Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,269)

Search Parameters:
Keywords = excited state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3338 KB  
Article
Hierarchical Fuzzy-Adaptive Position Control of an Active Mass Damper for Enhanced Structural Vibration Suppression
by Omer Saleem, Massimo Leonardo Filograno, Soltan Alharbi and Jamshed Iqbal
Mathematics 2025, 13(17), 2816; https://doi.org/10.3390/math13172816 (registering DOI) - 2 Sep 2025
Abstract
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the [...] Read more.
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the baseline regulator. To address the limitations of this baseline PID controller under varying seismic excitations, an auxiliary fuzzy adaptation layer is integrated to adjust the state-weighting matrices of the LQR performance index dynamically. The online modification of the state weightages alters the Riccati equation’s solution, thereby updating the PID gains at each sampling instant. The fuzzy adaptive mechanism modulates the said weighting parameters as nonlinear functions of the classical displacement error and normalized acceleration. Normalized acceleration provides fast, scalable, and effective feedback for vibration mitigation in structural control using AMDs. By incorporating the system’s normalized acceleration into the adaptation scheme, the controller achieves improved self-tuning, allowing it to respond efficiently and effectively to changing conditions. The hierarchical design enables robust real-time PID gain adaptation while maintaining the controller’s asymptotic stability. The effectiveness of the proposed controller is validated through customized MATLAB/SIMULINK-based simulations. Results demonstrate that the proposed adaptive PID controller significantly outperforms the baseline PID controller in mitigating structural vibrations during seismic events, confirming its suitability for intelligent structural control applications. Full article
Show Figures

Figure 1

12 pages, 2469 KB  
Article
Fluorescence Lifetime as a Ruler: Quantifying Sm3+ Doping Levels in Na4La2 (CO3)5 Crystals via Time-Resolved Luminescence Decay
by Shijian Sun, Mengquan Liu, Zheng Li, Junqiang Cheng and Dechuan Li
Coatings 2025, 15(9), 1012; https://doi.org/10.3390/coatings15091012 - 1 Sep 2025
Abstract
Hollow dendritic Na4La2(CO3)5 crystals doped with Sm3+ ions were synthesized with sodium carbonate using a hydrothermal method. The unique lifetime of Sm3+ enables the optical measurement of luminescent ion content. The X-ray diffraction spectrum [...] Read more.
Hollow dendritic Na4La2(CO3)5 crystals doped with Sm3+ ions were synthesized with sodium carbonate using a hydrothermal method. The unique lifetime of Sm3+ enables the optical measurement of luminescent ion content. The X-ray diffraction spectrum indicates that the nanocrystals maintain structural stability with a hexagonal arrangement, even when the concentration of Sm3+ reaches 50 at.%. As the concentration of Sm3+ increases, the emission intensity of Na4(La1−xSmx)2(CO3)5 first rises and then falls. The maximum emission intensity of the fluorescent powder occurs at a Sm3+ concentration of 0.04. Beyond this concentration, concentration quenching takes place, primarily due to electric dipole–dipole interactions. Using an excitation wavelength of 404 nm and monitoring at 596 nm, the fluorescence lifetime of Na4(La1−xSmx)2(CO3)5 shows a strong dependence on Sm3+ concentration, which can be described by a precise equation. Over the range of Sm3+ concentrations from 0.005 to 1, the lifetime decreases from 3.126 ms to 0.023 ms. Therefore, optical monitoring of fluorescent powders is crucial for confirming the composition of coatings used in applications such as solid-state lighting and anti-counterfeiting, by utilizing the relationship between lifetime and doping concentration. Full article
Show Figures

