Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (715)

Search Parameters:
Keywords = experimental inoculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 238 KB  
Communication
Survival of Pathogenic Escherichia coli Strains in Sand Subjected to Desiccation
by Rocío de la Cuesta, Mariana S. Sanin, Florencia Battaglia, Sandra L. Vasquez Pinochet, Cecilia C. Cundon, Adriana B. Bentancor, María P. Bonino and Ximena Blanco Crivelli
Bacteria 2025, 4(4), 53; https://doi.org/10.3390/bacteria4040053 - 2 Oct 2025
Viewed by 264
Abstract
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are E. coli pathovars of particular relevance to infant health. While the intestinal tract of humans and animals constitutes their primary habitat, these bacteria can also persist in natural environments such as sand. [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are E. coli pathovars of particular relevance to infant health. While the intestinal tract of humans and animals constitutes their primary habitat, these bacteria can also persist in natural environments such as sand. The aim of this study was to evaluate the persistence of STEC and EPEC strains in sand microcosms under controlled conditions of heat and desiccation in order to estimate their viability in this matrix and provide evidence regarding the potential risks associated with the use of sandboxes in public spaces. The study included STEC strains belonging to clinically important serotypes (O26:H11, O103:H2, O111:H8, O121:H19, O145:NM, O157:H7 and O174:H28), animal-derived EPEC strains, and a non-pathogenic E. coli strain (NCTC 12900). The strains were inoculated into sterile sand microcosms and maintained at 37 °C. Death curves, persistence in the matrix, presence of virulence genes, and ability to produce biofilm were evaluated. The death and persistence curves varied by serotype; some strains remained viable in the viable but non-culturable state for extended periods. All strains retained their virulence-associated genetic markers throughout the assays. None of the STEC strains was classified as a biofilm producer under the experimental conditions, whereas the two EPEC strains were identified as weak and moderate biofilm producers. However, no association was found between biofilm formation and persistence in the matrix. The findings provide an initial approach and provide relevant evidence of the capacity of STEC and EPEC strains to survive in sand, which could represent a potential risk in recreational environments. Full article
16 pages, 3730 KB  
Article
Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation
by Deli Dong, Huaibing Yao, Maierhaba Aihemaiti, Gulinigeer Ainizirehong, Yang Li, Yuanyuan Yan, Xin Huang, Min Hou and Weidong Cui
Fermentation 2025, 11(10), 551; https://doi.org/10.3390/fermentation11100551 - 24 Sep 2025
Viewed by 410
Abstract
Due to its high content of lignocellulose, cotton stalk is difficult to degrade naturally and utilize effectively, so it is often regarded as waste. In this study, the effects of Pleurotus ostreatus XH005, Lactiplantibacillus plantarum LP-2, and cellulase enzyme on the cotton stalk [...] Read more.
Due to its high content of lignocellulose, cotton stalk is difficult to degrade naturally and utilize effectively, so it is often regarded as waste. In this study, the effects of Pleurotus ostreatus XH005, Lactiplantibacillus plantarum LP-2, and cellulase enzyme on the cotton stalk substrate under aerobic solid-state fermentation (SSF) conditions were investigated, and the metabolites were analyzed to identify potential functional compounds in the cotton-stalk-fermented feed. Preliminary optimization results obtained through single-factor experiments were as follows: fermentation time 14 days, XH005 inoculum size 8.00% (v/m), material-to-water ratio 1:0.50 (v/m), LP-2 inoculum size 2.00% (v/m), and cellulase addition 0.60% (m/m). Based on these single-factor experimental results, XH005 inoculum size, LP-2 inoculum size, material-to-water ratio, and cellulase addition were selected as independent variables. Through response surface methodology (RSM) optimization experiments, 29 experimental groups were designed. Subsequently, based on Box–Behnken analysis of variance (ANOVA) of lignin and cellulose content, along with contour and response surface plots, the optimal aerobic solid-state fermentation parameters were determined as follows: fermentation time 14 days, XH005 inoculum: 7.00% (v/m), material-to-water ratio: 1:0.55 (v/m), LP-2 inoculum: 2.00% (v/m), and cellulase enzyme addition: 0.65% (m/m). Results showed that compared with the control group (CK), the optimized group exhibited a 27.65% increase in lignin degradation rate and a 47.14% increase in cellulose degradation rate. Crude protein (CP) content increased significantly, while crude fiber (CF), detergent fiber and mycotoxin contents decreased significantly. Non-targeted metabolic analysis indicated that adding cellulase and inoculating Pleurotus ostreatus XH005 and Lactiplantibacillus plantarum LP-2 in aerobic SSF of cotton straw feed produced functionally active substances such as kaempferol (C343), carvone (C709) and trilobatin (C604). Therefore, this study demonstrates that microbial-enzyme co-action SSF significantly enhances the nutritional composition of cotton stalk hydrolysate. Furthermore, this hydrolysate is suitable for the production of functional compounds, endowing the fermented feed with health-promoting properties and enhancing the utilization of cotton processing byproducts in the feed industry. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

