Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. HTC Integration Reduced Dewatered Sludge Volume and Transport Burden with Minimal Change in Parasitic Energy Consumption
3.2. AD + HTC Integration Promoted Energy Self-Sufficiency and Resource Recovery for Sludge Management in the WWTP
3.3. Environmental and Human Health Impact Mitigation Through AD + HTC Coupling
3.4. Sensitivity Analysis Demonstrates the Dependence of Climate Change Impacts on Net Bioenergy Production During Wastewater Treatment
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
CHP | Combined heat and power |
GHG | Greenhouse gas |
HTC | Hydrothermal carbonation |
LCA | Life-cycle assessment |
WWT | Wastewater treatment |
WWTP | Wastewater treatment plant |
References
- Ćwiertniewicz-Wojciechowska, M.; Cema, G.; Ziembińska-Buczyńska, A. Sewage sludge pre-treatment: Current status and future prospects. Environ. Sci. Pollut. Res. 2023, 30, 88313–88330. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A review of sludge-to-energy recovery methods. Energies 2018, 12, 60. [Google Scholar] [CrossRef]
- Manea, E.; Bumbac, C. Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water 2024, 16, 2241. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renew. Sustain. Energy Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Zhou, M.; Taiwo, K.; Wang, H.; Ntihuga, J.-N.; Angenent, L.T.; Usack, J.G. Anaerobic digestion of process water from hydrothermal treatment processes: A review of inhibitors and detoxification approaches. Bioresour. Bioprocess. 2024, 11, 47. [Google Scholar] [CrossRef]
- del Agua, I.; Usack, J.G.; Angenent, L.T. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater. Environ. Technol. 2015, 36, 1974–1983. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Eismann, F.; Hauth, B.; Bias, W.R. An integrated test strategy for the assessment of anaerobic biodegradability of wastewaters. Chemosphere 1993, 26, 2241–2254. [Google Scholar] [CrossRef]
- Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-scale sewage sludge reduction technologies: A review with a focus on energy consumption. Water 2023, 15, 615. [Google Scholar] [CrossRef]
- Déniel, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew. Sustain. Energy Rev. 2016, 54, 1632–1652. [Google Scholar] [CrossRef]
- Angenent, L.T.; Usack, J.G.; Xu, J.; Hafenbradl, D.; Posmanik, R.; Tester, J.W. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour. Technol. 2018, 247, 1085–1094. [Google Scholar] [CrossRef]
- Angenent, L.T.; Usack, J.G.; Sun, T.; Fink, C.; Molitor, B.; Labatut, R. Upgrading anaerobic digestion within the energy economy–the methane platform. In Resource Recovery from Water: Principles and Application; Pikaar, I., Guest, J., Ganigué, R., Jensen, P., Rabaey, K., Seviour, T., Trimmer, J., van der Kolk, O., Vaneeckhaute, C., Verstraete, W., Eds.; IWA Publishing: London, UK, 2022; Chapter 6; pp. 141–158. [Google Scholar]
- Zhi, Y.; Xu, D.; Jiang, G.; Yang, W.; Chen, Z.; Duan, P.; Zhang, J. A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses. Fuel Process. Technol. 2024, 254, 107943. [Google Scholar] [CrossRef]
- Li, R.; Shahbazi, A. A review of hydrothermal carbonization of carbohydrates for carbon spheres preparation. Trends Renew. Energy 2015, 1, 43–56. [Google Scholar] [CrossRef]
- Bagheri, M.; Wetterlund, E. Introducing hydrothermal carbonization to sewage sludge treatment systems—A way of improving energy recovery and economic performance? Waste Manag. 2023, 170, 131–143. [Google Scholar] [CrossRef]
- Bona, D.; Bertoldi, D.; Borgonovo, G.; Mazzini, S.; Ravasi, S.; Silvestri, S.; Zaccone, C.; Giannetta, B.; Tambone, F. Evaluating the potential of hydrochar as a soil amendment. Waste Manag. 2023, 159, 75–83. [Google Scholar] [CrossRef]
- Child, M. Industrial-Scale Hydrothermal Carbonization of Waste Sludge Materials for Fuel Production. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2014. [Google Scholar]
- Magdeldin, M.; Kohl, T.; Järvinen, M. Techno-economic assessment of integrated hydrothermal liquefaction and combined heat and power production from lignocellulose residues. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 89–113. [Google Scholar] [CrossRef]
- Tasca, A.L.; Vitolo, S.; Gori, R.; Mannarino, G.; Galletti, A.M.R.; Puccini, M. Hydrothermal carbonization of digested sewage sludge: The fate of heavy metals, PAHs, PCBs, dioxins and pesticides. Chemosphere 2022, 307, 135997. [Google Scholar] [CrossRef]
- Liu, M.; Duan, Y.; Bikane, K.; Zhao, L. The migration and transformation of heavy metals in sewage sludge during hydrothermal carbonization combined with combustion. Biomed. Res. Int. 2018, 2018, 1913848. [Google Scholar] [CrossRef] [PubMed]
- Mannarino, G.; Caffaz, S.; Gori, R.; Lombardi, L. Environmental life cycle assessment of hydrothermal carbonization of sewage sludge and its products valorization pathways. Waste Biomass Valor. 2022, 13, 3845–3864. [Google Scholar] [CrossRef] [PubMed]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-G.; Meng, X.-Y.; Liu, X.-M.; Liu, X.-W.; Zheng, Z.-X.; Xu, D.-Q. Life cycle assessment of a wastewater treatment plant focused on material and energy flows. Environ. Manag. 2010, 46, 610–617. [Google Scholar] [CrossRef]
- ISO 14040 IOS; Environmental Management—Life Cycle Assessment—Principles and Framework. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en (accessed on 3 January 2025).
