Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,010)

Search Parameters:
Keywords = environmental risk factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1143 KB  
Communication
Development of Nanobody-Based Sandwich ELISA Resistant to SpA Interference for Sensitive Detection of Staphylococcal Enterotoxin A
by Chenghao Hu, Di Wang, Yangwei Ou, Ruoyu Li, Qi Chen and Peng Liu
Biosensors 2025, 15(10), 666; https://doi.org/10.3390/bios15100666 (registering DOI) - 3 Oct 2025
Abstract
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% [...] Read more.
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% of SFP cases), strong thermal stability, and resistance to hydrolysis. Traditional SEA immunoassays, such as enzyme-linked immunosorbent assay (ELISA), are prone to false-positive results caused by nonspecific binding interference from S. aureus surface protein A (SpA). In recent years, nanobodies (single-domain heavy-chain antibodies) have emerged as an ideal alternative to address SpA interference owing to their small molecular weight (15 kDa), high affinity, robust stability, and lack of Fc regions. In this study, based on a previously developed highly specific monoclonal antibody against SEA (mAb-4C6), four anti-SEA nanobodies paired with mAb-4C6 were obtained through two-part (four-round) of biopanning from a naive nanobody phage display library. Among these, SEA-4-20 and SEA-4-31 were selected as optimal candidates and paired with mAb-4C6 to construct double-antibody sandwich ELISAs. The detection limits for SEA were 0.135 ng/mL and 0.137 ng/mL, respectively, with effective elimination of SpA interference. This approach provides a reliable tool for rapid and accurate detection of SEA in food, clinical, and environmental samples. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing (2nd Edition))
Show Figures

Figure 1

19 pages, 515 KB  
Review
The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review
by Luca Pecoraro, Anna Gloria Lanzilotti, Marta De Musso, Elisabetta Di Muri, Fernanda Tramacere, Emiliano Altavilla and Flavia Indrio
Children 2025, 12(10), 1327; https://doi.org/10.3390/children12101327 - 2 Oct 2025
Abstract
Over several decades, childhood asthma has emerged as a significant global public health concern, with the highest prevalence reported in industrialized countries. The rapid rise in asthma incidence and loss of control when the diagnosis is established can be related to environmental and [...] Read more.
Over several decades, childhood asthma has emerged as a significant global public health concern, with the highest prevalence reported in industrialized countries. The rapid rise in asthma incidence and loss of control when the diagnosis is established can be related to environmental and lifestyle changes, especially during early infancy. Current evidence indicates a potential link to an imbalance in immune system responses, influenced by tobacco smoke, traffic-related air pollution, outdoor and indoor allergens, gut microbiome, viral infection, obesity, sedentary lifestyle and dietary patterns. This narrative review aims to explore the landscape of contemporary environmental risk factors for childhood asthma, with a focus on their interplay and the relative importance. Full article
(This article belongs to the Special Issue Pulmonary Function in Children with Respiratory Symptoms)
Show Figures