21 pages, 6218 KB  
Article
Exogenous Application of Applied Microbial Agents to Alleviate Salt Stress on ‘Pinot Noir’ Grapes and Improve Fruit Yield and Quality
by Zhilong Li, Lei Ma, Guojie Nai, Zhihui Pu, Jingrong Zhang, Sheng Li, Bing Wu and Shaoying Ma
Agriculture 2025, 15(18), 1960; https://doi.org/10.3390/agriculture15181960 - 17 Sep 2025
Viewed by 297
Abstract
Microbial inoculants, as a new type of product that combines economic efficiency with ecological sustainability, play an important role in promoting plant growth and development, increasing crop yields, and enhancing plant resistance to abiotic stress. This study used the wine grape cultivar ( [...] Read more.
Microbial inoculants, as a new type of product that combines economic efficiency with ecological sustainability, play an important role in promoting plant growth and development, increasing crop yields, and enhancing plant resistance to abiotic stress. This study used the wine grape cultivar (Vitis viniferaPinot Noir’) as experimental material to systematically investigate the effects of microbial inoculants on the soil–leaf–fruit system during the late growth stage of grapes under salt stress conditions (200 mM NaCl). This study analyzed the regulatory effects of microbial inoculants on soil physicochemical properties, leaf physiological and biochemical characteristics, as well as fruit yield and quality. The results showed that salt stress significantly inhibited the growth of Pinot Noir grapes. However, the application of microbial inoculants effectively alleviated the negative effects of salt stress. By enhancing the plant’s antioxidant defense capacity and regulating physiological metabolic pathways such as osmotic balance, the inoculants significantly mitigated the inhibitory effect of salt stress on fruit development. Notably, the S+JH treatment group demonstrated particularly outstanding results, with hundred-berry weight, single-bunch weight, and yield per plant increasing significantly by 15.96%, 12.47%, and 28.93%, respectively, compared to the salt stress group (S). Additionally, this treatment also stabilized free amino acid content and suppressed excessive organic acid synthesis. This study provides new technical insights into the application of microbial inoculants for saline-alkali land improvement and stress-resistant cultivation of horticultural crops such as grapes, holding significant practical value for promoting the sustainable development of the grape industry in saline-alkali regions. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Horticultural Crops)
Show Figures

