Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = excess thermodynamic functions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 442
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

40 pages, 585 KB  
Article
Finite-Time Thermodynamics and Complex Energy Landscapes: A Perspective
by Johann Christian Schön
Entropy 2025, 27(8), 819; https://doi.org/10.3390/e27080819 - 1 Aug 2025
Viewed by 786
Abstract
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, [...] Read more.
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, and/or the maximally achievable efficiency is not achieved; minimizing these negative side-effects constitutes an optimal control problem. Particularly challenging are processes and cycles that involve phase transitions of the working fluid material or the target material of a synthesis process, especially since most materials reside on a highly complex energy landscape exhibiting alternative metastable phases or glassy states. In this perspective, we discuss the issues and challenges involved in dealing with such materials when performing thermodynamic processes that include phase transitions in finite time. We focus on thermodynamic cycles with one back-and-forth transition and the generation of new materials via a phase transition; other systems discussed concern the computation of free energy differences and the general applicability of FTT to systems outside the realm of chemistry and physics that exhibit cost function landscapes with phase transition-like dynamics. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

18 pages, 2761 KB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 836
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 2341 KB  
Article
Excess Properties, FT-IR Spectral Analysis, and CO2 Absorption Performance of Monoethanolamine with Diethylene Glycol Monoethyl Ether or Methyldiethanolamine Binary Solutions
by Maria Magdalena Naum, Mihaela Neagu and Vasile Dumitrescu
Molecules 2025, 30(7), 1523; https://doi.org/10.3390/molecules30071523 - 29 Mar 2025
Viewed by 800
Abstract
In this study, densities and viscosities of the binary solutions of monoethanolamine with diethylene glycol monoethyl ether or methyldiethanolamine were determined at 293.15, 298.15, and 303.15 K and p = 100.5 kPa. The experimental density data were tested with different equations as a [...] Read more.
In this study, densities and viscosities of the binary solutions of monoethanolamine with diethylene glycol monoethyl ether or methyldiethanolamine were determined at 293.15, 298.15, and 303.15 K and p = 100.5 kPa. The experimental density data were tested with different equations as a function of composition (Belda and Herraez equations) and as a function of temperature and composition (Emmerling et al. and Gonzalez-Olmos–Iglesias equations). The results show that the Herraez and Emmerling et al. equations best correlate the experimental data. The experimental values of viscosity were tested with different models based on one, two, three, or four parameters. The values of excess molar volume (VE), viscosity deviation (Δη), and excess Gibbs energy (ΔG*E) were calculated from the experimental values and were fitted to the polynomial equations. The values of the excess molar volume are negative for both systems, while positive values were obtained for the viscosity deviation and excess Gibbs activation energy. The values of thermodynamic functions of activation of viscous flow were determined and discussed. The Fourier transform infrared spectroscopy (FT-IR) spectra of the binary solutions analyzed in this study enabled the understanding of the interactions among the molecules in these solutions. In addition, the CO2 absorption capacity of the binary solutions of monoethanolamine with diethylene glycol monoethyl ether or methyldiethanolamine was determined experimentally. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