Figure 1

20 pages, 9282 KB  
Article
Electromagnetic Vibration Characteristics Analysis of Large-Scale Doubly Fed Induction Machines Under Multiple Operating Conditions
by Haoyu Kang, Yiming Ma, Liyang Liu, Fanqi Huang and Libing Zhou
Machines 2025, 13(9), 777; https://doi.org/10.3390/machines13090777 (registering DOI) - 30 Aug 2025
Viewed by 46
Abstract
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap [...] Read more.
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap regarding generalized vibration analysis models and comprehensive investigations into their steady-state and dynamic vibration performance. To address this challenge, this study develops a universal analytical model for electromagnetic excitation forces in DFIMs using Maxwell’s stress tensor method, explicitly incorporating operational conditions such as rotor eccentricity and load imbalance. Using a 300 MW DFIM as a case study, we employ a hybrid numerical-analytical approach to examine the detrimental effects of harmonic currents generated by rotor-side converters. Furthermore, we systematically analyze how spatial harmonics induced by mechanical faults and temporal harmonics arising from electrical faults collectively influence the electromagnetic vibration behavior. Experimental validation conducted on a 10 MW DFIM prototype through vibration displacement measurements confirms the efficacy of the proposed analytical framework. Full article
Show Figures

Figure 1

32 pages, 16601 KB  
Article
Monte Carlo-Based Risk Analysis of Deep-Sea Mining Risers Under Vessel–Riser Coupling Effects
by Gang Wang, Hongshen Zhou and Qiong Hu
J. Mar. Sci. Eng. 2025, 13(9), 1663; https://doi.org/10.3390/jmse13091663 - 29 Aug 2025
Viewed by 82
Abstract
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser [...] Read more.
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser failure. Using frequency-domain RAOs derived from AQWA and time-domain simulations in OrcaFlex 11.0, we analyze the riser’s effective tension, bending moment, and von Mises stress under a range of wave heights, periods, and directions, as well as varying current and wind speeds. A Monte Carlo simulation framework based on Latin hypercube sampling is used to generate 10,000 sea state scenarios. The response distributions are approximated using probability density functions to assess structural reliability, and global sensitivity is evaluated using a Sobol-based approach. Results show that the wave height and period are the primary drivers of riser dynamic response, both with sensitivity indices exceeding 0.7. Transverse wave directions exert stronger dynamic excitation, and the current speed notably affects the bending moment (sensitivity index = 0.111). The proposed methodology unifies a coupled time-domain simulation, environmental uncertainty analysis, and reliability assessment, enabling clear identification of dominant factors and distribution patterns of extreme riser responses. Additionally, the workflow offers practical guidance on key monitoring targets, alarm thresholds, and safe operation to support design and real-time decision-making. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

25 pages, 5326 KB  
Article
A Para-Substituted 2-Phenoxy-1,10-Phenanthroline Ligand for Lanthanide Sensitization: Asymmetric Coordination and Enhanced Emission from Eu3+, Tb3+, Sm3+ and Dy3+ Complexes
by Joana Zaharieva, Vladimira Videva, Mihail Kolarski, Rumen Lyapchev, Bernd Morgenstern and Martin Tsvetkov
Molecules 2025, 30(17), 3548; https://doi.org/10.3390/molecules30173548 - 29 Aug 2025
Viewed by 92
Abstract
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. [...] Read more.
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. Coordination via the phenanthroline nitrogen atoms, combined with steric asymmetry from the para-methylphenoxy group, induces low-symmetry environments favorable for electric-dipole transitions. Excited-state lifetimes reached 2.12 ms (Eu3+) and 1.12 ms (Tb3+), with quantum yields of 42% and 68%, respectively. The triplet-state energy of L24 (22,741 cm−1) aligns well with emissive levels of Eu3+ and Tb3+, consistent with Latva’s criterion. Fluorescence titrations indicated positively cooperative complexation, with association constants ranging from 0.60 to 1.67. Stark splitting and high 5D07F2/7F1 intensity ratios (R2 = 6.25) confirm the asymmetric coordination field. The para-methylphenoxy substituent appears sufficient to lower coordination symmetry and strengthen electric-dipole transitions, offering a controlled route to enhance photoluminescence in Eu3+ and Tb3+ complexes. Full article
Show Figures