Figure 1

19 pages, 2506 KB  
Article
Evaluation of the Impact of Coinfection and Superinfection on Chikungunya and Mayaro Viruses’ Replication in Aedes aegypti
by Maria Eduarda dos Santos Pereira de Oliveira, Larissa Krokovsky, Maria Júlia Brito Couto, Duschinka Ribeiro Duarte Guedes, George Tadeu Nunes Diniz, Constância Flávia Junqueira Ayres and Marcelo Henrique Santos Paiva
Microorganisms 2025, 13(9), 2165; https://doi.org/10.3390/microorganisms13092165 - 17 Sep 2025
Viewed by 599
Abstract
The simultaneous circulation of multiple arboviruses, often driven by (re)emergence events, poses challenges to public health systems. In Brazil, the co-circulation of Dengue virus (DENV), Zika virus (ZIKV), Chikungunya virus (CHIKV), and Oropouche virus (OROV), together with the potential urban emergence of Mayaro [...] Read more.
The simultaneous circulation of multiple arboviruses, often driven by (re)emergence events, poses challenges to public health systems. In Brazil, the co-circulation of Dengue virus (DENV), Zika virus (ZIKV), Chikungunya virus (CHIKV), and Oropouche virus (OROV), together with the potential urban emergence of Mayaro virus (MAYV), underscores the importance of understanding interactions among these pathogens within their vectors. This study investigated the effects of CHIKV and MAYV coinfection and superinfection on replication dynamics in Aedes aegypti. Mosquitoes were experimentally exposed to CHIKV and MAYV through artificial blood meals under coinfection and superinfection conditions. Infection (IR), dissemination (DR), and transmission (TR) rates, as well as viral loads, were quantified by quantitative reverse transcription PCR (qRT-PCR). To confirm viral replication and assess cytopathic effects, positive saliva samples were inoculated in Vero cells, followed by serial passages and plaque assays for viral titration. The results showed that Ae. aegypti is capable of transmitting both CHIKV and MAYV concurrently during coinfection. However, in superinfection scenarios, prior infection with either virus significantly reduced the transmission efficiency of the subsequently acquired virus, indicating viral interference at the replication level. These findings underscore the complexity of arboviral interactions within vectors and highlight their potential implications for transmission dynamics. Continuous entomo-virological surveillance and targeted research are essential for anticipating and mitigating the impact of arboviral co-circulation in endemic regions. Full article
Show Figures

Figure 1

25 pages, 2287 KB  
Article
Processing High-Solid Sludge Through Hydrothermal Liquefaction to Boost Anaerobic Fermentation and Bioresource Yield
by Chun-Ming Yen, Chang-Lung Han and Jiunn-Jyi Lay
Processes 2025, 13(9), 2891; https://doi.org/10.3390/pr13092891 - 10 Sep 2025
Viewed by 454
Abstract
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing [...] Read more.
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing high-solid organic sludge by examining the removal efficiencies of chemical oxygen demand (COD), total solids (TS), and suspended solids (SS), together with improvements in biogas potential (BGP) and hydrogen yield. Experimental procedures were carried out within a temperature range of 100–210 °C and pressure levels of 20–80 kg/cm2, using a hydrogen-producing microbiome (HMb) and anaerobically digested sludge as inoculants for anaerobic fermentation. Multivariate analysis was applied to investigate the influence of temperature and pressure on COD, TS, and SS removal rates as well as BGP, while a series of batch tests further confirmed the effects of these parameters on fermentation outcomes. Findings revealed that COD, SS, and TS removal efficiencies reached 90.6%, 91.5%, and 87.4%, respectively, under conditions of 100 °C and 60 kg/cm2. The maximum biogas potential (BGP) of approximately 500 mL was attained at 180 °C, whereas hydrogen production demonstrated substantial enhancement within the HTL pressure range of 40–60 kg/cm2, decreasing beyond this range. Additionally, total dissolved solids (TDS) reached a peak concentration of 389 g/L under conditions of 180 °C and 40 kg/cm2, emphasizing HTL’s positive impact on enhancing methane fermentation efficiency. These findings demonstrate that HTL pretreatment, when operated under optimized temperature and pressure conditions, offers a promising approach for enhancing both waste reduction and bioenergy recovery from high-solid organic sludge. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