20 pages, 5693 KB  
Article
Physics-Informed Neural Networks for Heat Pump Load Prediction
by Viorica Rozina Chifu, Tudor Cioara, Cristina Bianca Pop, Ionut Anghel and Andrei Pelle
Energies 2025, 18(1), 8; https://doi.org/10.3390/en18010008 - 24 Dec 2024
Cited by 3 | Viewed by 3026
Abstract
Heat pumps are promising solutions for managing the increasing heating demand of residential houses, reducing the environmental impact when used with renewable energy. Accurate heat load predictions allow the heat pump to operate at the most efficient settings, maintaining comfortable temperatures while reducing [...] Read more.
Heat pumps are promising solutions for managing the increasing heating demand of residential houses, reducing the environmental impact when used with renewable energy. Accurate heat load predictions allow the heat pump to operate at the most efficient settings, maintaining comfortable temperatures while reducing excess energy use and lowering operating costs. Data-driven prediction solutions may have difficulty capturing the dynamics and nonlinearities of the thermodynamics involved. The physics-informed models combine the monitored observed data with theoretical knowledge of heat pumps and directly integrate physical constraints, allowing for better generalization and reducing the dependence on large volumes of data. However, they require detailed knowledge of the system topology and refrigerant parameters, which increases the model complexity. Therefore, in this paper, we propose a physics-informed neural network for predicting the heat load of heat pumps that integrates thermodynamics directly into the loss function of the neural network. We model the heat load as a function of the input variables, including the inlet temperature, outlet temperature, and water flow rate. We integrate the function during model training to reduce the model complexity. Our approach increases the accuracy of the predictions compared with data-driven models and generates prediction results that are consistent with the actual physical behavior of the heat pump. The results show superior prediction accuracy, with a 7.49% reduction in the RMSE and a 6.49% decrease in the MAPE, while the R2 value shows an increase of 0.02%. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 2826 KB  
Article
Theoretical Investigations of Para-Methoxystyrene/Styrene Polymerization Catalyzed by Cationic Methyl- and Dibenzobarrelene-Based α-Diimine Palladium Complexes
by Ling Zhu, Yi Luo, Xin Wen, Wenzhen Zhang and Guangli Zhou
Inorganics 2024, 12(12), 315; https://doi.org/10.3390/inorganics12120315 - 5 Dec 2024
Cited by 1 | Viewed by 1398
Abstract
The polymerization mechanism of para-methoxystyrene catalyzed by cationic α-diimine palladium complexes with various ancillary ligands was rigorously examined using density functional theory. In the classical methyl-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(Me)-C(Me)=N-2,6-iPr [...] Read more.
The polymerization mechanism of para-methoxystyrene catalyzed by cationic α-diimine palladium complexes with various ancillary ligands was rigorously examined using density functional theory. In the classical methyl-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(Me)-C(Me)=N-2,6-iPr2C6H3)}PdMe]+ (A+), the 2,1-insertion of para-methoxystyrene is favored over the 1,2-insertion, both thermodynamically and kinetically, during the chain initiation step. The resulting thermodynamically favored η3-π-benzyl intermediates face a substantial energy barrier, yielding only trace amounts of polymer, as experimentally verified. In contrast, the dibenzobarrelene-based α-diimine palladium complex [{(2,6-iPr2C6H3)-N=C(R)-C(R)=N-2,6-iPr2C6H3)}PdMe]+ (R = dibenzobarrelene, B+) shows similar energy barriers for both 2,1- and 1,2-insertions. Continuous 2,1/2,1 or 2,1/1,2 insertions are impeded by excessive energy barriers. However, theoretical calculations reveal that the 1,2-insertion product can seamlessly transition into the chain propagation stage, producing a polymer with high 1,2-regioselectivity. The observed activity of complexes A+ or B+ towards para-methoxystyrene polymerization stems from the energy barrier differences between the 1,2- and 2,1-insertions, influenced by the steric hindrance from the ancillary ligands. Further investigation into the effects of steric hindrance on the chain initiation stage involved computational modeling of analogous complexes with increased steric bulk. These studies established a direct correlation between the energy barrier difference ∆∆G (1,2–2,1) and the van der Waals volume of the ancillary ligand. Larger van der Waals volumes correspond to reduced energy barrier differences, thus enhancing the regioselectivity for para-methoxystyrene polymerization. Moreover, the experimental inertness of complex B+ towards styrene polymerization is attributed to the formation of stable kinetic and thermodynamic 2,1-insertion intermediates, which obstruct further styrene monomer insertion due to an extremely high reactive energy barrier. These findings contribute to a deeper understanding of the mechanistic aspects and offer insights for designing new transition metal catalysts for the polymerization of para-alkoxystyrenes. Full article
Show Figures