Figure 1

16 pages, 631 KB  
Article
Recoil Energy in Electron Capture Beta Decay and the Search for Sterile Neutrinos
by Lorcan M. Folan, Philip Kazantsev and Vladimir I. Tsifrinovich
Appl. Sci. 2025, 15(17), 9502; https://doi.org/10.3390/app15179502 - 29 Aug 2025
Viewed by 80
Abstract
The left-handed electron neutrino generated in nuclear beta decays may be mixed with a hypothetical right-handed sterile neutrino with a mass much greater than the masses of the mass states of the active (electron, muon, and tau) neutrinos. In electron capture beta decay, [...] Read more.
The left-handed electron neutrino generated in nuclear beta decays may be mixed with a hypothetical right-handed sterile neutrino with a mass much greater than the masses of the mass states of the active (electron, muon, and tau) neutrinos. In electron capture beta decay, the emitted neutrino may sometimes collapse into a sterile neutrino, reducing the recoil energy of the daughter atom. In this paper, we consider the electron capture beta decay of a 7Be atom from the point of view of the possible detection of sterile neutrinos. We study theoretically the recoil energy of the daughter 7Li atom. There are two decay channels for the 7Be atoms: a direct decay to the nuclear ground state of the daughter atom with neutrino radiation and decay to the nuclear excited state of the daughter atom with neutrino radiation, followed by decay to the nuclear ground state with radiation of a γ-ray photon. For the first channel, the exact analytical expression for the recoil kinetic energy of the daughter atom is available in the literature. We derived exact analytical expressions for the recoil kinetic energy in the second decay channel. This recoil energy depends on the angle between the directions of motion of the neutrino and the photon. We point out that for a massless neutrino, the difference between the recoil energy in the first channel and the maximum recoil energy in the second channel is exactly zero. Thus, detection of a finite difference between the two energies would confirm the radiation of a massive neutrino. We also suggest another approach to the detection of massive neutrinos: the difference between the maximum and minimum recoil energies for the second channel changes significantly when a sterile neutrino is radiated. This effect could potentially be used for the detection of a sterile neutrino. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

18 pages, 1966 KB  
Article
Modification of Closed-State Inactivation in Voltage-Gated Sodium Channel Nav1.7 by Two Novel Arachnid Toxins
by John W. Johnson, Hillary G. Rikli and Stephen R. Johnson
Toxins 2025, 17(9), 432; https://doi.org/10.3390/toxins17090432 - 29 Aug 2025
Viewed by 146
Abstract
Venomous invertebrates have provided a large diversity of toxins that selectively and potently modulate ion channels that are indispensable tools for elucidating the structure and underlying mechanisms of these channels. Voltage-gated sodium channels (VGSC) are responsible for the initiation and propagation of action [...] Read more.
Venomous invertebrates have provided a large diversity of toxins that selectively and potently modulate ion channels that are indispensable tools for elucidating the structure and underlying mechanisms of these channels. Voltage-gated sodium channels (VGSC) are responsible for the initiation and propagation of action potentials in excitable cells and represent an important target for a variety of diseases. The Nav1.7 isoform, located in the peripheral nervous system, is central to pain signaling and is under intense investigation as a target for the treatment of pain. Closed-state inactivation (CSI) has been implicated in various disease states, such as arrhythmias and neuropathic pain. The investigation of venom toxins and VGSC CSI is poorly understood. However, many scorpion and spider toxins bind to site 3, characterized by a delay in steady-state inactivation, and interact with domain IV of the channel alpha subunit. In this study, two novel toxins were isolated from the venoms of Heteroctenus junceus and Poecilotheria regalis that demonstrated similar activity to site 3 modulators. Both toxins were shown to inhibit CSI while enhancing the rate at which CSI can occur. Taken together, this study demonstrates the need for additional investigation in CSI as well as the ability for toxins to modulate this phenomenon. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