Figure 1

31 pages, 2686 KB  
Article
Developing Intelligent Integrated Solutions to Improve Pedestrian Safety for Sustainable Urban Mobility
by Irina Makarova, Larisa Gubacheva, Larisa Gabsalikhova, Vadim Mavrin and Aleksey Boyko
Sustainability 2025, 17(19), 8847; https://doi.org/10.3390/su17198847 - 2 Oct 2025
Abstract
All over the world, the problem of ensuring the safety of pedestrians, who are the most vulnerable road users, is becoming more acute due to urbanization and the growth of micromobility. In 2013, according to WHO data, more than 270 thousand pedestrians were [...] Read more.
All over the world, the problem of ensuring the safety of pedestrians, who are the most vulnerable road users, is becoming more acute due to urbanization and the growth of micromobility. In 2013, according to WHO data, more than 270 thousand pedestrians were dying each year worldwide (accounting for 22% of all traffic accidents). Currently, experts report that around 1.3 million people die every year globally from road crashes. The roads in developing countries are particularly hazardous, according to experts, because the increase in the number of vehicles far exceeds the development of road infrastructure and safety systems. Since the risk of hitting a pedestrian depends on many factors that can have different natures, and the severity of the consequences can be determined by a set of other factors, the risk of an accident can only be reduced by influencing all these factors in a comprehensive manner. The novelty of our approach is to create an intelligent system that will gradually accumulate all the best practices into a single complex aimed at reducing the risk of an accident with pedestrians and the severity of the consequences if an accident does occur. The distinction lies in offering an integrated system where each module addresses a particular task, so by mitigating risks at every stage, one achieves a synergistic outcome. From the analysis of existing and applied developments, it is known that many specialists mainly solve a narrowly focused problem aimed at ensuring the one subsystems sustainability in the “vehicle-infrastructure-driver-pedestrian” system. Some of these ideas are given as practical examples. The relevance of the designated problem increases with the emergence of autonomous vehicles and smart cities, the sustainability of which depends on the sustainable interaction between all road users. As experience shows, only the implementation of comprehensive solutions allows us to solve strategic problems, including improving road safety. Here, by complex solutions we mean solutions that combine technical issues, as well as environmental, social, and managerial aspects. To account for different kinds of effects, indicator systems are developed and composite indices are computed to choose the most rational solution. The novelty of our approach consists in combining within a unified DSS algorithms for assessing the efficiency of the proposed solution with respect to technological soundness, environmental sustainability, economic viability, social acceptability, as well as administrative rationality and computation of interrelated effects resulting from implementing any given project. In our opinion, the proposed system will lead to a synergistic effect due to the integrated application of various developments, which will ensure increased sustainability and safety of the transport system of smart cities. Our paper proposes a conceptual approach to addressing pedestrian safety, and the examples provided illustrate how the same model or algorithm can lead to positive changes from different perspectives. Full article
(This article belongs to the Special Issue Smart Mobility for Sustainable Development)
Show Figures

Figure 1

20 pages, 2427 KB  
Article
Role of Enzymes and Metabolites Produced by Bacillus spp. in the Suppression of Meloidogyne incognita in Tomato
by Mariana Viana Castro, Luanda Medeiros Santana, Everaldo Antônio Lopes, Walter Vieira da Cunha, Vittoria Catara, Giulio Dimaria and Liliane Evangelista Visotto
Horticulturae 2025, 11(10), 1189; https://doi.org/10.3390/horticulturae11101189 - 2 Oct 2025
Abstract
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with [...] Read more.
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with this nematode. Fifteen strains were screened in vitro for nematicidal and ovicidal activity, and four promising strains (307, GB16, GB24, and GB29) were selected for greenhouse trials. All strains reduced the nematode reproduction factor and the number of nematodes/g of root. Strains 307 and GB24 showed the highest reductions, 61.39 and 57.24%, respectively. Despite some positive physiological trends, Bacillus spp. did not promote a significant increase in plant growth. Metabolomic analysis revealed that the strains produced a wide range of primary metabolites with potential nematicidal activity. All strains also secreted proteases and chitinases, enzymes linked to nematode cuticle degradation. Preliminary identification based on the 16S rRNA gene and phylogenetic analysis grouped the four strains into the Bacillus subtilis group (strains GB16, GB29 and 307) or Bacillus cereus group (strain GB24); however, genome sequencing will be required in future studies. Overall, strains 307 and GB24 demonstrated strong biocontrol potential, supporting their use as sustainable and complementary alternatives to chemical nematicides. Full article
(This article belongs to the Special Issue Horticultural Plant Disease Management Using Advanced Biotechnology)
Show Figures

