Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = epoxy chip seal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2838 KB  
Article
Glass Microbubble Encapsulation for Improving the Lifetime of a Ferrofluid-Based Magnetometer
by Chenchen Zhang and Srinivas Tadigadapa
Micromachines 2025, 16(5), 519; https://doi.org/10.3390/mi16050519 - 28 Apr 2025
Viewed by 569
Abstract
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on [...] Read more.
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on the novel concept of a ferrofluid based magnetometer in which the viscoelastic response of a ferrofluid interfacial layer on a high frequency shear wave quartz resonator is sensitively monitored as a function of applied magnetic field. The quantification of the magnetic field is accomplished by monitoring the at-resonance admittance characteristics of the ferrofluid-loaded resonator. While the proof-of-concept measurements of the device have been successfully made, under open conditions, the evaporation of the carrier fluid of the ferrofluid continuously changes its viscoelastic properties and compromises the longevity of the magnetometer. To prevent the evaporation of the ferrofluid, here, we seal the ferrofluid on top of the micromachined quartz resonator within a blown glass hemispherical microbubble attached to it using epoxy. The magnetometer design used a bowtie-shaped thin film Metglas (Fe85B5Si10) magnetic flux concentrator on the resonator chip. A four-times smaller noise equivalent, a magnetic field of 600 nT/√Hz at 0.5 Hz was obtained for the magnetometer using the Metglas flux concentrator. The ferrofluid-based magnetometer is capable of sensing magnetic fields up to a modulation frequency of 40 Hz. Compared with the unsealed ferrofluid device, the lifetime of the glass microbubble integrated chip packaged device improved significantly from only a few hours to over 50 days and continued. Full article
Show Figures

Figure 1

15 pages, 7052 KB  
Article
Evaluation Indexes of Skid Resistance of Epoxy Chip Seal Based on Texture Features at Different Scales
by Kaiyi Li, Min Wang, Jie Wang, Hui Lv and Yongzhou Deng
Coatings 2024, 14(11), 1353; https://doi.org/10.3390/coatings14111353 - 24 Oct 2024
Viewed by 1032
Abstract
Epoxy chip seals are widely used to improve the skid resistance of cement concrete pavements, which is significantly affected by surface texture. However, current methods for characterizing the surface texture structure are not precise, and the standard is not uniform. Therefore, a high-toughness [...] Read more.
Epoxy chip seals are widely used to improve the skid resistance of cement concrete pavements, which is significantly affected by surface texture. However, current methods for characterizing the surface texture structure are not precise, and the standard is not uniform. Therefore, a high-toughness modified epoxy resin chip seal structure was developed to conduct an indoor accelerated abrasion test. The elevation data of the epoxy chip seal under different abrasion times and different abrasion loads were obtained using laser scanning, and the Density/Sharpness combination parameters were obtained using the Hilbert–Huang transform and spectral analysis. The correlation between the texture parameters and the dynamic friction coefficient was analyzed using a stepwise multivariate quadratic polynomial method. The results showed that the texture structure of the epoxy chip seal surface is positively distributed, and the macroscopic texture occupies 49.45%, while the probability of the microscopic texture is only 4.55%. Meanwhile, the correlation coefficient between the texture parameters and the dynamic friction coefficient is 0.9307, which demonstrates that the selected texture parameters discard the texture components unrelated to skid resistance performance and reflect the distribution of the pavement texture and the skid resistance performance well. Full article
Show Figures

Figure 1

8 pages, 2057 KB  
Article
Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant
by Mario Birkholz, Paul Glogener, Franziska Glös, Thomas Basmer and Lorenz Theuer
Micromachines 2016, 7(10), 183; https://doi.org/10.3390/mi7100183 - 9 Oct 2016
Cited by 7 | Viewed by 8529
Abstract
An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. [...] Read more.
An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS) prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS)/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS). The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology. Full article
(This article belongs to the Special Issue Implantable Microsystems)
Show Figures

Figure 1

Back to TopTop