Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = fast partitioning decision

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2675 KB  
Article
Fast Intra-Coding Unit Partitioning for 3D-HEVC Depth Maps via Hierarchical Feature Fusion
by Fangmei Liu, He Zhang and Qiuwen Zhang
Electronics 2025, 14(18), 3646; https://doi.org/10.3390/electronics14183646 - 15 Sep 2025
Viewed by 305
Abstract
As a new generation 3D video coding standard, 3D-HEVC offers highly efficient compression. However, its recursive quadtree partitioning mechanism and frequent rate-distortion optimization (RDO) computations lead to a significant increase in coding complexity. Particularly, intra-frame coding in depth maps, which incorporates tools like [...] Read more.
As a new generation 3D video coding standard, 3D-HEVC offers highly efficient compression. However, its recursive quadtree partitioning mechanism and frequent rate-distortion optimization (RDO) computations lead to a significant increase in coding complexity. Particularly, intra-frame coding in depth maps, which incorporates tools like depth modeling modes (DMMs), substantially prolongs the decision-making process for coding unit (CU) partitioning, becoming a critical bottleneck in compression encoding time. To address this issue, this paper proposes a fast CU partitioning framework based on hierarchical feature fusion convolutional neural networks (HFF-CNNs). It aims to significantly accelerate the overall encoding process while ensuring excellent encoding quality by optimizing depth map CU partitioning decisions. This framework synergistically captures CU’s global structure and local details through multi-scale feature extraction and channel attention mechanisms (SE module). It introduces the wavelet energy ratio designed for quantifying the texture complexity of depth map CU and the quantization parameter (QP) that reflects the encoding quality as external features, enhancing the dynamic perception ability of the model from different dimensions. Ultimately, it outputs depth-corresponding partitioning predictions through three fully connected layers, strictly adhering to HEVC’s quad-tree recursive segmentation mechanism. Experimental results demonstrate that, across eight standard test sequences, the proposed method achieves an average encoding time reduction of 48.43%, significantly lowering intra-frame encoding complexity with a BDBR increment of only 0.35%. The model exhibits outstanding lightweight characteristics with minimal inference time overhead. Compared with the representative methods under comparison, this method achieves a better balance between cross-resolution adaptability and computational efficiency, providing a feasible optimization path for real-time 3D-HEVC applications. Full article
Show Figures

Figure 1

20 pages, 1942 KB  
Article
Dispatch Instruction Disaggregation for Virtual Power Plants Using Multi-Parametric Programming
by Zhikai Zhang and Yanfang Wei
Energies 2025, 18(15), 4060; https://doi.org/10.3390/en18154060 - 31 Jul 2025
Viewed by 346
Abstract
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP [...] Read more.
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP dispatch instruction disaggregation often require solving complex optimization problems for each instruction, posing challenges for real-time applications. To address this issue, we propose a multi-parametric programming-based method that yields an explicit mapping from any given dispatch instruction to an optimal DER-level deployment strategy. In our approach, a parametric optimization model is formulated to minimize the dispatch cost subject to DER operational constraints. By applying Karush–Kuhn–Tucker (KKT) conditions and recursively partitioning the DERs’ adjustable capacity space into critical regions, we derive analytical expressions that directly map dispatch instructions to their corresponding resource allocation strategies and optimal scheduling costs. This explicit solution eliminates the need to repeatedly solve the optimization problem for each new instruction, enabling fast real-time dispatch decisions. Case study results verify that the proposed method effectively achieves the cost-efficient and computationally efficient disaggregation of dispatch signals in a VPP, thereby improving its operational performance. Full article
Show Figures

Figure 1

19 pages, 4706 KB  
Article
Load Restoration Based on Improved Girvan–Newman and QTRAN-Alt in Distribution Networks
by Chao Zhang, Qiao Sun, Jiakai Huang, Shiqian Ma, Yan Wang, Hao Chen, Hanning Mi, Jiuxiang Chen and Tianlu Gao
Processes 2025, 13(5), 1473; https://doi.org/10.3390/pr13051473 - 12 May 2025
Viewed by 601
Abstract
With the increasing demand for power supply reliability, efficient load restoration in large-scale distribution networks post-outage scenarios has become a critical challenge. However, traditional methods become computationally prohibitive as network expansion leads to exponential growth of decision variables. This study proposes a multi-agent [...] Read more.
With the increasing demand for power supply reliability, efficient load restoration in large-scale distribution networks post-outage scenarios has become a critical challenge. However, traditional methods become computationally prohibitive as network expansion leads to exponential growth of decision variables. This study proposes a multi-agent reinforcement learning (MARL) framework enhanced by distribution network partitioning to address this challenge. Firstly, an improved Girvan–Newman algorithm is employed to achieve balanced partitioning of the network, defining the state space of each agent and action boundaries within the multi-agent system (MAS). Subsequently, a counterfactual reasoning framework solved by the QTRAN-alt algorithm is incorporated to refine action selection during training, thereby accelerating convergence and enhancing decision-making efficiency during execution. Experimental validation using a 27-bus system and a 70-bus system demonstrates that the proposed QTRAN-alt with the Girvan–Newman method achieves fast convergence and high returns compared to typical MARL approaches. Furthermore, the proposed methodology significantly improves the success rate of full system restoration without violating constraints. Full article
Show Figures