Graphical abstract

19 pages, 2437 KB  
Article
Effects of Agricultural Production Patterns on Surface Water Quality in Central China’s Irrigation Districts: A Case Study of the Four Lakes Basin
by Yanping Hu, Zhenhua Wang, Dongguo Shao, Rui Li, Wei Zhang, Meng Long, Kezheng Song and Xiaohuan Cao
Sustainability 2025, 17(19), 8838; https://doi.org/10.3390/su17198838 - 2 Oct 2025
Abstract
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site [...] Read more.
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site monitoring data, the study analyzed the phased characteristics of the basin’s agricultural pattern transformation, the changes in non-point source nitrogen and phosphorus loads, and the responses of water quality in main canals and Honghu Lake to agricultural adjustments during the period 2010~2023. The results showed that the basin underwent a significant transformation in agricultural patterns from 2016 to 2023: the area of rice-crayfish increased by 14%, while the areas of dryland crops and freshwater aquaculture decreased by 11% and 4%, respectively. Correspondingly, the non-point source nitrogen and phosphorus loads in the Four Lakes Basin decreased by 11~13%, and the nitrogen and phosphorus concentrations in main canals decreased slightly by approximately 2 mg/L and 0.04 mg/L, respectively; however, the water quality of Honghu Lake continued to deteriorate, with nitrogen and phosphorus concentrations increasing by approximately 0.46 mg/L and 0.06 mg/L, respectively. This indicated that the adjustment of agricultural farming models was beneficial to improving the water quality of main canals, but it did not bring about a substantial improvement in the sustainable development of Honghu Lake. This may be related to various factors that undermine the sustainability of the lake’s aquatic ecological environment, such as climate change, natural disasters, internal nutrient release from sediments, and the decline in water environment carrying capacity. Therefore, to advance sustainability in this basin and similar irrigation districts, future efforts should continue optimizing agricultural models to reduce nitrogen/phosphorus inputs, while further mitigating internal nutrient release and climate disaster risks, restoring aquatic vegetation, and enhancing water environment carrying capacity. Full article
Show Figures

Figure 1

22 pages, 1224 KB  
Article
Beyond Biology: Uncovering Structural and Sociocultural Predictors of Breast Cancer Incidence Worldwide
by Janet Diaz-Martinez, Gustavo A. Hernández-Fuentes, Josuel Delgado-Enciso, Mario A. Alcalá-Pérez, Isaac Jiménez-Calvo, Carmen A. Sánchez-Ramírez, Fabian Rojas-Larios, Alejandrina Rodriguez-Hernandez, Mario Ramírez-Flores, José Guzmán-Esquivel, Karmina Sánchez-Meza, Ana C. Espíritu-Mojarro, Osval A. Montesinos-López and Iván Delgado-Enciso
Curr. Oncol. 2025, 32(10), 553; https://doi.org/10.3390/curroncol32100553 - 2 Oct 2025
Abstract
Breast cancer remains a leading cause of global cancer burden, with marked differences in incidence across countries. While biological risk factors are well established, understanding the broader structural and sociocultural influences has been less comprehensive. In this study, we analyzed harmonized data from [...] Read more.
Breast cancer remains a leading cause of global cancer burden, with marked differences in incidence across countries. While biological risk factors are well established, understanding the broader structural and sociocultural influences has been less comprehensive. In this study, we analyzed harmonized data from 183 countries (2017–2023), encompassing 33 variables and 7 subvariables related to demographics, nutrition, environment, health, and healthcare access, drawn from open-access international databases. Spearman correlation analysis identified strong positive associations between breast cancer incidence and discontinued breastfeeding, high LDL cholesterol, out-of-pocket healthcare expenditure, and educational attainment. Conversely, poor sanitation, lack of handwashing facilities, unsafe water, and certain nutritional deficiencies exhibited robust negative correlations, likely reflecting under detection and reporting limitations in lower-resource settings rather than true protective effects. These findings were further explored using multiple linear regression, which explained approximately 73% of the variance in global breast cancer incidence. The final model highlighted discontinued breastfeeding, prevalence of cocaine use, unsafe sanitation, high out-of-pocket healthcare expenditure, limited handwashing access, and high processed meat consumption as the most influential independent predictors. Receiver operating characteristic (ROC) analysis confirmed strong predictive value for discontinued breastfeeding and out-of-pocket expenditure, with sanitation and hygiene variables showing paradoxical inverse associations. Our results emphasize that breast cancer risk is shaped not only by individual behaviors and genetics, but also by larger-scale structural, socioeconomic, and environmental factors. These patterns suggest that targeted interventions addressing both lifestyle behaviors and systemic inequities—such as promoting breastfeeding, reducing financial barriers to healthcare, and strengthening public health infrastructure—could meaningfully reduce the global burden of breast cancer. In conclusion, this study underscores the importance of multisectoral, equity-focused prevention strategies. It also highlights the value of country-level ecological analyses in uncovering upstream determinants of cancer incidence and calls for further research to disentangle individual and contextual effects in cancer epidemiology. Full article
Show Figures