- Schäfer, M.; Gretzschel, O.; Steinmetz, H. The possible roles of wastewater treatment plants in sector coupling. Energies 2020, 13, 2088. [Google Scholar] [CrossRef]
- Uman, A.E.; Usack, J.G.; Lozano, J.L.; Angenent, L.T. Controlled experiment contradicts the apparent benefits of the Fenton reaction during anaerobic digestion at a municipal wastewater treatment plant. Water Sci. Technol. 2018, 78, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, C.V.; Von Sperling, M.; Fernandes, F. Sludge Treatment and Disposal; IWA Publishing: London, UK, 2007. [Google Scholar]
- Roskosch, A.; Heidecke, P. Sewage Sludge Disposal in the Federal Republic of Germany; German Environment Agency: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Lu, X.; Jordan, B.; Berge, N.D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Manag. 2012, 32, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.; Fu, J.; Luberti, M.; Zheng, Y. Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Adv. 2021, 11, 34870–34897. [Google Scholar] [CrossRef]
- Chu, Q.; Xue, L.; Singh, B.P.; Yu, S.; Müller, K.; Wang, H.; Feng, Y.; Pan, G.; Zheng, X.; Yang, L. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere 2020, 245, 125558. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, D.; Mironiuk, M.; Witek-Krowiak, A.; Mikula, K.; Pstrowska, K.; Łużny, R. Innovative fertilizers and soil amendments based on hydrochar from brewery waste. Clean Technol. Environ. Policy 2024, 26, 1571–1586. [Google Scholar] [CrossRef]
- Huang, J.; Feng, Y.; Xie, H.; Wu, P.; Wang, M.; Wang, B.; Zhang, Q.; Zhang, S.; Liu, Z. A bibliographic study reviewing the last decade of hydrochar in environmental application: History, status quo, and trending research paths. Biochar 2023, 5, 12. [Google Scholar] [CrossRef]
- Singh, P.; Carliell-Marquet, C.; Kansal, A. Energy pattern analysis of a wastewater treatment plant. Appl. Water Sci. 2012, 2, 221–226. [Google Scholar] [CrossRef]
- Briceño, C.I.A. Hydrothermal Processes as an Alternative to Conventional Sewage Sludge Management. Ph.D Thesis, University of Leeds, West Yorkshire, UK, 2018. [Google Scholar]
- Abeyratne, W.; Bayat, H.; Delanka-Pedige, H.; Zhang, Y.; Brewer, C.; Nirmalakhandan, N. Multi-criteria evaluation of energy recovery from urban wastewater sludges by anaerobic digestion and hydrothermal liquefaction. J. Environ. Chem. Eng. 2023, 11, 109628. [Google Scholar] [CrossRef]
- Fischer, T.; Krieg, A. Planning and Construction of Biogas Plants; Krieg&Fischer Ingenieure GmbH: Gottingen, Germany, 2001. [Google Scholar]
- Posmanik, R.; Labatut, R.A.; Kim, A.H.; Usack, J.G.; Tester, J.W.; Angenent, L.T. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour. Technol. 2017, 233, 134–143. [Google Scholar] [CrossRef]
- Peter, J.J. Biogas–Green Energy; Digisource A/S: Horsholm, Danmark, 2009. [Google Scholar]
- Aragón-Briceño, C.; Ross, A.; Camargo-Valero, M. Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renew. Energy 2021, 167, 473–483. [Google Scholar] [CrossRef]
- ThermExcel. Water and Steam Thermodynamic Properties Table. Available online: https://www.thermexcel.com/english/tables/vap_eau.htm (accessed on 17 July 2025).
