Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = epigenetic reprogramming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1464 KB  
Review
Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners
by Hossein Chamkouri and Sahar Motlagh Mohavi
Neuroglia 2025, 6(3), 31; https://doi.org/10.3390/neuroglia6030031 - 23 Aug 2025
Viewed by 74
Abstract
Microglia and macrophages are critical immune cells within the central nervous system (CNS), with distinct roles in development, homeostasis, and disease. Once viewed as passive bystanders, these cells are now recognized for their dynamic phenotypic plasticity, which enables them to respond to a [...] Read more.
Microglia and macrophages are critical immune cells within the central nervous system (CNS), with distinct roles in development, homeostasis, and disease. Once viewed as passive bystanders, these cells are now recognized for their dynamic phenotypic plasticity, which enables them to respond to a wide range of physiological and pathological stimuli. During homeostasis, microglia and CNS-resident macrophages actively participate in synaptic pruning, neuronal support, myelin regulation, and immune surveillance, contributing to CNS integrity. However, under pathological conditions, these cells can adopt neurotoxic phenotypes, exacerbating neuroinflammation, oxidative stress, and neuronal damage in diseases such as Alzheimer’s, Parkinson’s, multiple sclerosis, and glioblastoma. This review synthesizes emerging insights into the molecular, epigenetic, and metabolic mechanisms that govern the behavior of microglia and macrophages, highlighting their developmental origins, niche-specific programming, and interactions with other CNS cells. We also explore novel therapeutic strategies aimed at modulating these immune cells to restore CNS homeostasis, including nanotechnology-based approaches for selective targeting, reprogramming, and imaging. Understanding the complex roles of microglia and macrophages in both health and disease is crucial for the development of precise therapies targeting neuroimmune interfaces. Continued advances in single-cell technologies and nanomedicine are paving the way for future therapeutic interventions in neurological disorders. Full article
Show Figures

Figure 1

15 pages, 1854 KB  
Article
Identification of SUMO Proteins and Their Expression Profile During Induction of Somatic Embryogenesis in Medicago truncatula Gaertn.
by Anna Kujawska and Paulina Król
Int. J. Mol. Sci. 2025, 26(17), 8133; https://doi.org/10.3390/ijms26178133 - 22 Aug 2025
Viewed by 92
Abstract
Somatic embryogenesis (SE) is a key plant regeneration technique involving the reprogramming of somatic cells into embryogenic structures. This developmental transition is regulated by complex genetic and epigenetic mechanisms, including post-translational modifications such as SUMOylation—the covalent attachment of small ubiquitin-like modifier (SUMO) proteins [...] Read more.
Somatic embryogenesis (SE) is a key plant regeneration technique involving the reprogramming of somatic cells into embryogenic structures. This developmental transition is regulated by complex genetic and epigenetic mechanisms, including post-translational modifications such as SUMOylation—the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, influencing their function, stability, and interactions. While SUMOylation is known to regulate plant development and stress responses, its role in SE has remained unknown. In this study, we investigated the involvement of the SUMOylation pathway in SE induction in Medicago truncatula. Using BLASTp analysis with known SUMO pathway proteins from Arabidopsis thaliana and Glycine max, we identified 10 homologous genes in M. truncatula. Phylogenetic relationships, gene structure, and conserved motif analyses confirmed their evolutionary conservation and characteristic domains. Expression profiling revealed significant upregulation of SUMO pathway genes—including Mt SUMO2, Mt SAE1-2, Mt SCE1a-b, Mt MMS21, and Mt PIAL2—in embryogenic cell lines during early SE induction. Additionally, in silico prediction of SUMOylation sites and SUMO-interacting motifs (SIMs) in 12 key SE regulatory proteins indicated a broad potential for SUMO-mediated regulation. These findings suggest that SUMOylation may contribute to the acquisition of embryogenic competence during somatic cell reprogramming in plants. Full article
(This article belongs to the Special Issue Molecular Approach to Fern Development)
Show Figures