Figure 1

15 pages, 11835 KB  
Article
Testicular Neoplasms and Other Abnormalities in Common Carp Cyprinus carpio from the Lower Colorado River, United States
by Vicki S. Blazer, Steven L. Goodbred, Heather L. Walsh, Dylan Wichman, Darren Johnson and Reynaldo Patiño
Animals 2025, 15(19), 2887; https://doi.org/10.3390/ani15192887 - 2 Oct 2025
Abstract
Abnormalities were observed in the testes of common carp Cyprinus carpio collected from Willow Beach, Arizona, USA, a site on the lower Colorado River, downstream of Lake Mead and Hoover Dam. Testicular tissue collected from this site in 2003 exhibited numerous large, pigmented [...] Read more.
Abnormalities were observed in the testes of common carp Cyprinus carpio collected from Willow Beach, Arizona, USA, a site on the lower Colorado River, downstream of Lake Mead and Hoover Dam. Testicular tissue collected from this site in 2003 exhibited numerous large, pigmented macrophage aggregates (MAs) and a novel, previously undescribed hypertrophy and proliferation of putative Sertoli cells. In testes samples collected in 2007, numerous testicular MA, testicular oocytes, and proliferations of Sertoli cells were observed. Three carp collected in 2007 also had raised nodules within the testes, and, microscopically, seminoma, spermatogenic seminoma, and mixed stromal cell–germ cell neoplasms were diagnosed. Several risk factors for these adverse effects were identified. Carp collected at this site in 2003 ranged in age from 35 to 54 years and had the oldest mean age of the thirteen sites sampled within the Colorado River basin. This site also has an unusual thermal regime when compared to other sites studied in Lake Mead and upstream sites, in that temperatures varied little over the seasons (amplitude around 1.5 °C) and barely reached 15 °C. Additionally, carp from this site had the highest total polychlorinated biphenyl (PCB) body burden. Hence, advanced age, low water temperature, and exposure to PCBs and other environmental contaminants may contribute to the observed abnormalities, highlighting the complex environmental factors initiating pre-neoplastic and neoplastic changes in wild carp. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

21 pages, 11783 KB  
Article
Spatio-Temporal Pattern Analysis of African Swine Fever Spreading in Northwestern Italy—The Role of Habitat Interfaces
by Samuele De Petris, Tommaso Orusa, Annalisa Viani, Francesco Feliziani, Marco Sordilli, Sabatino Troisi, Simona Zoppi, Marco Ragionieri, Riccardo Orusa and Enrico Borgogno-Mondino
Animals 2025, 15(19), 2886; https://doi.org/10.3390/ani15192886 - 2 Oct 2025
Abstract
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key [...] Read more.
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key factors considered include pig density, wildlife proximity, and environmental conditions. The spatial analysis revealed that central–western municipalities exhibited higher risk due to favorable environmental conditions and dense wild boar populations, while peripheral areas showed a temporal delay in outbreak emergence. Mapping the spreading rate and habitat interfaces allowed the development of a spatial risk model, which was further analyzed using geostatistical techniques to understand disease dynamics. The results demonstrate the effectiveness of geospatial modeling in identifying high-risk zones, characterizing spatio-temporal patterns, and supporting targeted prevention and surveillance strategies. These findings provide actionable insights for ASF management and resource allocation. Future studies may refine these models by integrating additional datasets and environmental variables, enhancing predictive capacity and applicability across different regions. Full article
Show Figures