Figure 1

20 pages, 2913 KB  
Article
Excess Thermodynamic Properties and FTIR Studies of Binary Mixtures of Toluene with 2-Propanol or 2-Methyl-1-Propanol
by Maria Magdalena Naum and Vasile Dumitrescu
Molecules 2024, 29(19), 4706; https://doi.org/10.3390/molecules29194706 - 4 Oct 2024
Cited by 1 | Viewed by 1747
Abstract
Physical properties of the binary solutions, toluene with 2-propanol and 2-methyl-1-propanol, were measured at T = 293.15, 298.15, 303.15, 308.15, and 313.15 K and P = 100 kPa. The experimental density values were tested with the Emmerling et al. and Gonzalez-Olmos–Iglesias equations. The [...] Read more.
Physical properties of the binary solutions, toluene with 2-propanol and 2-methyl-1-propanol, were measured at T = 293.15, 298.15, 303.15, 308.15, and 313.15 K and P = 100 kPa. The experimental density values were tested with the Emmerling et al. and Gonzalez-Olmos–Iglesias equations. The results indicate that the equation by Emmerling et al. is the best to correlate the density for toluene + 2-methyl-1-propanol system, while for toluene + 2-propanol, both proposed equations are proper to correlate the density with composition and temperature. The viscosity results were verified with different models containing two adjustable parameters. The values of viscosity deviation (η), excess molar volume (VE), excess Gibbs energy (ΔG*E), partial molar volumes (V1¯ and V2¯), and apparent molar volume (Vφ,1 and Vφ,2) were calculated. The values of the excess molar volume were positive for both systems, while negative values were obtained for the viscosity deviation and the excess Gibbs energy. The excess properties of the mixtures were adjusted to the Redlich–Kister equation. The values of thermodynamic functions of activation of viscous flow were computed and analyzed. Additionally, the Prigogine–Flory–Patterson (PFP) theory was applied to calculate VE and then compared with experimental values. The values of the percentage absolute average deviation obtained suggest the validity of this theory. The Fourier transform infrared spectroscopy (FTIR) spectra of the binary solutions studied in this work allowed for the understanding of the interactions between the molecules of these systems. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

24 pages, 3174 KB  
Review
Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation—The Effect on the Ageing Process and Age-Related Damage
by Borut Poljšak and Irina Milisav
Int. J. Mol. Sci. 2024, 25(12), 6321; https://doi.org/10.3390/ijms25126321 - 7 Jun 2024
Cited by 7 | Viewed by 3384
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. [...] Read more.
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings—the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper. Full article
Show Figures

Figure 1

23 pages, 2916 KB  
Article
Estimation of Activity and Molar Excess Gibbs Energy of Binary Liquid Alloys Pb-Sn, Al-Sn and In-Zn from the Partial Radial Distribution Function Simulated by Ab Initio Molecular Dynamics
by Tianao Zhang, Xiumin Chen, Yi Lu, Jiulong Hang and Dongping Tao
Metals 2024, 14(1), 102; https://doi.org/10.3390/met14010102 - 15 Jan 2024
Cited by 3 | Viewed by 2246
Abstract
For the present, it is difficult to obtain thermodynamic data for binary liquid alloys by experimental measurements. In this study, the molecular dynamics processes of the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 were simulated by using the ab initio molecular dynamics (AIMD) [...] Read more.
For the present, it is difficult to obtain thermodynamic data for binary liquid alloys by experimental measurements. In this study, the molecular dynamics processes of the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 were simulated by using the ab initio molecular dynamics (AIMD) principle, and their partial radial distribution functions (PRDF) were obtained at different simulation steps. Combined with the relevant binary parameters of the Molecular Interaction Volume Model (MIVM), Regular Solution Model (RSM), Wilson Model, and Non-Random Two-Liquid (NRTL) models. The integral terms containing the PRDF were computed using the graphical integration method to obtain the parameters of these models, thus estimating their activity and molar excess Gibbs energy. The total average relative deviations (ARD) of the activity and molar excess Gibbs energy estimates of the four models for the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 at full concentration when the PRDF is obtained by the symmetry method are MIVM: 21.59% and 59.35%; RSM: 21.63% and 60.27%; Wilson: 24.27% and 86.7%; NRTL: 23.9% and 83.24%. When the PRDF is obtained by the asymmetric method: MIVM: 22.86% and 68.08%; RSM: 32.84% and 68.66%; Wilson: 25.14% and 82.75%; NRTL: 24.49% and 85.74%. This indicates that the estimation performance of the MIVM model is superior to the other three models, and the symmetric method performs better than the asymmetric method. The present study also derives and verifies the feasibility of Sommer’s equation for estimating the molar excess Gibbs energy and activity of binary liquid alloy systems in the Miedema model by using different equations of enthalpy of mixing versus excess entropy given by Tanaka, Ding, and Sommer. The total ARD of Tanaka, Ding, and Sommer’s relational equations in the Miedema model for estimating the activities and molar excess Gibbs energies of the binary liquid alloys Pb-Sn, Al-Sn, and In-Zn are 3.07% and 8.92%, 6.09% and 17.1%, and 4.1% and 14.77%. The results indicate that the estimation performance of the Miedema model is superior to the other four models. Full article
(This article belongs to the Special Issue Thermodynamic Assessment of Alloy Systems)
Show Figures