Figure 1

42 pages, 1014 KB  
Review
Brain Tumors, AI and Psychiatry: Predicting Tumor-Associated Psychiatric Syndromes with Machine Learning and Biomarkers
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(17), 8114; https://doi.org/10.3390/ijms26178114 - 22 Aug 2025
Viewed by 381
Abstract
Brain tumors elicit complex neuropsychiatric disturbances that frequently occur prior to radiological detection and hinder differentiation from major psychiatric disorders. These syndromes stem from tumor-dependent metabolic reprogramming, neuroimmune activation, neurotransmitter dysregulation, and large-scale circuit disruption. Dinucleotide hypermethylation (e.g., IDH-mutant gliomas), through the accumulation [...] Read more.
Brain tumors elicit complex neuropsychiatric disturbances that frequently occur prior to radiological detection and hinder differentiation from major psychiatric disorders. These syndromes stem from tumor-dependent metabolic reprogramming, neuroimmune activation, neurotransmitter dysregulation, and large-scale circuit disruption. Dinucleotide hypermethylation (e.g., IDH-mutant gliomas), through the accumulation of 2-hydroxyglutarate (2-HG), execute broad DNA and histone hypermethylation, hypermethylating serotonergic and glutamatergic pathways, and contributing to a treatment-resistant cognitive-affective syndrome. High-grade gliomas promote glutamate excitotoxicity via system Xc transporter upregulation that contributes to cognitive and affective instability. Cytokine cascades induced by tumors (e.g., IL-6, TNF-α, IFN-γ) lead to the breakdown of the blood–brain barrier (BBB), which is thought to amplify neuroinflammatory processes similar to those seen in schizophrenia spectrum disorders and autoimmune encephalopathies. Frontal gliomas present with apathy and disinhibition, and temporal tumors lead to hallucinations, emotional lability, and episodic memory dysfunction. Tumor-associated neuropsychiatric dysfunction, despite increasing recognition, is underdiagnosed and commonly misdiagnosed. This paper seeks to consolidate the mechanistic understanding of these syndromes, drawing on perspectives from neuroimaging, molecular oncology, neuroimmunology, and computational psychiatry. Novel approaches, including lesion-network mapping, exosomal biomarkers or AI-based predictive modeling, have projected early detection and precision-targeted interventions. In the context of the limitations of conventional psychotropic treatments, mechanistically informed therapies, including neuromodulation, neuroimmune-based interventions, and metabolic reprogramming, are essential to improving psychiatric and oncological outcomes. Paraneoplastic neuropsychiatric syndromes are not due to a secondary effect, rather, they are manifestations integral to the biology of a tumor, so they require a new paradigm in both diagnosis and treatment. And defining their molecular and circuit-level underpinnings will propel the next frontier of precision psychiatry in neuro-oncology, cementing the understanding that psychiatric dysfunction is a core influencer of survival, resilience, and quality of life. Full article
Show Figures