15 pages, 411 KB  
Article
ECG Biometrics via Dual-Level Features with Collaborative Embedding and Dimensional Attention Weight Learning
by Kuikui Wang and Na Wang
Sensors 2025, 25(17), 5343; https://doi.org/10.3390/s25175343 - 28 Aug 2025
Viewed by 163
Abstract
In recent years, electrocardiogram (ECG) biometrics has received extensive attention and achieved a series of exciting results. In order to achieve optimal ECG biometric recognition, it is crucial to effectively process the original ECG signals. However, most existing methods only focus on extracting [...] Read more.
In recent years, electrocardiogram (ECG) biometrics has received extensive attention and achieved a series of exciting results. In order to achieve optimal ECG biometric recognition, it is crucial to effectively process the original ECG signals. However, most existing methods only focus on extracting features from one-dimensional time series, limiting the discriminability of individual identification to some extent. To overcome this limitation, we propose a novel framework that integrates dual-level features, i.e., 1D (time series) and 2D (relative position matrix) representations, through collaborative embedding, dimensional attention weight learning, and projection matrix learning. Specifically, we leverage collective matrix factorization to learn the shared latent representations by embedding dual-level features to fully mine these two kinds of features and preserve as much information as possible. To further enhance the discrimination of learned representations, we preserve the diverse information for different dimensions of the latent representations by means of dimensional attention weight learning. In addition, the learned projection matrix simultaneously facilitates the integration of dual-level features and enables the transformation of out-of-sample queries into the discriminative latent representation space. Furthermore, we propose an effective and efficient optimization algorithm to minimize the overall objective loss. To evaluate the effectiveness of our learned latent representations, we conducted experiments on two benchmark datasets, and our experimental results show that our method can outperform state-of-the-art methods. Full article
(This article belongs to the Special Issue New Trends in Biometric Sensing and Information Processing)
Show Figures

Figure 1

20 pages, 5494 KB  
Article
An Online Correction Method for System Errors in the Pipe Jacking Inertial Guidance System
by Yutong Zu, Lu Wang, Zheng Zhou, Da Gong, Yuanbiao Hu and Gansheng Yang
Mathematics 2025, 13(17), 2764; https://doi.org/10.3390/math13172764 - 28 Aug 2025
Viewed by 185
Abstract
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the [...] Read more.
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the guidance accuracy. To address the above issues, this study proposes an intelligent online system error correction scheme based on single-axis rotation and data backtracking. The method enhances system observability by actively exciting the sensor states and introducing data reuse technology. Then, a Bayesian optimization algorithm is incorporated to construct a multi-objective function. The algorithm autonomously searches for the optimal values of three key control parameters, thereby constructing an optimal correction strategy. The results show that the inclination accuracy improving by 99.36%. The tool face accuracy improving by 94.05%. The azimuth accuracy improving by 94.42% improvement. By comparing different correction schemes, the proposed method shows better performance in estimating gyro bias. In summary, the proposed method uses single-axis rotation and data backtracking, and can correct system errors in inertial navigation effectively. It has better value for engineering and provides a technical foundation for high-accuracy navigation in tunnel, pipe-jacking, and other complex tasks with low-cost inertial systems. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

11 pages, 1142 KB  
Article
Probing Photoluminescence in Perovskite-Based Polymer Nanocomposite Films
by Jack Francis Renaud, Ashlyn Schlabach, Meenakshi Narayan, Evan Davies, Morgan Gillis, Jack Gugino, Nisreen Nusair, Mark P. S. Krekeler and Mithun Bhowmick
Polymers 2025, 17(17), 2317; https://doi.org/10.3390/polym17172317 - 27 Aug 2025
Viewed by 262
Abstract
Polymer nanocomposites incorporating perovskite (PV) nanoparticles have recently emerged as highly promising materials for optoelectronic and photonic devices. In this work, steady-state and time-resolved photoluminescence (PL) were performed in PV-based polydimethylsiloxane (PDMS) nanocomposite films. The steady-state PL measurements revealed linearly increasing emission as [...] Read more.
Polymer nanocomposites incorporating perovskite (PV) nanoparticles have recently emerged as highly promising materials for optoelectronic and photonic devices. In this work, steady-state and time-resolved photoluminescence (PL) were performed in PV-based polydimethylsiloxane (PDMS) nanocomposite films. The steady-state PL measurements revealed linearly increasing emission as excitation intensities ramped up, followed by a saturation. The optical limiting was scalable through the PV concentrations and is likely due to creation of maximum number of electron–hole (e–h) pairs in the system. The presence of a PDMS altered the multi-exponential PL decay significantly, both in terms of underlying mechanism and the associated timescales. The introduction of PDMS changed a 3-component exponential decay of PV into a 2-component mechanism and reduced the total timescale of decay from 16 ns to ~6 ns. Full article
Show Figures

