primarily benefit foreign suppliers due to Cuba’s reliance on imported components. The study highlights the potential for local economic gains through workforce training and domestic manufacturing of renewable energy technologies. These findings underscore the importance of integrating multiple renewable sources to enhance energy resilience and sustainability in Cuba. Policymakers should prioritise strategies to incentivise local production and capacity building to maximise long-term benefits. Future research should explore scalability across diverse regions and investigate policy frameworks to support widespread adoption of HRES. This study provides valuable insights for advancing sustainable energy solutions in Cuba and similar contexts globally. Full article
Show Figures

Figure 1

23 pages, 1904 KB  
Article
Biochar as a Sustainable Component of Low-Emission Building Materials
by Iwona Ryłko, Robert Zarzycki, Łukasz Bobak, Paweł Telega, Agnieszka Didyk-Mucha and Andrzej Białowiec
Materials 2025, 18(17), 3941; https://doi.org/10.3390/ma18173941 - 22 Aug 2025
Viewed by 127
Abstract
Biochar (BC), derived from wood biomass through pyrolysis, exhibits properties that make it a promising additive in mortars for sustainable construction. This study investigated the influence of biochar produced at three pyrolysis temperatures (450 °C, 550 °C, and 700 °C) on the performance [...] Read more.
Biochar (BC), derived from wood biomass through pyrolysis, exhibits properties that make it a promising additive in mortars for sustainable construction. This study investigated the influence of biochar produced at three pyrolysis temperatures (450 °C, 550 °C, and 700 °C) on the performance of cementitious adhesive mortars. The evaluation encompassed physicochemical characterization, mechanical and adhesive strength, volatile organic compound (VOC) emissions, leachability of contaminants, and a life-cycle assessment (LCA). The results demonstrate that biochar obtained at 700 °C has the highest carbon content, an alkaline pH, and increased porosity. In contrast, biochar produced at 450 °C exhibits better sorption capacity and a higher concentration of functional groups. Incorporating 1–5% BC (produced at any temperature) improves mortar performance; however, higher doses negatively affect adhesion to expanded polystyrene board (EPS) and concrete. Emissions of VOCs and leachable metals largely remained within environmental threshold values, with only isolated instances of exceedance. The LCA revealed that substituting mineral fillers with biochar could reduce the carbon footprint by up to 35% compared to the reference formulation. These findings confirm biochar’s potential as a safe and environmentally beneficial component in low-emission construction materials, aligning with the principles of the circular economy and climate-neutral goals. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

24 pages, 4305 KB  
Article
Driving the Green Transition: Innovative Tyre Formulation Using Agricultural and Pyrolysed Tyres Waste
by Carlo Di Bernardo, Francesca Demichelis, Mehran Dadkhah, Debora Fino, Massimo Messori and Camilla Noè
Polymers 2025, 17(17), 2275; https://doi.org/10.3390/polym17172275 - 22 Aug 2025
Viewed by 304
Abstract
The rubber industry is facing increasing pressure to adopt sustainable practices due to environmental concerns associated with the use of non-renewable resources and the growing accumulation of waste tyres and agricultural byproducts. This study explores the potential of partially replacing conventional carbon black [...] Read more.
The rubber industry is facing increasing pressure to adopt sustainable practices due to environmental concerns associated with the use of non-renewable resources and the growing accumulation of waste tyres and agricultural byproducts. This study explores the potential of partially replacing conventional carbon black (CB) with sustainable alternatives derived from agricultural waste (wine by-products) and pyrolysed waste tyres in natural rubber/styrene-butadiene rubber (NR/SBR) composites for tyre applications. A series of NR/SBR composites were formulated with varying ratios of CB to agricultural waste and pyrolysed tyre waste, while maintaining consistent levels of other additives. The resulting composites were then subjected to a comprehensive suite of analyses, including scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area measurements, Fourier transform infrared spectroscopy (FTIR), bound rubber content determination, Payne effect analysis, thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and mechanical property testing. Furthermore, a Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) analysis were conducted to evaluate the environmental and economic viability of the proposed CB replacements. The results reveal that the incorporation of agricultural waste and pyrolysed tyre waste can significantly impact the curing behaviour, mechanical properties, and thermal stability of rubber composites. Importantly, some of the formulations demonstrate comparable tensile strength, elongation at break, and hardness compared to traditional CB-filled composites. The LCA and LCC analyses further highlight the potential for substantial reductions in greenhouse gas emissions, fossil resource depletion, and overall production costs, thereby supporting the transition toward more sustainable tyre manufacturing practices. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Graphical abstract