- Scrinzi, D.; Ferrentino, R.; Baù, E.; Fiori, L.; Andreottola, G. Sewage Sludge Management at District Level: Reduction and Nutrients Recovery via Hydrothermal Carbonization. Waste Biomass Valorization 2023, 14, 2505–2517. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Gajek, M.; Śliz, M.; Czerwińska, K.; Lombardi, L. Hydrothermal carbonization process of digestate from sewage sludge: Chemical and physical properties of hydrochar in terms of energy application. Energies 2022, 15, 6499. [Google Scholar] [CrossRef]
- Rodríguez-Abalde, Á.; Flotats, X.; Fernández, B. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine. Waste Manag. 2017, 61, 521–528. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Su, X.; Suss, M.E.; Tian, H.; Guyes, E.N.; Shocron, A.N.; Conforti, K.M.; de Souza, J.P.; Kim, N.; Tedesco, M.; et al. Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 2022, 122, 13547–13635. [Google Scholar] [CrossRef]
- Ward, A.J.; Arola, K.; Brewster, E.T.; Mehta, C.M.; Batstone, D.J. Nutrient recovery from wastewater through pilot scale electrodialysis. Water Res. 2018, 135, 57–65. [Google Scholar] [CrossRef]
- Paulo, L.M.; Stams, A.J.; Sousa, D.Z. Methanogens, sulphate and heavy metals: A complex system. Rev. Environ. Sci. Bio/Technol. 2015, 14, 537–553. [Google Scholar] [CrossRef]
- Jiang, J.T.; Guo, Z.; Deng, S.K.; Jia, X.; Liu, H.; Xu, J.; Li, H.; Cheng, L. Origin of the Activity of Electrochemical Ozone Production Over Rutile PbO2 Surfaces. ChemSusChem 2024, 17, e202400827. [Google Scholar] [CrossRef]
- Yang, L.; Si, B.; Martins, M.A.; Watson, J.; Chu, H.; Zhang, Y.; Tan, X.; Zhou, X.; Zhang, Y. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: Conversion of phenols and N-heterocyclic compounds. Water Sci. Technol. 2018, 2017, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Liu, R.; Huang, X. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res. 2015, 87, 424–431. [Google Scholar] [CrossRef]
- Panepinto, D.; Fiore, S.; Zappone, M.; Genon, G.; Meucci, L. Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Appl. Energy 2016, 161, 404–411. [Google Scholar] [CrossRef]
- Foladori, P.; Vaccari, M.; Vitali, F. Energy audit in small wastewater treatment plants: Methodology, energy consumption indicators, and lessons learned. Water Sci. Technol. 2015, 72, 1007–1015. [Google Scholar] [CrossRef]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M. Benchmarking environmental and economic indicators of sludge management alternatives aimed at enhanced energy efficiency and nutrient recovery. J. Environ. Manag. 2021, 279, 111594. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, F.; Liu, S.; Sun, S.; Smith, K. China’s enhanced urban wastewater treatment increases greenhouse gas emissions and regional inequality. Water Res. 2023, 230, 119536. [Google Scholar] [CrossRef]
- Ipiales, R.; de La Rubia, M.; Diaz, E.; Mohedano, A.; Rodriguez, J.J. Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: An overview. Energy Fuels 2021, 35, 17032–17050. [Google Scholar] [CrossRef]
- Swetha, A.; ShriVigneshwar, S.; Gopinath, K.P.; Sivaramakrishnan, R.; Shanmuganathan, R.; Arun, J. Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery. Chemosphere 2021, 283, 131248. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Usack, J.G.; Smith, A.M.; Angenent, L.T. Toxicity and biodegradation of two different hydrothermal liquefaction process waters for anaerobic digestion and the effect of microaeration. Chem. Eng. J. 2025, 520, 165540. [Google Scholar] [CrossRef]
- Sururi, M.R.; Dirgawati, M.; Rifandi, M.F.; Djaenudin, D.; Putra, H.E. Sustainable energy recovery through hydrothermal co-processing of municipal solid waste and laundry wastewater. J. Ecol. Eng. 2025, 26, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Xu, S.; Liao, J. A life cycle-based comparison study of sludge recycling technology incorporating subjective and objective evaluations. J. Clean. Prod. 2024, 478, 143909. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar: A Review on Its Production Technologies and Applications. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Czerwińska, K.; Wierońska-Wiśniewska, F.; Bytnar, K.; Mikusińska, J.; Śliz, M.; Wilk, M. The effect of an acidic environment during the hydrothermal carbonization of sewage sludge on solid and liquid products: The fate of heavy metals, phosphorus and other compounds. J. Environ. Manag. 2024, 365, 121637. [Google Scholar] [CrossRef]