Figure 1

36 pages, 451 KB  
Review
From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes
by Charalampos Voros, Georgios Papadimas, Marianna Theodora, Despoina Mavrogianni, Diamantis Athanasiou, Ioakeim Sapantzoglou, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Charalampos Tsimpoukelis, Ioannis Papapanagiotou, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Maria Anastasia Daskalaki, Vasileios Topalis, Nikolaos Thomakos, Panagiotis Antsaklis, Fotios Chatzinikolaou, Dimitrios Loutradis and Georgios Daskalakis
Biomedicines 2025, 13(8), 2044; https://doi.org/10.3390/biomedicines13082044 - 21 Aug 2025
Viewed by 314
Abstract
Numerous infants have been conceived by in vitro fertilization (IVF) and other assisted reproductive technologies (ART). Increasing evidence indicates that these approaches induce minor alterations in molecules during the initial phases of embryogenesis. This narrative review examines the molecular pathophysiology of embryonic cardiogenesis [...] Read more.
Numerous infants have been conceived by in vitro fertilization (IVF) and other assisted reproductive technologies (ART). Increasing evidence indicates that these approaches induce minor alterations in molecules during the initial phases of embryogenesis. This narrative review examines the molecular pathophysiology of embryonic cardiogenesis in the context of assisted reproductive technology, emphasizing transcriptional and epigenetic regulation. Essential transcription factors for cardiac development, including NKX2-5, GATA4, TBX5, ISL1, MEF2C, and HAND1/2, play a crucial role in mesodermal specification, heart tube formation, and chamber morphogenesis. Animal models and human preimplantation embryos have demonstrated that ART-related procedures, including gamete micromanipulation, supraphysiological hormone exposure, and extended in vitro culture, can alter the expression or epigenetic programming of these genes. Subsequent to ART, researchers have identified anomalous patterns of DNA methylation, alterations in histones, and modifications in chromatin accessibility in cardiogenic loci. These alterations indicate that errors occurred during the initial reprogramming process, potentially resulting in structural congenital heart abnormalities (CHDs) or modifications in cardiac function later in life. Analysis of the placental epigenome in babies conceived using assisted reproductive technology reveals that imprinted and developmental genes critical for cardiac development remain dysfunctional. This review proposes a mechanistic theory about the potential subtle alterations in the cardiogenic gene network induced by ART, synthesizing findings from molecular embryology, transcriptomics, and epigenomics. Understanding these molecular issues is crucial not only for enhancing ART protocols but also for evaluating the cardiovascular risk of children conceived by ART postnatally and for early intervention. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine (2nd Edition))
24 pages, 726 KB  
Review
Transcriptomic Comparisons of Somatic and Cancer Stem Cells
by Austin Drysch, Arun Ahuja, Dillan Prasad, Rishi Jain, Sharbel Romanos, Amr Alwakeal and Christopher Ahuja
Biomedicines 2025, 13(8), 2039; https://doi.org/10.3390/biomedicines13082039 - 21 Aug 2025
Viewed by 324
Abstract
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of [...] Read more.
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of how the transcriptomic landscapes of normal somatic stem cells (SSCs) diverge from those of CSCs to enable malignancy. This review synthesizes current knowledge of the key signaling pathways (Wnt, Notch, Hedgehog, TGF-β), transcription factors (Oct4, Sox2, Nanog, c-Myc, YAP/TAZ), and epigenetic mechanisms (chromatin remodeling, DNA methylation, microRNA regulation) that govern stemness in SSCs and are hijacked or dysregulated in CSCs. We highlight how context-specific modulation of these pathways distinguishes physiological regeneration from tumorigenesis. Importantly, we discuss the role of epithelial–mesenchymal transition (EMT), cellular plasticity, and microenvironmental cues in reprogramming and maintaining CSC phenotypes. By integrating transcriptomic and epigenetic insights across cancer biology and regenerative medicine, this review provides a framework for identifying vulnerabilities specific to CSCs while still preserving normal stem cell function. Understanding these distinctions is essential for the development of targeted therapies that minimize damage to healthy tissues and advance precision oncology. Full article
(This article belongs to the Special Issue Advances in Precision Cancer Therapy)
Show Figures

Figure 1

6 pages, 535 KB  
Viewpoint
Plant Tissue Culture In Vitro: A Long Journey with Lingering Challenges
by Taras Pasternak and Douglas Steinmacher
Int. J. Plant Biol. 2025, 16(3), 97; https://doi.org/10.3390/ijpb16030097 - 21 Aug 2025
Viewed by 360
Abstract
In recent years, plant tissue culture has become a crucial component of the modern bioeconomy. From a commercial perspective, plant micropropagation remains one of its most valuable applications. Plants exhibit remarkable developmental plasticity; however, many species still remain recalcitrant in tissue culture. While [...] Read more.
In recent years, plant tissue culture has become a crucial component of the modern bioeconomy. From a commercial perspective, plant micropropagation remains one of its most valuable applications. Plants exhibit remarkable developmental plasticity; however, many species still remain recalcitrant in tissue culture. While the term recalcitrant is commonly used to describe plants with poor in vitro regeneration capacity, from a biological point of view it suggests that the minimal culture requirements for this species were unmet. Despite evidence that the Skoog–Miller exogenous hormonal balance theory and Murashige–Skoog medium were species-limited in applicability, generations of plant biotechnologists applied these tools indiscriminately. This led to systemic propagation of ineffective protocols, publication of misleading standards, and a culture of scientific inertia—costing both time and resources. The field must now move beyond historical dogma toward data-driven, species-specific innovation based on multiple endogenous auxin biosynthesis pathways, epigenetic reprogramming of competent cells, and further modern biotechnologies that are evolving. In this short viewpoint, we describe possible solutions in plant biotechnology to significantly improve the effectiveness of it. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