Figure 1

13 pages, 1175 KB  
Article
Quasi-Degenerate Resonant Eigenstate Doublets of Two Quantum Emitters in a Closed Waveguide
by Ammara Ammara, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe and Debmalya Das
Photonics 2025, 12(9), 862; https://doi.org/10.3390/photonics12090862 - 27 Aug 2025
Viewed by 141
Abstract
The physics of systems of quantum emitters in waveguide quantum electrodynamics is significantly influenced by the relation between their spatial separation and the wavelength of the emitted photons. If the distance that separates a pair of emitters meets specific resonance conditions, the photon [...] Read more.
The physics of systems of quantum emitters in waveguide quantum electrodynamics is significantly influenced by the relation between their spatial separation and the wavelength of the emitted photons. If the distance that separates a pair of emitters meets specific resonance conditions, the photon amplitudes produced from decay may destructively interfere. In an infinite-waveguide setting, this effect gives rise to bound states in the continuum, where a photon remains confined between the emitters. In the case of a finite-length waveguide with periodic boundary conditions, there exist two such relevant distances for a given arrangement of the quantum emitters, leading to states in which a photon is confined to either the shorter or the longer path that connects the emitters. If the ratio of the shorter and the longer path is a rational number, these two kinds of resonant eigenstates are allowed to co-exist for the same Hamiltonian. In this paper, we investigate the existence of quasi-degenerate resonant doublets of a pair of identical emitters coupled to a linear waveguide mode. The states that form the doublet are searched among the ones in which a single excitation tends to remain bound to the emitters. We investigate the spectrum in a finite range around degeneracy points to check whether the doublet remains well separated from the closest eigenvalues in the spectrum. The identification of quasi-degenerate doublets opens the possibility to manipulate the emitters-waveguide system as an effectively two-level system in specific energy ranges, providing an innovative tool for quantum technology tasks. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

9 pages, 1428 KB  
Article
In Situ OBIC Mapping to Investigate Native Defect Dynamics in GaInN/GaN-Based Light-Emitting Diodes
by Dong-Guang Zheng, Jian-Feng Zhang, Hao-Min Yu and Dong-Pyo Han
Photonics 2025, 12(9), 861; https://doi.org/10.3390/photonics12090861 - 27 Aug 2025
Viewed by 169
Abstract
Native defects significantly impair the electro-optical performance of GaInN/GaN-based light-emitting diodes (LEDs). Therefore, precise characterization of their properties, such as energy levels, capture kinetics, capture cross-sections, and spatial distributions, is crucial for understanding their physical origins following improvement in performance. However, modeling the [...] Read more.
Native defects significantly impair the electro-optical performance of GaInN/GaN-based light-emitting diodes (LEDs). Therefore, precise characterization of their properties, such as energy levels, capture kinetics, capture cross-sections, and spatial distributions, is crucial for understanding their physical origins following improvement in performance. However, modeling the impact of various defects on the electrical and optical characteristics of LEDs still remains a complex challenge. This study proposes a laser-based measurement technique for the accurate localization and screening of defects in GaInN/GaN-based LEDs by establishing a correlation model between laser excitation and defect response, which enables real-time monitoring of defect dynamics during device degradation, while simultaneously evaluating the effects of the defect state dynamics on the electro-optical characteristics of LED devices. The experimental results indicate that defects located at different spatial positions lead to distinct degradation mechanisms. Full article
Show Figures

Figure 1

16 pages, 820 KB  
Article
Exploring the Impact of Self-Excited Alfvén Waves on Transonic Winds: Applications in Galactic Outflows
by Bilal Ramzan, Syed Nasrullah Ali Qazi and Chung-Ming Ko
Universe 2025, 11(9), 290; https://doi.org/10.3390/universe11090290 - 26 Aug 2025
Viewed by 241
Abstract
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of [...] Read more.
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of cosmic rays it can effectively diffuse and advect through the thermal plasma which results the excitation of Alfvén waves. We are treating thermal plasma, cosmic rays and self-excited Alfvén waves as fluids and our model is referred as multi-fluid model. We investigate steady-state transonic solutions for four-fluid systems (with forward as well as backward propagating self-excited Alfvén waves) with certain boundary conditions at the base of the potential well. As a reference model, a four-fluid model with cosmic-ray diffusion, wave damping and cooling can be studied together and solution topology can be analyzed with different set of boundary conditions available at the base of the gravitational potential well. We compare cases with enhancing the backward propagating self-excited Alfvén waves pressure and examining the shifting of the transonic point near or far away from the base. In conclusion we argue that the variation of the back-ward propagating self-excited Alfvén waves significantly alters the transonic solutions at the base. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