Figure 1

13 pages, 313 KB  
Article
Spinodal Decomposition of Filled Polymer Blends: The Role of the Osmotic Effect of Fillers
by A. I. Chervanyov
Polymers 2024, 16(1), 38; https://doi.org/10.3390/polym16010038 - 21 Dec 2023
Cited by 1 | Viewed by 1750
Abstract
The reported work addresses the effect of fillers on the thermodynamic stability and miscibility of compressible polymer blends. We calculate the spinodal transition temperature of a filled polymer blend as a function of the interaction energies between the blend species, as well as [...] Read more.
The reported work addresses the effect of fillers on the thermodynamic stability and miscibility of compressible polymer blends. We calculate the spinodal transition temperature of a filled polymer blend as a function of the interaction energies between the blend species, as well as the blend composition, filler size, and filler volume fraction. The calculation method relies on the developed thermodynamic theory of filled compressible polymer blends. This theory makes it possible to obtain the excess pressure and chemical potential caused by the presence of fillers. As a main result of the reported work, we demonstrate that the presence of neutral (non-adsorbing) fillers can be used to enhance the stability of a polymer blend that shows low critical solution temperature (LCST) behavior. The obtained results highlight the importance of the osmotic effect of fillers on the miscibility of polymer blends. The demonstrated good agreement with the experiment proves that this effect alone can explain the observed filler-induced change in the LCST. Full article
Show Figures

Graphical abstract

18 pages, 4119 KB  
Article
Estimation of Activity and Molar Excess Gibbs Energy of Binary Liquid Alloys Al-Cu, Al-Ni, and Al-Fe from the Partial Radial Distribution Function Simulated by Ab Initio Molecular Dynamics
by Yi Lu, Xiumin Chen, Tianao Zhang, Jiulong Hang and Dongping Tao
Metals 2023, 13(12), 2011; https://doi.org/10.3390/met13122011 - 14 Dec 2023
Cited by 1 | Viewed by 2121
Abstract
To accurately and conveniently obtain the thermodynamic data of binary liquid alloys, a new method is proposed in this study. It combines ab initio molecular dynamics (AIMD) simulation with a thermodynamic model to estimate the activity and molar excess Gibbs energy of binary [...] Read more.
To accurately and conveniently obtain the thermodynamic data of binary liquid alloys, a new method is proposed in this study. It combines ab initio molecular dynamics (AIMD) simulation with a thermodynamic model to estimate the activity and molar excess Gibbs energy of binary liquid alloys. Additionally, two methods of grouping the partial radial distribution function (PRDF) of 5000 steps obtained by simulation are proposed for the first time. The PRDF of Al50Cu50, Al50Ni50, and Al50Fe50 is obtained by AIMD simulation. These PRDF are combined with four thermodynamic models to estimate the activity and molar excess Gibbs energy. Furthermore, the estimation results of the four models are compared with those of the Miedema model. The results show that when the first peak of the PRDF is obtained by the symmetric method, the average relative deviation (ARD) of the activity and molar excess Gibbs energy of the four models are, respectively: 28% and 32% for Molecular Interaction Volume Model (MIVM); 162% and 38% for Regular Solution Model (RSM); 508% and 65% for Wilson model; 562% and 67% for Non-Random Two-Liquid (NRTL). When the first peak of PRDF is obtained by non-symmetric method, the average ARD of the activity and molar excess Gibbs energy of the four models are, respectively: 64% and 20% for MIVM; 115% and 26% for RSM; 661% and 70% for Wilson; 727% and 72% for NRTL. In addition, the average ARD of the activity and molar excess Gibbs energy of the Miedema model are 113% and 33%. These data indicate that the estimation performance of the MIVM model is superior to the other four models, and the symmetric method performs better than the non-symmetric method. The grouping treatment of PRDF data effectively improves estimation performance. Full article
(This article belongs to the Special Issue Thermodynamic Assessment of Alloy Systems)
Show Figures