21 pages, 2581 KB  
Review
Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies
by Dake Chen, Yue Feng, Junjing Wu, Jiawei Zhou, Zipeng Li, Mu Qiao, Tong Chen, Zhong Xu, Xianwen Peng and Shuqi Mei
Cells 2025, 14(16), 1292; https://doi.org/10.3390/cells14161292 - 20 Aug 2025
Viewed by 261
Abstract
Post-translational modifications (PTMs) of proteins, as the core mechanism for dynamically regulating follicular development, affect the maintenance of mammalian fertility by precisely coordinating granulosa cell–oocyte interaction, metabolic reprogramming, and epigenetic remodeling. Dysregulation of these modifications directly contributes to major reproductive diseases, including polycystic [...] Read more.
Post-translational modifications (PTMs) of proteins, as the core mechanism for dynamically regulating follicular development, affect the maintenance of mammalian fertility by precisely coordinating granulosa cell–oocyte interaction, metabolic reprogramming, and epigenetic remodeling. Dysregulation of these modifications directly contributes to major reproductive diseases, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Post-translational modifications regulate follicular development through intricate mechanisms. Thus, this review systematically synthesizes recent advances in PTMs, encompassing traditional ones such as phosphorylation, ubiquitination, and acetylation, alongside emerging modifications including lactylation, SUMOylation, and ISGylation, thereby constructing a more comprehensive PTM landscape of follicular development. Furthermore, this study dissects the molecular interaction networks of these PTMs during follicular activation, maturation, and ovulation, and uncovers the common mechanisms through which PTM dysregulation contributes to pathological conditions, including hyperandrogenism in PCOS and follicular depletion in POI. Finally, this review ultimately provides a theoretical basis for improving livestock reproductive efficiency and precise intervention in clinical ovarian diseases. Full article
Show Figures

Figure 1

21 pages, 967 KB  
Review
Recent Advances in the Application of Cucurbitacin B as an Anticancer Agent
by Dongge Yin, Hongyue Chen, Shuting Lin, Yufei Sun, Xiaohong Jing, Rongrong Chang, Yang Feng, Xiaoxv Dong, Changhai Qu, Jian Ni and Xingbin Yin
Int. J. Mol. Sci. 2025, 26(16), 8003; https://doi.org/10.3390/ijms26168003 - 19 Aug 2025
Viewed by 345
Abstract
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and [...] Read more.
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and primary liver cancer. CuB exerts anticancer effects through multiple mechanisms: inducing apoptosis, cell cycle arrest (G2/M or S phase), autophagy, and cytoskeleton disruption; inhibiting migration, invasion, and angiogenesis (via VEGF/FAK/MMP-9 and Wnt/β-catenin pathways); regulating metabolic reprogramming and immune responses; inducing pyroptosis, ferroptosis, and epigenetic changes; and reversing tumor drug resistance. These effects are associated with signaling pathways like JAK/STAT, PI3K/Akt/mTOR, and FOXM1-KIF20A. To improve its application potential, strategies such as structural modification (e.g., NO donor conjugation), combination therapy (with gemcitabine or cisplatin), and nanomaterial-based delivery (e.g., liposomes and exosome-mimicking nanoparticles) have been developed to enhance efficacy, reduce toxicity, and improve bioavailability. CuB shows broad-spectrum anticancer activity, but further research is needed to clarify the mechanisms underlying its cell-specific sensitivity and interactions with the immune system. This review systematically summarizes the physicochemical properties, anticancer mechanisms, and strategies for applying CuB and suggests future research directions, providing references for scientific research and clinical translation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