19 pages, 2273 KB  
Article
Characterization of Pathogenic Bacteria Associated with Wetwood Disease in Populus deltoides
by Yilei Jiang, Qilin Zhang, Xingyi Hu, Zekai Ren, Haiyan Tang and Kebing Du
Forests 2025, 16(9), 1414; https://doi.org/10.3390/f16091414 - 4 Sep 2025
Viewed by 508
Abstract
Populus species are highly susceptible to wetwood formation, which adversely affects tree growth, timber quality, and wood processing. In this study, 28 aerobic and 7 anaerobic bacterial strains were isolated and purified from I-69 poplar trees infected with wetwood using tissue-based pathogen isolation [...] Read more.
Populus species are highly susceptible to wetwood formation, which adversely affects tree growth, timber quality, and wood processing. In this study, 28 aerobic and 7 anaerobic bacterial strains were isolated and purified from I-69 poplar trees infected with wetwood using tissue-based pathogen isolation techniques. Preliminary screening identified three highly pathogenic isolates, including two aerobic strains (AB4 and AB14) and one anaerobic strain (ANAB1), all of which induced wetwood symptoms in 100% of inoculated seedlings with pronounced severity. Through comprehensive characterization, including morphological analysis, physiological–biochemical profiling, and 16S rRNA gene sequencing, these strains were taxonomically classified as Pantoea agglomerans (AB4), Escherichia fergusonii (AB14), and Enterobacter hormaechei (ANAB1). These 35 strains were subsequently inoculated into one-year-old healthy poplar seedlings through three distinct methods, including stem injection, root infection, and leaf infection. Experimental results demonstrated that only stem injection successfully induced wetwood symptoms, while root and leaf infection failed to produce pathological manifestations. For stem-inoculated specimens, pathogenicity was evaluated based on three diagnostic parameters, including heartwood discoloration length, pigmentation intensity, and affected tissue area ratio. Significant variability in symptom severity was observed among different bacterial strains. These findings expand the known diversity of bacterial species associated with wetwood development and provide valuable insights for understanding its etiology and for guiding future disease management strategies. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

22 pages, 1798 KB  
Article
Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use
by Gabriela Cadete de Souza, Jessica Silva Souza, Isabela Faria Silva, Regina Mambeli Barros, Geraldo Lúcio Tiago Filho, Ivan Felipe Silva dos Santos, Diego Mauricio Yepes Maya, Electo Eduardo Silva Lora, Rafael da Silva Capaz, João Victor Rocha de Freitas and Aylla Joani Mendonça de Oliveira Pontes
Fermentation 2025, 11(9), 516; https://doi.org/10.3390/fermentation11090516 - 2 Sep 2025
Viewed by 828
Abstract
This study examines the enhancement of dark sequential fermentation and photofermentation of organic solid waste using magnetite and substrate pre-treatment for hydrogen production within the context of transitioning to cleaner energy sources, particularly low-carbon hydrogen. Experimental dark fermentation and photofermentation apparatuses were used, [...] Read more.
This study examines the enhancement of dark sequential fermentation and photofermentation of organic solid waste using magnetite and substrate pre-treatment for hydrogen production within the context of transitioning to cleaner energy sources, particularly low-carbon hydrogen. Experimental dark fermentation and photofermentation apparatuses were used, utilizing microorganisms to decompose biomass at a mesophilic temperature (35 °C) of Organic Fraction of Municipal Solid Waste (OFMSW), inoculated with UASB sludge and enhanced with magnetite. A dosage of 120 mg/L of magnetite was the most effective, yielding an average value of 4144 mL H2/gVS. Additionally, the analysis revealed that the levelized cost of hydrogen (LCOH) decreases as more organic waste is utilized, making biohydrogen production a sustainable option, reaching USD 5/kg of OFMSW. Ultimately, generating hydrogen from organic waste can help reduce greenhouse gas emissions and promote a cleaner energy matrix. Full article
(This article belongs to the Special Issue Fermentative Biohydrogen Production, 2nd Edition)
Show Figures