23 pages, 2749 KB  
Article
Eco-Friendly vs. Traditional Cleaning in Healthcare Settings: Microbial Safety and Environmental Footprint
by Riccardo Fontana, Mattia Buratto, Anna Caproni, Chiara Nordi, Mariangela Pappadà, Martina Facchini, Cesare Buffone, Beatrice Bandera, Luciano Vogli and Peggy Marconi
Hygiene 2025, 5(3), 37; https://doi.org/10.3390/hygiene5030037 - 22 Aug 2025
Viewed by 161
Abstract
Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study [...] Read more.
Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study performed a Life Cycle Assessment (LCA) following ISO 14040, ISO 14044, and ISO 14067 standards to measure greenhouse gases emissions. Microbiological sampling was conducted according to established protocols across three different risk zones utilizing contact plates and surface swabs. The Life Cycle Assessment showed that CO2 emissions reduced by 49.6% to 53.3% at different sites due to reduced energy use together with concentrated detergents and improved washing cycles. Microbiological testing revealed notable decreases in contamination rates across both cleaning systems yet demonstrated the “green” system achieved superior results specifically within high-risk zones. The “green” protocol matched traditional cleaning methods hygienically but delivered significant environmental advantages which positions it as a sustainable hospital cleaning solution. Full article
Show Figures

Figure 1

23 pages, 3380 KB  
Article
Environmental Performance of the Sewage Sludge Gasification Process Considering the Recovered CO2
by Daichi Terasawa, Mayu Hamazaki, Kanato Kumagai and Kiyoshi Dowaki
Energies 2025, 18(17), 4460; https://doi.org/10.3390/en18174460 - 22 Aug 2025
Viewed by 386
Abstract
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. [...] Read more.
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. This study focuses on bioenergy conversion with carbon capture and utilization (BECCU), where carbon-neutral CO2 from biomass gasification is captured and reused as a gasifying agent to reduce the greenhouse gas intensity of green hydrogen. BECCU is expected to achieve negative emissions and enhance gasification efficiency by promoting conversion of char and tar through CO2 gasification. To evaluate the effectiveness of BECCU in the AGM, we conducted a sensitivity analysis of the reformer temperature and S/C ratio using process simulation combined with life cycle assessment. In both sensitivity analyses, the GWP for CO2 capture was lower compared with conventional conditions, considering recovered CO2 from purification and the additional steam generated through heat recovery. This suggests improved hydrogen yields from enhanced char and tar conversion. Consequently, the GWP was reduced by more than 50%, demonstrating BECCU’s effectiveness in the AGM. This represents a step toward operating biomass gasification systems with lower environmental impact and contributing to sustainable energy production. Full article
Show Figures

Figure 1

22 pages, 1145 KB  
Article
Sustainability Indicators in Rice and Wheat Supply Chain
by Anulipt Chandan and Michele John
Foods 2025, 14(16), 2917; https://doi.org/10.3390/foods14162917 - 21 Aug 2025
Viewed by 190
Abstract
Sustainability within the rice and wheat supply chain is integral to attaining the UN’s Sustainable Development Goals (SDGs), as they are the two most consumed grains as food. Rice and wheat cultivation significantly impacts the environment, with the agricultural sector employing 27% of [...] Read more.
Sustainability within the rice and wheat supply chain is integral to attaining the UN’s Sustainable Development Goals (SDGs), as they are the two most consumed grains as food. Rice and wheat cultivation significantly impacts the environment, with the agricultural sector employing 27% of the global workforce and contributing 4% to the world’s GDP, thereby affecting social and economic sustainability. Developing a sustainability index for the wheat and rice supply chain is a complex endeavor, as it depends on various factors such as the location of growers, farming methods, the target audience, and the stakeholders involved. This index must be derived from an optimal selection of indicators to avoid information overload while covering all essential sustainability aspects. There are different methods, such as life cycle assessment, energy analysis, ecological footprint, and carbon footprint, being used to assess sustainability, with indicator-based assessment emerging as a comprehensive approach. This study utilised the Triple Bottom Line (TBL) to identify optimal sustainability indicators in the wheat and rice supply chain. A systematic literature review was initially conducted, followed by an expert opinion survey to determine the required indicators. The literature review unveiled a wide array of indicators used across studies, often contingent on each study’s specific objectives. While some consistency existed in environmental indicators, discussions on social and economic dimensions within the wheat and rice supply chain were limited. Analysis of the expert opinion survey revealed a consensus on most selected indicators, albeit with variations based on experts’ geographical locations. The final set of optimal indicators identified can serve as a foundation for developing a sustainability index, implementing a sustainability information management system, and formulating policy initiatives in the rice and wheat supply chain. Full article
(This article belongs to the Topic Sustainable Food Production and High-Quality Food Supply)
Show Figures