33 pages, 1617 KB  
Review
From “Traditional” to “Trained” Immunity: Exploring the Novel Frontiers of Immunopathogenesis in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Mario Romeo, Alessia Silvestrin, Giusy Senese, Fiammetta Di Nardo, Carmine Napolitano, Paolo Vaia, Annachiara Coppola, Pierluigi Federico, Marcello Dallio and Alessandro Federico
Biomedicines 2025, 13(8), 2004; https://doi.org/10.3390/biomedicines13082004 - 18 Aug 2025
Viewed by 373
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most prevalent chronic hepatopathy and a leading precursor of hepatocellular carcinoma (HCC) worldwide. Initially attributed to insulin resistance (IR)-driven metabolic imbalance, recent insights highlight a multifactorial pathogenesis involving oxidative stress (OS), chronic inflammation, [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most prevalent chronic hepatopathy and a leading precursor of hepatocellular carcinoma (HCC) worldwide. Initially attributed to insulin resistance (IR)-driven metabolic imbalance, recent insights highlight a multifactorial pathogenesis involving oxidative stress (OS), chronic inflammation, and immune dysregulation. The hepatic accumulation of free fatty acids (FFAs) initiates mitochondrial dysfunction and excessive reactive oxygen species (ROS) production, culminating in lipotoxic intermediates and mitochondrial DNA damage. These damage-associated molecular patterns (DAMPs), together with gut-derived pathogen-associated molecular patterns (PAMPs), activate innate immune cells and amplify cytokine-mediated inflammation. Kupffer cell activation further exacerbates OS, while ROS-induced transcriptional pathways perpetuate inflammatory gene expression. Traditional immunity refers to the well-established dichotomy of innate and adaptive immune responses, where innate immunity provides immediate but non-specific defense, and adaptive immunity offers long-lasting, antigen-specific protection. However, a paradigm shift has occurred with the recognition of trained immunity (TI)—an adaptive-like memory response within innate immune cells that enables enhanced responses upon re-exposure to stimuli. Following non-specific antigenic stimulation, TI induces durable epigenetic and metabolic reprogramming, leading to heightened inflammatory responses and altered functional phenotypes. These rewired cells acquire the capacity to produce lipid mediators, cytokines, and matrix-modifying enzymes, reinforcing hepatic inflammation and fibrogenesis. In this context, the concept of immunometabolism has gained prominence, linking metabolic rewiring with immune dysfunction. This literature review provides an up-to-date synthesis of emerging evidence on immunometabolism and trained immunity as pathogenic drivers in MASLD. We discuss their roles in the transition from hepatic steatosis to steatohepatitis, fibrosis, and cirrhosis, and explore their contribution to the initiation and progression of MASLD-related HCC. Understanding these processes may reveal novel immunometabolic targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Non-communicable Diseases)
Show Figures

Figure 1

23 pages, 1044 KB  
Review
Cellular Models of Aging and Senescence
by Byunggik Kim, Dong I. Lee, Nathan Basisty and Dao-Fu Dai
Cells 2025, 14(16), 1278; https://doi.org/10.3390/cells14161278 - 18 Aug 2025
Viewed by 462
Abstract
Aging, a state of progressive decline in physiological function, is an important risk factor for chronic diseases, ranging from cancer and musculoskeletal frailty to cardiovascular and neurodegenerative diseases. Understanding its cellular basis is critical for developing interventions to extend human health span. This [...] Read more.
Aging, a state of progressive decline in physiological function, is an important risk factor for chronic diseases, ranging from cancer and musculoskeletal frailty to cardiovascular and neurodegenerative diseases. Understanding its cellular basis is critical for developing interventions to extend human health span. This review highlights the crucial role of in vitro models, discussing foundational discoveries like the Hayflick limit and the senescence-associated secretory phenotype (SASP), the utility of immortalized cell lines, and transformative human induced pluripotent stem cells (iPSCs) for aging and disease modeling and rejuvenation studies. We also examine methods to induce senescence and discuss the distinction between chronological time and biological clock, with examples of applying cells from progeroid syndromes and mitochondrial diseases to recapitulate some signaling mechanisms in aging. Although no in vitro model can perfectly recapitulate organismal aging, well-chosen models are invaluable for addressing specific mechanistic questions. We focus on experimental strategies to manipulate cellular aging: from “steering” cells toward resilience to “reversing” age-related phenotypes via senolytics, partial epigenetic reprogramming, and targeted modulation of proteostasis and mitochondrial health. This review ultimately underscores the value of in vitro systems for discovery and therapeutic testing while acknowledging the challenge of translating insights from cell studies into effective, organism-wide strategies to promote healthy aging. Full article
(This article belongs to the Special Issue Experimental Systems to Model Aging Processes)
Show Figures