Figure 1

14 pages, 5988 KB  
Article
Pathological Characteristics of the Emerging Recombinant African Swine Fever Virus Genotypes I and II in Vietnam
by Viet Dung Nguyen, The Viet Hoang Nguyen, Ngoc Duong Vu, Thi Tam Than, Thi Chau Giang Tran, Thi Thu Hang Vu, Thi Lan Nguyen, Yeon Hee Kim, Aruna Ambagala and Van Phan Le
Pathogens 2025, 14(9), 875; https://doi.org/10.3390/pathogens14090875 - 2 Sep 2025
Viewed by 1943
Abstract
African swine fever (ASF) is a highly lethal disease caused by the ASF virus (ASFV) and poses a significant threat to the swine industry worldwide. This study investigated the pathogenicity and pathological characteristics of VNUA/rASFV/HD1/23, a recently identified recombinant ASFV genotype I/II in [...] Read more.
African swine fever (ASF) is a highly lethal disease caused by the ASF virus (ASFV) and poses a significant threat to the swine industry worldwide. This study investigated the pathogenicity and pathological characteristics of VNUA/rASFV/HD1/23, a recently identified recombinant ASFV genotype I/II in northern Vietnam. Sixteen healthy, seven-week-old pigs divided into four groups were inoculated intramuscularly (IM) with different virus concentrations (102, 103, and 104 HAD50/mL), and their clinical signs, survival times, and pathological alterations were evaluated. All experimentally infected pigs exhibited acute clinical signs characterized by fever, anorexia, depression, diarrhea, and death (4–10 days after injection). The pathological findings included splenomegaly with infarcts, hemorrhagic lymph nodes, and severe pulmonary congestion. The pigs that received the highest dose (104 HAD50/mL) IM showed the earliest onset of clinical signs and the shortest survival time. This study provides important insights into the virulence and the pathological lesions induced by the recombinant genotype I/II ASFV strains that emerged in Vietnam. Full article
(This article belongs to the Special Issue Emergence and Control of African Swine Fever: Second Edition)
Show Figures