Figure 1

32 pages, 1588 KB  
Review
Comprehensive Review of Hydrogen and Tyre Pyrolysis Oil as Sustainable Fuels for HCCI Engines
by Dilip S. Borkar, Sushant Satputaley, Santosh Alone and Magdalena Dudek
Energies 2025, 18(16), 4448; https://doi.org/10.3390/en18164448 - 21 Aug 2025
Viewed by 267
Abstract
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties, the ways they are produced and their sustainability, which is of particular importance in the [...] Read more.
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties, the ways they are produced and their sustainability, which is of particular importance in the present moment. Both fuels have certain advantages but also throw up many challenges, which complicate their application in HCCI engines. The paper scrutinises engine performance with hydrogen and tyre pyrolysis oil, respectively, and compares the fuels’ emissions, a crucial focus from an environmental perspective. It also surveys related technologies that have recently emerged, their effects and environmental impacts, and the rules and regulations that are starting to become established in these areas. Furthermore, it provides a comparative discussion of various engine performance data in terms of combustion behaviour, emission levels, fuel economy and potential costs or savings in real terms. The analysis reveals significant research gaps, and recommendations are provided as to areas for future study. The paper argues that hydrogen and tyre pyrolysis oil might sometimes be used together or in complementary ways to benefit HCCI engine performance. The importance of life-cycle assessment is noted, acknowledging also the requirements of the circular economy. The major findings are summarised with some comments on future perspectives for the use of sustainable fuels in HCCI engines. This review article provides a helpful reference for researchers working in this area and for policymakers concerned with establishing relevant legal frameworks, as well as for companies in the sustainable transport sector. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production and Hydrogen-Based Power Systems)
Show Figures

Figure 1

20 pages, 1533 KB  
Article
Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective
by Kayode J. Taiwo, Andrada V. Oancea, Nithya Sree Kotha and Joseph G. Usack
Sustainability 2025, 17(16), 7545; https://doi.org/10.3390/su17167545 - 21 Aug 2025
Viewed by 245
Abstract
Wastewater treatment plants (WWTPs) are critical infrastructure that lessen the environmental impacts of human activity by stabilizing wastewaters laden with organics, chemicals, and nutrients. WWTPs face an increasing global population, greater wastewater volumes, stricter environmental regulations, and additional societal pressures to implement more [...] Read more.
Wastewater treatment plants (WWTPs) are critical infrastructure that lessen the environmental impacts of human activity by stabilizing wastewaters laden with organics, chemicals, and nutrients. WWTPs face an increasing global population, greater wastewater volumes, stricter environmental regulations, and additional societal pressures to implement more sustainable and energy-efficient waste management strategies. WWTPs are energy-intensive facilities that generate significant GHG emissions and involve high operational costs. Therefore, improving the process efficiency can lead to widespread environmental and economic benefits. One promising approach is to integrate anaerobic digestion (AD) with hydrothermal carbonization (HTC) to enhance sludge treatment, optimize energy recovery, create valuable bio-based materials, and minimize sludge disposal. This study employs an LCA to evaluate the environmental impact of coupling HTC with AD compared to conventional AD treatment. HTC degrades wastewater sludge in an aqueous medium, producing carbon-dense hydrochar while reducing sludge volumes. HTC also generates an aqueous byproduct containing >30% of the original carbon as simple organics. In this system model, the aqueous byproduct is returned to AD to generate additional biogas, which then provides heat and power for the WWTP and HTC process. The results indicate that the integrated AD + HTC system significantly reduces environmental emissions and sludge volumes, increases net energy recovery, and improves wastewater sludge valorization compared to conventional AD. This research highlights the potential of AD + HTC as a key circular bioeconomy strategy, offering an innovative and efficient solution for advancing the sustainability of WWTPs. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

Back to TopTop