Figure 1

8 pages, 2732 KB  
Communication
Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction
by Nobuhide Sekine and Wataru Nakao
Materials 2023, 16(19), 6368; https://doi.org/10.3390/ma16196368 - 23 Sep 2023
Cited by 4 | Viewed by 3284
Abstract
Controlling the chemical reaction rate concerning degradation and repair is found to be important to design advanced self-healing ceramics. The recovery and degradation behaviors of strength and stiffness were investigated by exposing aqueous solutions of different pH and calcium ion concentrations to the [...] Read more.
Controlling the chemical reaction rate concerning degradation and repair is found to be important to design advanced self-healing ceramics. The recovery and degradation behaviors of strength and stiffness were investigated by exposing aqueous solutions of different pH and calcium ion concentrations to the introduced crack on typical self-healing ceramics dispersed with alumina cement as a self-healing agent. The chemical reaction of cement undergoes the following three stages: dissolution of components such as calcium ions, formation of a gel, and formation of final products. Experimental and thermodynamic assessments revealed that even under conditions where the final products are identical (thermodynamic equilibrium), kinetic effects (excessive dissolution of components or insufficient crystal formation) result in strength degradation rather than repair. It was also suggested that the repair function could be enhanced by controlling the nucleation site of the crystals. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

11 pages, 2562 KB  
Article
Thermal and Spectral Characterization of a Binary Mixture of Medazepam and Citric Acid: Eutectic Reaction and Solubility Studies
by Cristina Macasoi, Viorica Meltzer and Elena Pincu
Thermo 2023, 3(3), 483-493; https://doi.org/10.3390/thermo3030029 - 14 Sep 2023
Cited by 2 | Viewed by 1714
Abstract
Medazepam, citric acid and their binary mixtures were studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) for thermal and structural properties. The DSC data show a simple eutectic peak at 370 K. To determine the exact mole fraction at [...] Read more.
Medazepam, citric acid and their binary mixtures were studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) for thermal and structural properties. The DSC data show a simple eutectic peak at 370 K. To determine the exact mole fraction at which the eutectic occurs, Tamman’s triangle was used. The obtained results show that the eutectic mixture appears at a molar fraction of medazepam of approximately 0.85. The excess thermodynamic functions GE, SE and μE were calculated, and the results were interpreted to evaluate the interactions that occur between the components of the mixture. The FTIR results were used to confirm the eutectic formation. Solubility tests in deionized water show a 40-times increase in the medazepam solubility from the eutectic mixture, from 0.73 μg/mL to 28.61 μg/mL. However, further tests showed that the acidic character of the sample was the main factor responsible for this increase. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

30 pages, 8899 KB  
Article
Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments
by Leysan Vasileva, Gulnara Gaynanova, Farida Valeeva, Elvira Romanova, Rais Pavlov, Denis Kuznetsov, Grigory Belyaev, Irina Zueva, Anna Lyubina, Alexandra Voloshina, Konstantin Petrov and Lucia Zakharova
Int. J. Mol. Sci. 2023, 24(15), 12312; https://doi.org/10.3390/ijms241512312 - 1 Aug 2023
Cited by 16 | Viewed by 2695
Abstract
A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N′-dialkyl-N,N′-bis(2-(ethylcarbamoyloxy)ethyl)-N,N′-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were [...] Read more.
A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N′-dialkyl-N,N′-bis(2-(ethylcarbamoyloxy)ethyl)-N,N′-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (β), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer’s disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aβ plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer’s disease model (APP/PS1) compared with untreated animals. Full article
(This article belongs to the Special Issue New Prospects of Colloid Chemistry – Molecular Perspectives)
Show Figures

Figure 1

22 pages, 4049 KB  
Article
Thermodynamic Behavior of (2-Propanol + 1,8-Cineole) Mixtures: Isothermal Vapor–Liquid Equilibria, Densities, Enthalpies of Mixing, and Modeling
by Beatriz Gimeno, Santiago Martinez, Ana M. Mainar, Jose S. Urieta and Pascual Perez
Int. J. Mol. Sci. 2023, 24(12), 10380; https://doi.org/10.3390/ijms241210380 - 20 Jun 2023
Cited by 2 | Viewed by 2590
Abstract
Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. [...] Read more.
Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker’s method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs–Helmholtz equation. Robinson–Mathias, and Peng–Robinson–Stryjek–Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included. Full article
Show Figures

Figure 1

Back to TopTop