Figure 1

24 pages, 15436 KB  
Article
Microbial Community Dynamics and Rice Adaptation in Saline–Alkali Soils: Insights into Plant-Microbe Interactions
by Kai Zhang, Fanrui Duan, Zhen Li, Xinglong Deng and Qilin Ma
Agriculture 2025, 15(17), 1869; https://doi.org/10.3390/agriculture15171869 - 1 Sep 2025
Viewed by 591
Abstract
The saline–alkali soil environment profoundly influences the diversity and composition of soil microbial communities, reshaping their ecological network structures. As a vital staple crop, rice (Oryza sativa L.) plays a crucial role in global food security, highlighting the urgent need to improve [...] Read more.
The saline–alkali soil environment profoundly influences the diversity and composition of soil microbial communities, reshaping their ecological network structures. As a vital staple crop, rice (Oryza sativa L.) plays a crucial role in global food security, highlighting the urgent need to improve its cultivation efficiency in saline–alkali soils. However, the mechanisms by which rice roots recruit beneficial microorganisms from native soils under prolonged saline–alkali stress remain largely unclear, and limited research has been conducted on the effectiveness of microbial inoculants in enhancing rice salt tolerance. This study investigated microbial communities in a saline field subjected to over a decade of continuous rice cultivation. Plant growth-promoting microorganisms were isolated and screened from the rhizosphere. The findings revealed long-term salt stress significantly altered microbial diversity and community composition, although the overall microbial network structure remained resilient. A total of 21 plant growth-promoting strains were identified, indicating that rice roots under sustained salt stress selectively recruit beneficial microbes that contribute to plant growth and stress adaptation. Further experimental validation demonstrated that synthetic microbial communities outperformed individual strains in promoting rice seedling growth under high-salinity conditions, likely due to synergistic microbe and microbe–plant interactions. In conclusion, while saline–alkali conditions disrupt native microbial communities, rice exhibits adaptive capacity by selectively enriching growth-promoting microorganisms. The application of synthetic microbial consortia presents a promising strategy to enhance rice resilience and productivity in saline–alkali environments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 3619 KB  
Article
Synergistic Effects of Biochar and Bacillus thuringiensis NL-11 on Ophiopogon japonicus Growth and Soil Microbial Diversity in Trampled Urban Forest Soils
by Qianqian Liu, Hui Nie, Xiaorui Sun, Lina Dong, Liu Xiang, Jinchi Zhang and Xin Liu
Microorganisms 2025, 13(9), 2004; https://doi.org/10.3390/microorganisms13092004 - 27 Aug 2025
Viewed by 603
Abstract
Bare soil expansion in urban forests, driven by persistent high-intensity trampling, degrades both macro-scale natural resources and micro ecological conditions. Targeted interventions are therefore essential. In this study, trampled bare ground in forest parks and artificially cultivated Ophiopogon japonicus were used as experimental [...] Read more.
Bare soil expansion in urban forests, driven by persistent high-intensity trampling, degrades both macro-scale natural resources and micro ecological conditions. Targeted interventions are therefore essential. In this study, trampled bare ground in forest parks and artificially cultivated Ophiopogon japonicus were used as experimental models We employed trampled bare ground in forest parks as well as artificially cultivated O. japonicus as experimental models. Five treatments were implemented: enclosure control (CK), ploughing (F), Bacillus thuringiensis NL-11 application (J), biochar addition (C), and co-application of B. thuringiensis NL-11 with biochar (JC). Our results indicate that, compared with CK, biochar treatments reduced soil bulk density by 30%, increased soil porosity by 89%, and improved water-holding capacity. The soil nitrate nitrogen content in the NL-11 treatment was increased by 113.8% compared with CK, while the co-application of NL-11 with biochar exhibited the highest sucrase and urease activities. Notably, the co-application of B. thuringiensis NL-11 with biochar exhibited the most pronounced effects on aboveground biomass, plant height, and root development, followed by the B. thuringiensis NL-11 treatment. Microbial β-diversity shifts under co-application of B. thuringiensis NL-11 with biochar treatment strongly correlated with soil enzyme activation and plant growth enhancement (Mantel test, p < 0.05). Correlation analysis confirmed that exogenous nutrient inputs significantly influenced enzyme activities, thereby promoting plant development. These results highlight the effectiveness of integrating microbial inoculation with biochar to restore trampled urban forest soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Q-Switched Nd:YAG Laser Treatment of Nocardia sp. Black Biofilm: Complete Biodeterioration Reversal in Limestone Heritage Conservation
by Shimaa Ibrahim, Rageh K. Hussein, Hesham Abdulla, Ghada Omar, Sharif Abu Alrub, Paola Grenni and Dina M. Atwa
Int. J. Mol. Sci. 2025, 26(16), 8064; https://doi.org/10.3390/ijms26168064 - 20 Aug 2025
Viewed by 1197
Abstract
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from [...] Read more.
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from deteriorated limestone from the Bastet tomb in Tell Basta, Zagazig City, Egypt, using a Q-switched 1064 nm Nd:YAG laser. Experimental limestone specimens were systematically inoculated with Nocardia sp. under controlled laboratory conditions to simulate biodeterioration processes. Comprehensive testing revealed that a laser fluence of 0.03 J/cm2 with a 5 ns pulse duration, applied under wet conditions with 500 pulses, achieved the complete elimination of the biological black film without damaging the underlying stone substrate. The cleaning efficacy was evaluated through an integrated analytical framework combining stereomicroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and laser-induced plasma spectroscopy (LIPS). These analyses demonstrated a remarkable transformation from a compromised mineralogical composition dominated by gypsum (62%) and anhydrite (13%) to a restored state of 98% calcite, confirming the laser treatment’s effectiveness in reversing biodeterioration processes. SEM micrographs revealed the complete elimination of mycelial networks that had penetrated to depths between 984 μm and 1.66 mm, while LIPS analysis confirmed the restoration of elemental signatures to near-control levels. The successful application of LIPS for real-time monitoring during cleaning provides a valuable tool for preventing overcleaning, addressing a significant concern in laser conservation interventions. This research establishes evidence-based protocols for the non-invasive removal of Nocardia-induced black biofilms from limestone artifacts, offering conservation professionals a precise, effective, and environmentally sustainable alternative to traditional chemical treatments for preserving irreplaceable cultural heritage. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 1774 KB  
Article
Study on the Effect of pH Modulation on Lactic Acid Production by Electro-Fermentation of Food Waste
by Nuohan Wang, Jianguo Liu, Yongsheng Li, Yuanyuan Ren, Xiaona Wang, Tianlong Zheng and Qunhui Wang
Sustainability 2025, 17(15), 7160; https://doi.org/10.3390/su17157160 - 7 Aug 2025
Viewed by 820
Abstract
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro [...] Read more.
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro electric field to the conventional LA fermentation process and performing open-ended electro-fermentation (EF) without sterilization and lactobacilli inoculation. Furthermore, the effects of pH adjustment on LA production were examined. The findings demonstrated that electrical stimulation enhances the electron transfer rate within the system, accelerates REDOX reactions, and thereby intensifies the lactic acid production process. The pH-regulated group produced LA and dissolved organic materials at considerably higher rates than the control group, which did not receive any pH modification. The maximum LA concentration and organic matter dissolution in the experimental group, where the pH was set to 7 every 12 h of fermentation, were 33.9 and 38.4 g/L, respectively. These values were 208 and 203% higher than those in the control group, indicating that the pH adjustment greatly aided the solubilization and hydrolysis of macromolecules. Among the several hydrolyzing bacteria (Actinobacteriota) that were enriched, Lactobacillus predominated, but Bifidobacterium also became a major genus in the neutral-acidic environment, and its abundance grew dramatically. This study provides a scientific basis for optimizing the LA process of FW. Full article
Show Figures