Graphical abstract

17 pages, 1815 KB  
Review
Paternal Cocaine Exposure and Its Testicular Legacy: Epigenetic, Physiological, and Intergenerational Consequences
by Candela R. González and Betina González
Biology 2025, 14(8), 1072; https://doi.org/10.3390/biology14081072 - 18 Aug 2025
Viewed by 358
Abstract
Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive [...] Read more.
Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive physiology. In the testis, cocaine alters the endocrine microenvironment, induces cell-specific damage, and disrupts spermatogenesis. Cocaine also interferes with epigenetic programming in germ cells and mature sperm, potentially leading to heritable epimutations. Epidemiology data reveal that approximately two-thirds of regular cocaine users are males of reproductive age, and preclinical models have documented numerous behavioral and molecular alterations in their offspring, often linked to paternal cocaine exposure—such as increased drug resistance or vulnerability, altered anxiety-like behavior, impaired learning/memory, disrupted social behaviors, and shifts in neural circuitry and gene expression in reward-related brain regions. This review aims to integrate findings from studies that have independently examined testicular dysfunction, germline epigenetic reprogramming, and offspring outcomes, offering a unified perspective on their potential interconnections and highlighting future directions for research in the field of epigenetic inheritance. Full article
Show Figures

Graphical abstract

27 pages, 7464 KB  
Article
Keel Petal Fusion in Soybean: Anatomical Insights and Transcriptomic Identification of Candidate Regulators
by Shun-Geng Jia, Li-Na Guo, Xiao-Fei Wang, De-Li Wang, Dan Chen, Wei-Cai Yang and Hong-Ju Li
Agronomy 2025, 15(8), 1971; https://doi.org/10.3390/agronomy15081971 - 15 Aug 2025
Viewed by 378
Abstract
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. [...] Read more.
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. cv. Jack using anatomical and transcriptomic approaches. Microscopy revealed that keel petal fusion involves marginal cell reshaping and postgenital adhesion with defective cuticle continuity, consistent with fusion modes in other Papilionoideae species. Comparative transcriptome analysis between fused and unfused petal stages identified 23,328 differentially expressed genes, with lipid and cuticle metabolism genes showing coordinated downregulation during fusion. A set of 384 keel-enriched genes was identified, among which a previously uncharacterized gene, KPEG1 (Keel Preferential Expression Gene 1), was preferentially expressed in fused keel petals. Protein interaction network analysis revealed that KPEG1 co-expresses with epigenetics-related genes, suggesting a regulatory role in fusion through chromatin-mediated mechanisms. These findings uncover the cellular dynamics and transcriptional reprogramming underlying keel petal fusion in soybean and provide a candidate regulator for further functional studies. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 1942 KB  
Review
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications
by Vanajothi Ramar, Shanchun Guo, Guangdi Wang and Mingli Liu
Int. J. Mol. Sci. 2025, 26(16), 7883; https://doi.org/10.3390/ijms26167883 - 15 Aug 2025
Viewed by 255
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and [...] Read more.
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and treatment resistance. This review provides a comprehensive overview of canonical and non-canonical NF-κB signaling pathways and their molecular mechanisms in GBM, with a focus on their regulation in glioma stem-like cells (GSCs), interactions with key oncogenic factors (including STAT3, FOSL1, and TRPM7), and roles in maintaining tumor stemness, metabolic adaptation, and angiogenesis. We further discuss the reciprocal regulatory dynamics between NF-κB and non-coding RNAs (ncRNAs), particularly microRNAs, highlighting novel ncRNA-mediated epigenetic switches that shape GBM cell plasticity and subtype specification. Additionally, we examine the influence of NF-κB in modulating the tumor microenvironment (TME), where it orchestrates pro-tumorigenic cytokine production, immune cell reprogramming, and stromal remodeling. Finally, we review current NF-κB-targeting therapeutic strategies in GBM, including clinical trial data on small-molecule inhibitors and combinatorial approaches. Understanding the multifaceted roles of NF-κB in GBM offers new insights into targeted therapies aimed at disrupting tumor-promoting circuits within both cancer cells and the TME. Full article
(This article belongs to the Special Issue Future Perspectives and Challenges in Molecular Research of Glioma)
Show Figures