- Zhong, J.; Yan, X.; Wu, C.; Wu, Y.; Zhang, H.; Bu, Y. Hydrothermal carbonization of coking sludge: Migration behavior of heavy metals and magnetic separation performance of hydrochar. J. Environ. Chem. Eng. 2024, 12, 114141. [Google Scholar] [CrossRef]
- Liu, T.; Tian, L.; Liu, Z.; He, J.; Fu, H.; Huang, Q. Distribution and toxicity of polycyclic aromatic hydrocarbons during CaO-assisted hydrothermal carbonization of sewage sludge. Waste Manage. 2021, 120, 616–625. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem. Eng J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Di Santo, T.; Marzaioli, R.; Coppola, E.; Zaccariello, L.; Battaglia, D.; Castaldi, S. Enhancing soil health with hydrochar: Improvements in chemical and biological properties. J. Environ. Manag. 2025, 385, 125659. [Google Scholar] [CrossRef] [PubMed]
- Halleux, H.; Lassaux, S.; Germain, A. (Eds.) Comparison of Life Cycle Assessment Methods, Application to a Wastewater Treatment Plant. In Proceedings of the 13th CIRP International Conference on Life Cycvle Engineering, Leuven, Belgium, 31 May–2 June 2006. [Google Scholar]
- Patel, K.; Singh, S.K. A life cycle approach to environmental assessment of wastewater and sludge treatment processes. Water Environ. J. 2022, 36, 412–424. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Q. Research on the transformation of nitrogen during hydrothermal carbonization of sludge. In Proceedings of the 2018 International Conference on Power, Energy and Chemical Engineering (ICPECE 2018), Shenzhen, China, 29–31 December 2018. [Google Scholar]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- de Jager, M.; Röhrdanz, M.; Giani, L. The influence of hydrochar from biogas digestate on soil improvement and plant growth aspects. Biochar 2020, 2, 177–194. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Li, R.; Wu, Y. Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes: A review. Fuel Process. Technol. 2020, 34, 13268–13290. [Google Scholar] [CrossRef]
- Lee, A.; Lewis, D.; Kalaitzidis, T.; Ashman, P. Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude. Curr. Opin. Biotechnol. 2016, 38, 85–89. [Google Scholar] [CrossRef]
- Ubene, M.; Heidari, M.; Dutta, A. Computational modeling approaches of hydrothermal carbonization: A critical review. Energies 2022, 15, 2209. [Google Scholar] [CrossRef]
- Dang, C.H.; Cappai, G.; Chung, J.-W.; Jeong, C.; Kulli, B.; Marchelli, F. Research needs and pathways to advance hydrothermal carbonization technology. Agronomy 2024, 14, 247. [Google Scholar] [CrossRef]
- Zhu, X.; Blanco, E.; Bhatti, M.; Borrion, A. Improving anaerobic digestion process against acetate accumulation: Insights into organic loading rates and nano magnetite additions. Chem. Eng. J. 2025, 512, 162641. [Google Scholar] [CrossRef]
- Saboohi, Z.; Hosseini, S.E. Advancements in biogas production: Process optimization and innovative plant operations. Clean Energy 2025, 9, 52–65. [Google Scholar] [CrossRef]
- Usack, J.; Angenent, L. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1–Performance and operating limits. Water Res. 2015, 87, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, R.; Fermoso, F.; Weijma, J.; Zagt, K.; Van Lier, J. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol. 2011, 64, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, L.; Li, A. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]/-EDDS via improving metals bioavailability. Water Res. 2015, 84, 266–277. [Google Scholar] [CrossRef]
- Qian, S.; Chen, L.; Xu, S.; Zeng, C.; Lian, X.; Xia, Z. Research on methane-rich biogas production technology by anaerobic digestion under carbon neutrality: A review. Sustainability 2025, 17, 1425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiwo, K.J.; Oancea, A.V.; Kotha, N.S.; Usack, J.G. Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective. Sustainability 2025, 17, 7545. https://doi.org/10.3390/su17167545
Taiwo KJ, Oancea AV, Kotha NS, Usack JG. Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective. Sustainability. 2025; 17(16):7545. https://doi.org/10.3390/su17167545
Chicago/Turabian StyleTaiwo, Kayode J., Andrada V. Oancea, Nithya Sree Kotha, and Joseph G. Usack. 2025. "Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective" Sustainability 17, no. 16: 7545. https://doi.org/10.3390/su17167545
APA StyleTaiwo, K. J., Oancea, A. V., Kotha, N. S., & Usack, J. G. (2025). Enhancing Wastewater Treatment Sustainability Through Integrated Anaerobic Digestion and Hydrothermal Carbonization: A Life-Cycle Perspective. Sustainability, 17(16), 7545. https://doi.org/10.3390/su17167545