Graphical abstract

15 pages, 1321 KB  
Article
Detection of Cathelicidin-1 and Cathelicidin-2 Biomolecules in the Milk of Goats and Their Use as Biomarkers for the Diagnosis of Mastitis
by Maria V. Bourganou, Dimitra V. Liagka, Konstantinos Vougas, Daphne T. Lianou, Natalia G. C. Vasileiou, Konstantina S. Dimoveli, Antonis P. Politis, Nikos G. Kordalis, Efthymia Petinaki, Vasia S. Mavrogianni, George Th. Tsangaris, George C. Fthenakis and Angeliki I. Katsafadou
Animals 2025, 15(15), 2301; https://doi.org/10.3390/ani15152301 - 6 Aug 2025
Viewed by 555
Abstract
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the [...] Read more.
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the evaluation of the presence of cathelicidin proteins in the bulk-tank milk from goat and sheep farms. In an experimental study, after inoculation of Staphylococcus simulans into a mammary gland of goats, bacteriological and cytological examinations of milk samples, as well as proteomics examinations [two-dimensional gel electrophoresis analysis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis] were performed sequentially, from 4 to 48 h post-challenge. Cathelicidin-1 and cathelicidin-2 were detected consistently in milk samples obtained throughout the study, and spot optical densities obtained from PDQuest v.8.0 were recorded. Associations were calculated between the presence of mastitis in a mammary gland at a given timepoint and the detection of cathelicidin proteins in the respective milk sample. All inoculated mammary glands developed mastitis, confirmed by the consistent bacterial isolation from milk samples and the increased somatic cell content therein. Spot optical density of cathelicidin proteins was higher than in samples from contralateral mammary glands. There was a significant association between the presence of mastitis in a mammary gland and the detection of cathelicidin biomolecules in the respective milk sample; the overall accuracy was 81.8% (95% confidence interval: 70.4–90.2%). In a field investigation, the presence of cathelicidin proteins was evaluated in the bulk-tank milk of 32 dairy goat and 57 dairy sheep farms. In this part of the work, no cathelicidin proteins were detected in any bulk-tank milk sample of goat, 0.0% (95% confidence interval: 0.0–10.7%), or sheep, 0.0% (95% confidence interval: 0.0–6.3%), farms. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