Figure 1

23 pages, 1571 KB  
Article
Assessing Dietary Consumption of Toxicant-Laden Foods and Beverages by Age and Ethnicity in California: Implications for Proposition 65
by Shahir Masri, Sara Nasla, Denise Diaz Payán and Jun Wu
Nutrients 2025, 17(19), 3149; https://doi.org/10.3390/nu17193149 - 2 Oct 2025
Abstract
Background: Investigating human exposure to toxic contaminants through dietary consumption is critical to identify disease risk factors and health guidelines. Methods: In this study, we developed a cross-sectional online survey to collect information about dietary patterns and related food consumption habits among adults [...] Read more.
Background: Investigating human exposure to toxic contaminants through dietary consumption is critical to identify disease risk factors and health guidelines. Methods: In this study, we developed a cross-sectional online survey to collect information about dietary patterns and related food consumption habits among adults (age ≥ 18) and adolescents (ages 13–17) in Southern California, focusing on popular staple foods and/or those targeted most commonly under California’s Proposition 65 law for lead and acrylamide exposure. Results: Results identified root vegetables, rice, leafy greens, pasta/noodles, tea, juice, and seafood to be among the most heavily consumed foods by mass, while the daily intake of many foods such as stuffed grape leaves, tamarind/chili candy and herbs/spices varied by age and race/ethnicity, suggesting that many of Proposition 65’s pollution allowances may be exacerbating issues of health inequity and environmental injustice. Moreover, findings from this study indicate that the methods of exposure assessment often applied under Prop 65, especially relating to herbs/spices, are likely to underestimate single-day exposures, thus allowing unsafe products on the market without warning labels. Conclusions: Study outcomes are broadly relevant to environmental health and nutrition science, with particular relevance to public health practitioners and California’s Prop 65 regulators and other stakeholders. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

19 pages, 2848 KB  
Article
Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example
by Yefeng Jiang and Zichun Guo
Land 2025, 14(10), 1984; https://doi.org/10.3390/land14101984 - 2 Oct 2025
Abstract
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively [...] Read more.
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively monitor cropland abandonment and tested the framework in Hengyang City, China. Specifically, we first mapped land cover at 30 m resolution from 1985 to 2023 using Landsat, stable sample points, and a machine learning model. Subsequently, we constructed the extent, time, and frequency of cropland abandonment from 1986 to 2022 by analyzing pixel-level land-use trajectories. Finally, we quantified the drivers of cropland abandonment using machine learning models and predicted the spatial distribution of cropland abandonment risk from 2032 to 2062. Our results indicated that the abandonment maps achieved overall accuracies of 0.88 and 0.78 for identifying abandonment locations and timing, respectively. From 1986 to 2022, the proportion of cropland abandonment ranged between 0.15% and 4.06%, with an annual average abandonment rate of 1.32%. Additionally, the duration of abandonment varied from 2 to 38 years, averaging approximately 14 years, indicating widespread cropland abandonment in the study area. Furthermore, 62.99% of the abandoned cropland experienced abandonment once, 27.17% experienced it twice, and only 0.23% experienced it five times or more. Over 50% of cropland abandonment remained unreclaimed or reused. During the study period, tree cover, soil pH, soil total phosphorus, potential crop yield, and the multiresolution index of valley bottom flatness emerged as the five most important environmental covariates, with relative importances of 0.087, 0.074, 0.068, 0.050, and 0.043, respectively. Temporally, cropland abandonment in 1992 was influenced by transportation inaccessibility and low agricultural productivity, soil quality degradation became an additional factor by 2010, and synergistic effects of all three drivers were observed from 2012 to 2022. Notably, most cropland had a low abandonment risk (mean: 0.36), with only 0.37% exceeding 0.7, primarily distributed in transitional zones between cropland and non-cropland. Future risk predictions suggested a gradual decline in both risk values and the spatial extent of cropland abandonment from 2032 to 2062. In summary, we developed a comprehensive framework for monitoring cropland abandonment using artificial intelligence technology, which can be used in national or regional land-use policies, warning systems, and food security planning. Full article
Show Figures