14 pages, 20914 KB  
Article
Effect of the Non-Magnetic Ion Doping on the Magnetic Behavior of MgCr2O4
by Fuxi Zhou, Zheng He, Donger Cheng, Han Ge, Wenjing Zhang, Xiao Wang, Pengfei Zhou, Wanju Luo, Zhengdong Fu, Xinzhi Liu, Liusuo Wu, Lunhua He, Yanchun Zhao and Erxi Feng
Magnetism 2025, 5(3), 19; https://doi.org/10.3390/magnetism5030019 - 25 Aug 2025
Viewed by 269
Abstract
Geometrically frustrated magnets exhibit exotic excitations due to competing interactions between spins. The spinel compound MgCr2O4, a three-dimensional Heisenberg antiferromagnet, hosts both spin-wave and spin-resonance modes, but the origin of its resonant excitations remains debated. Suppressing magnetic order via [...] Read more.
Geometrically frustrated magnets exhibit exotic excitations due to competing interactions between spins. The spinel compound MgCr2O4, a three-dimensional Heisenberg antiferromagnet, hosts both spin-wave and spin-resonance modes, but the origin of its resonant excitations remains debated. Suppressing magnetic order via non-magnetic doping can help isolate these modes in neutron scattering studies. We synthesized Ga3+ and Cd2+-doped MgCr2O4 via solid-state reaction and analyzed their structure and magnetism. Ga3+ doping (0–20%) causes anomalous lattice shrinkage due to site disorder from Ga3+ occupying both Mg2+ and Cr3+ sites. Magnetically, Ga3+ doping drives the system from the antiferromagnetic order to a spin-glass state, fully suppressing magnetic ordering at 20% doping. In contrast, Cd2+ replaces only Mg2+, expanding the lattice and meantime inducing strong spin-glass behavior. At 10% Cd2+, long-range antiferromagnetic order is entirely suppressed. Thus, 10% Cd-doped MgCr2O4 offers an ideal platform to study the resonant magnetic excitations without any spin-wave interference. Full article
(This article belongs to the Special Issue Research on the Magnetism of Heavy-Fermion Systems)
Show Figures

Figure 1

17 pages, 4213 KB  
Article
Physical Mechanisms of Linear and Nonlinear Optical Responses in Ferrocene-Embedded Cycloparaphenylenes
by Gang Zhang, Qianqian Wang, Yi Zou, Ying Jin and Jingang Wang
Chemistry 2025, 7(5), 136; https://doi.org/10.3390/chemistry7050136 - 25 Aug 2025
Viewed by 273
Abstract
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic [...] Read more.
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic structure characteristics of Fc-[8]CPP and Fc-[11]CPP. Using density functional theory (DFT) and time-dependent DFT (TD-DFT), the π-electron delocalization properties and optical behaviors of these molecules were analyzed. Furthermore, their responses to external electromagnetic fields were explored through electronic circular dichroism (ECD) and Raman spectroscopy, comparing chiral optical responses and electron–vibration coupling effects to elucidate their photophysical properties. The results reveal that the HOMO-LUMO energy gaps of Fc-[8]CPP and Fc-[11]CPP are 5.81 eV and 5.95 eV, respectively, with a slight increase as ring size grows; Fc-[8]CPP exhibits a stronger chiral response, while Fc-[11]CPP shows reduced chirality due to enhanced symmetry. Finally, TD-DFT calculations demonstrate that their optical absorption is dominated by localized excitations with partial charge transfer contributions. These findings provide a theoretical foundation for designing conjugated macrocyclic materials with superior optoelectronic performance. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

Back to TopTop