14 pages, 635 KB  
Communication
Evaluation of Spleen Swabs for Sensitive and High-Throughput Detection of Classical Swine Fever Virus
by Orie Hochman, Kalhari Goonewardene, Chungwon J. Chung and Aruna Ambagala
Pathogens 2025, 14(8), 767; https://doi.org/10.3390/pathogens14080767 - 3 Aug 2025
Viewed by 615
Abstract
Despite intensive eradication efforts, classical swine fever (CSF) remains endemic across South America, Europe, Asia, and the Caribbean, highlighting the need for more effective surveillance and detection methods. Reverse-transcription real-time polymerase chain reaction (RRT-PCR) is the fastest, and most sensitive assay for detecting [...] Read more.
Despite intensive eradication efforts, classical swine fever (CSF) remains endemic across South America, Europe, Asia, and the Caribbean, highlighting the need for more effective surveillance and detection methods. Reverse-transcription real-time polymerase chain reaction (RRT-PCR) is the fastest, and most sensitive assay for detecting CSF virus (CSFV) genomic material. Previously, we demonstrated that spleen swabs outperformed spleen homogenates for the detection of ASFV genomic material by RRT-PCR. In this study, we compared CSFV genome detection in paired spleen homogenates and spleen swabs generated using 49 frozen and 33 fresh spleen samples collected from experimentally inoculated pigs with acute infection. The results show that the CSFV genome detection in spleen swabs is comparable to that in spleen homogenates. The study also demonstrated that the CSFV genomic material can be detected in spleen swabs during early CSFV infections, and the viruses can be successfully isolated from the swabs. The use of spleen swabs instead of spleen tissue homogenates for CSF detection will reduce labor, decrease costs associated with reporting, and increase the diagnostic throughput. Full article
Show Figures

Figure 1

15 pages, 522 KB  
Article
High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality
by Fabio Buonsenso, Simona Prencipe, Silvia Valente, Giulia Remolif, Jean de Barbeyrac, Alberto Sardo and Davide Spadaro
Horticulturae 2025, 11(8), 883; https://doi.org/10.3390/horticulturae11080883 - 31 Jul 2025
Viewed by 811
Abstract
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity [...] Read more.
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity (higher than 99%, close to saturation), generated by the Xedavap® machine from Xeda International, were effective in maintaining the fruit quality and reducing postharvest rots compared to standard storage conditions, characterized by involved low temperature (1 ± 1 °C) and high relative humidity (98%). Kiwifruits preserved under the experimental conditions exhibited a significantly lower rot incidence after 60 days of storage, with the treated fruits showing 4.48% rot compared to 23.03% under the standard conditions in the first year, using inoculated fruits, and 6.30% versus 9.20% in the second year using naturally infected fruits, respectively. After shelf life (second year only), rot incidence remained significantly lower in the treated fruits (12.80%) compared to the control (42.30%). Additionally, quality analyses showed better parameters when using the Xedavap® system over standard methods. The ripening process was effectively slowed down, as indicated by changes in the total soluble solids, firmness, and titratable acidity compared to the control. These results highlight the potential of ultra-high relative humidity conditions to reduce postharvest rot, extend the shelf life, and enhance the marketability of kiwifruit, presenting a promising and innovative solution for the horticultural industry. Full article
Show Figures

Graphical abstract

Back to TopTop