Figure 1

23 pages, 402 KB  
Article
The Impact of Climate Risk on Corporate Financialization—Based on Empirical Evidence of Chinese A-Share Listed Companies
by Hongjian Lu, Jingjing Tang and Zhengge Song
Int. J. Financial Stud. 2025, 13(4), 185; https://doi.org/10.3390/ijfs13040185 - 2 Oct 2025
Abstract
Climate risk, as a significant factor affecting human sustainable development, has emerged as a focal topic of concern for governments and all sectors of society. Using a dataset from China’s Shanghai and Shenzhen A-share markets spanning 2007 to 2019, this study empirically examines [...] Read more.
Climate risk, as a significant factor affecting human sustainable development, has emerged as a focal topic of concern for governments and all sectors of society. Using a dataset from China’s Shanghai and Shenzhen A-share markets spanning 2007 to 2019, this study empirically examines how climate risk influences corporate financialization. The empirical results show that heightened climate risk significantly reduces the level of corporate financialization, a finding that remains robust across multiple tests. Further heterogeneity analyses indicate that the suppressive effect of climate risk is particularly evident among state-owned enterprises, firms operating in intensely competitive industries, and those located in regions subject to more stringent environmental policies. Mechanism analysis suggests that climate risk inhibits corporate financialization primarily by intensifying firms’ financing constraints while simultaneously stimulating their innovation capacity. These findings imply that corporate financialization in China is largely driven by profit-maximizing behaviors rooted in “investment substitution” and “real-sector intermediation” motives. Collectively, this research enhances understanding of the channels through which climate risk impacts corporate financial behavior and offers valuable empirical insights for policymakers aiming to optimize climate regulations and redirect financial resources toward productive real-sector activities. Full article
Show Figures

Figure 1

20 pages, 281 KB  
Review
The Youngest Minds in a Warming World: A Review of Climate Change and Child and Adolescent Mental Health
by Georgios Giannakopoulos
Psychiatry Int. 2025, 6(4), 119; https://doi.org/10.3390/psychiatryint6040119 - 2 Oct 2025
Abstract
Climate change poses a growing threat to the mental health of children and adolescents. This narrative review synthesizes global, interdisciplinary research on the psychological impacts of climate disruption during critical developmental stages, with attention to marginalized populations. We explore three key pathways of [...] Read more.
Climate change poses a growing threat to the mental health of children and adolescents. This narrative review synthesizes global, interdisciplinary research on the psychological impacts of climate disruption during critical developmental stages, with attention to marginalized populations. We explore three key pathways of harm: direct exposure to environmental disasters, chronic disruption of ecological and social systems, and existential distress such as eco-anxiety. Drawing on eco-social theory and developmental psychopathology, the review highlights how these impacts are shaped by age, geography, identity, and systemic inequities. It identifies both risk and protective factors, emphasizing the importance of caregiving relationships, cultural practices, education, and youth climate engagement. While activism can foster resilience and purpose, it may also incur emotional burdens that require clinical and policy attention. We argue that child and adolescent mental health must be recognized as central to climate justice and adaptation, and we offer urgent recommendations for integrated action across sectors. Full article
22 pages, 5236 KB  
Article
Effect of Hydrogen-Containing Fuel on the Mechanical Properties of an Aluminum Alloy ICE Piston
by Jelena Škamat, Olegas Černašėjus, Saugirdas Pukalskas and Raimonda Černašėjienė
J. Mar. Sci. Eng. 2025, 13(10), 1889; https://doi.org/10.3390/jmse13101889 - 2 Oct 2025
Abstract
The transition to cleaner, hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure, yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible [...] Read more.
The transition to cleaner, hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure, yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible to hydrogen-induced degradation and are widely applied in internal combustion engine components, experimental data obtained under real operating conditions with hydrogen-containing fuel mixtures remain insufficient to fully assess all potential risks. In the present study, two identical low-power gasoline engine–generators were operated for 220 h on fuels with and without hydrogen. Post-test analysis included mechanical testing and microstructural characterization of aluminum alloy pistons for comparative assessment. The measured values of ultimate tensile strength, elongation and deflection, maximum bending force, and effective stress concentration factor revealed pronounced property degradation in the piston operated on the gasoline–hydrogen mixture compared to both the new piston and the one run on pure gasoline. Microstructural analysis provided a plausible explanation for this degradation. The results of this preliminary study provide insights into the effects of hydrogen-containing fuel on the mechanical performance of engine component alloys, contributing to the development of safer and more reliable marine energy systems. Full article
(This article belongs to the Special Issue Ship Performance and Emission Prediction)
Show Figures