Figure 1

20 pages, 3954 KB  
Article
Interpretation of the Transcriptome-Based Signature of Tumor-Initiating Cells, the Core of Cancer Development, and the Construction of a Machine Learning-Based Classifier
by Seung-Hyun Jeong, Jong-Jin Kim, Ji-Hun Jang and Young-Tae Chang
Cells 2025, 14(16), 1255; https://doi.org/10.3390/cells14161255 - 14 Aug 2025
Viewed by 326
Abstract
Tumor-initiating cells (TICs) constitute a subpopulation of cancer cells with stem-like properties contributing to tumorigenesis, progression, recurrence, and therapeutic resistance. Despite their biological importance, their molecular signatures that distinguish them from non-TICs remain incompletely characterized. This study aimed to comprehensively analyze transcriptomic differences [...] Read more.
Tumor-initiating cells (TICs) constitute a subpopulation of cancer cells with stem-like properties contributing to tumorigenesis, progression, recurrence, and therapeutic resistance. Despite their biological importance, their molecular signatures that distinguish them from non-TICs remain incompletely characterized. This study aimed to comprehensively analyze transcriptomic differences between TICs and non-TICs, identify TIC-specific gene expression patterns, and construct a machine learning-based classifier that could accurately predict TIC status. RNA sequencing data were obtained from four human cell lines representing TIC (TS10 and TS32) and non-TIC (32A and Epi). Transcriptomic profiles were analyzed via principal component, hierarchical clustering, and differential expression analysis. Gene-Ontology and Kyoto-Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for functional interpretation. A logistic-regression model was trained on differentially expressed genes to predict TIC status. Model performance was validated using synthetic data and external projection. TICs exhibited distinct transcriptomic signatures, including enrichment of non-coding RNAs (e.g., MIR4737 and SNORD19) and selective upregulation of metabolic transporters (e.g., SLC25A1, SLC16A1, and FASN). Functional pathway analysis revealed TIC-specific activation of oxidative phosphorylation, PI3K-Akt signaling, and ribosome-related processes. The logistic-regression model achieved perfect classification (area under the curve of 1.00), and its key features indicated metabolic and translational reprogramming unique to TICs. Transcriptomic state-space embedding analysis suggested reversible transitions between TIC and non-TIC states driven by transcriptional and epigenetic regulators. This study reveals a unique transcriptomic landscape defining TICs and establishes a highly accurate machine learning-based TIC classifier. These findings enhance our understanding of TIC biology and show promising strategies for TIC-targeted diagnostics and therapeutic interventions. Full article
Show Figures

Graphical abstract

17 pages, 813 KB  
Review
Kidney Stone Disease: Epigenetic Dysregulation in Homocystinuria and Mitochondrial Sulfur Trans-Sulfuration Ablation Driven by COVID-19 Pathophysiology
by Anmol Babbarwal, Mahavir Singh, Utpal Sen, Mahima Tyagi and Suresh C. Tyagi
Biomolecules 2025, 15(8), 1163; https://doi.org/10.3390/biom15081163 - 14 Aug 2025
Viewed by 404
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought to light unexpected complications beyond respiratory illness, including effects on kidney function and a potential link to kidney stone disease (KSD). This review proposes a novel [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought to light unexpected complications beyond respiratory illness, including effects on kidney function and a potential link to kidney stone disease (KSD). This review proposes a novel framework connecting COVID-19-induced epigenetic reprogramming to disruptions in mitochondrial sulfur metabolism and the pathogenesis of kidney stones. We examine how SARS-CoV-2 interferes with host methylation processes, leading to elevated homocysteine (Hcy) levels and impairment of the trans-sulfuration pathway mechanisms particularly relevant in metabolic disorders such as homocystinuria. These epigenetic and metabolic alterations may promote specific kidney stone subtypes through disrupted sulfur and oxalate handling. Additionally, we explore the role of COVID-19-associated gut dysbiosis in increasing oxalate production and driving calcium oxalate stone formation. Together, these pathways may accelerate the transition from acute kidney injury (AKI) to chronic KSD, linking viral methylation interference, sulfur amino acid imbalance, mitochondrial dysfunction, and microbiota changes. Unlike earlier reviews that address these mechanisms separately, this work offers an integrated hypothesis to explain post-viral renal lithogenesis and highlights the potential of targeting sulfur metabolism and redox pathways as therapeutic strategies for KSD triggered or aggravated by viral infections such as COVID-19. Full article
(This article belongs to the Special Issue Acute Kidney Injury and Mitochondrial Involvement)
Show Figures

Figure 1

Back to TopTop