Figure 1

36 pages, 2757 KB  
Article
Research on the Fatigue Reliability of a Catenary Support Structure Under High-Speed Train Operation Conditions
by Guifeng Zhao, Chaojie Xin, Meng Wang and Meng Zhang
Buildings 2025, 15(19), 3542; https://doi.org/10.3390/buildings15193542 - 1 Oct 2025
Abstract
As the core component of electrified railway power supply systems, the fatigue performance and reliability of catenary support structures are directly related to the operational safety of high-speed railways. To address the problem of structural fatigue damage caused by increasing train speed and [...] Read more.
As the core component of electrified railway power supply systems, the fatigue performance and reliability of catenary support structures are directly related to the operational safety of high-speed railways. To address the problem of structural fatigue damage caused by increasing train speed and high-frequency operation, this study develops a refined finite element model including a support structure, suspension system and support column, and the dynamic response characteristics and fatigue life evolution law under train operation conditions are systematically analyzed. The results show that under the conditions of 250 km/h speed and 100 times daily traffic, the fatigue lives of the limit locator and positioning support are 43.56 years and 34.48 years, respectively, whereas the transverse cantilever connection and inclined cantilever have infinite life characteristics. When the train speed increases to 400 km/h, the annual fatigue damage of the positioning bearing increases from 0.029 to 0.065, and the service life is shortened by 55.7% to 15.27 years, which proves that high-speed working conditions significantly aggravate the deterioration of fatigue in the structure. The reliability analysis based on Monte Carlo simulation reveals that when the speed is 400 km/h and the daily traffic is 130 times, the structural reliability shows an exponential declining trend with increasing service life. If the daily traffic frequency exceeds 130, the 15-year reliability decreases to 92.5%, the 20-year reliability suddenly decreases to 82.4%, and there is a significant inflection point of failure in the 15–20 years of service. Considering the coupling effect of environmental factors (wind load, temperature and freezing), the actual failure risk may be higher than the theoretical value. On the basis of these findings, engineering suggestions are proposed: for high-speed lines with a daily traffic frequency of more than 130 times, shortening the overhaul cycle of the catenary support structure to 7–10 years and strengthening the periodic inspection and maintenance of positioning support and limit locators are recommended. The research results provide a theoretical basis for the safety assessment and maintenance decision making of high-speed railway catenary systems. Full article
(This article belongs to the Special Issue Buildings and Infrastructures under Natural Hazards)
21 pages, 3532 KB  
Article
Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China
by Yongzhong Lai, Le Li, Xianbing Huang, Guoyong Lu, Fengqin Pan and Wenhua Liu
Toxics 2025, 13(10), 840; https://doi.org/10.3390/toxics13100840 - 1 Oct 2025
Abstract
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the [...] Read more.
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the concentrations, sources, and degree of metal contamination in filtered water (FW), suspended solids (SSs), and surficial channel sediments (SCSs) in streams of the LRB. Calculated enrichment factors, an ecological risk index, and a principal component analysis were employed to understand the degree of elemental contamination, ecological risks, and their potential sources. Elements (e.g., Hg, Cd, Sn, Sb, Cu, and Mo) were mainly detected in FW, SSs, and SCSs in the Bergang, Hucheng, Xiashan, and Zhonggang rivers, and the mainstream of the LR. Four potential anthropogenic sources were identified, including electronic waste recycling (e.g., Cu, Sb, Pb, and Ni), mixed pollution (e.g., Se, Zn, Mn, and Mo), metal processing (e.g., Hg, Cr, Sn, and Cd), and battery manufacturing and recycling (e.g., Co, Ni, and Mn). Overall, Sn, Sb, Hg, Cu, and Cd were enriched by 37.5–79.2% and 34.8–91.3% at the SS and SCS sites, respectively. Mercury, Cd, Sn, Sb, Cu, and Mo posed the most risk both in the SSs and SCSs. Overall, the SS and SCS samples from the LRB remain severely contaminated with metals after recent environmental remediation. The implementation of pollution source control, sewage interception, and dredging operations should be further enhanced. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

Back to TopTop