Figure 1

23 pages, 1112 KB  
Article
STL-DCSInformer-ETS: A Hybrid Model for Medium- and Long-Term Sales Forecasting of Fast-Moving Consumer Goods
by Yecheng Ma, Lili He and Junhong Zheng
Appl. Sci. 2025, 15(3), 1516; https://doi.org/10.3390/app15031516 - 2 Feb 2025
Cited by 1 | Viewed by 1496
Abstract
Accurately forecasting sales for fast-moving consumer goods (FMCG) remains a significant challenge due to the volatile and multi-faceted nature of sales data. Existing methods often struggle to capture intricate patterns driven by seasonal trends, external factors, and consumer behavior, hindering effective inventory management [...] Read more.
Accurately forecasting sales for fast-moving consumer goods (FMCG) remains a significant challenge due to the volatile and multi-faceted nature of sales data. Existing methods often struggle to capture intricate patterns driven by seasonal trends, external factors, and consumer behavior, hindering effective inventory management and strategic decision-making. To overcome these challenges, we propose STL-DCSInformer-ETS, a hybrid model that integrates three complementary components: STL decomposition, an enhanced DCSInformer model, and the ETS model. The model uses monthly sales data from a FMCG company, with key features including sales volume, product prices, promotional activities, and regulatory factors such as holidays, geographical information, consumer behavior, product factors, etc. STL decomposition partitions time-series data into trend, seasonal, and residual components, reducing data complexity and enabling more targeted forecasting. The enhanced DCSInformer employs dilated causal convolution and a multi-scale feature extraction mechanism to capture long-term dependencies and short-term variations effectively. Meanwhile, the ETS model specializes in modeling seasonal patterns, further refining forecasting precision. To further improve predictive performance, the Random Forest-based Recursive Feature Elimination (RF-RFE) method is applied to optimize feature selection. RF-RFE identifies key predictive factors from multiple dimensions, such as time, geography, and economy, which significantly influence forecasting accuracy. Through numerical experiments, the method demonstrates excellent performance by achieving a 35.9% reduction in Mean Squared Error and a 21.4% decrease in Mean Absolute Percentage Error, significantly outperforming traditional methods. Furthermore, the model effectively captures both medium- and long-term sales trends while addressing short-term fluctuations, leading to more accurate forecasting and improved decision-making for fast-moving consumer goods. This research provides new theoretical insights into hybrid forecasting models and practical solutions for optimizing inventory management and strategic planning in the FMCG industry. Full article
Show Figures

Figure 1

16 pages, 433 KB  
Article
A Fast Coding Unit Partitioning Decision Algorithm for Versatile Video Coding Based on Gradient Feedback Hierarchical Convolutional Neural Network and Light Gradient Boosting Machine Decision Tree
by Fangmei Liu, Jiyuan Wang and Qiuwen Zhang
Electronics 2024, 13(24), 4908; https://doi.org/10.3390/electronics13244908 - 12 Dec 2024
Viewed by 1015
Abstract
Video encoding technology is a foundational component in the advancement of modern technological applications. The latest standard in universal video coding, H.266/VVC, features a quad-tree with nested multi-type tree (QTMT) partitioning structure, which represents an improvement over its predecessor, High-Efficiency Video Coding (H.265/HEVC). [...] Read more.
Video encoding technology is a foundational component in the advancement of modern technological applications. The latest standard in universal video coding, H.266/VVC, features a quad-tree with nested multi-type tree (QTMT) partitioning structure, which represents an improvement over its predecessor, High-Efficiency Video Coding (H.265/HEVC). This configuration facilitates adaptable block segmentation, albeit at the cost of heightened encoding complexity. In view of the aforementioned considerations, this paper puts forth a deep learning-based approach to facilitate CU partitioning, with the aim of supplanting the intricate CU partitioning process observed in the Versatile Video Coding Test Model (VTM). We begin by presenting the Gradient Feedback Hierarchical CNN (GFH-CNN) model, an advanced convolutional neural network derived from the ResNet architecture, enabling the extraction of features from 64 × 64 coding unit (CU) blocks. Following this, a hierarchical network diagram (HND) is crafted to depict the delineation of partition boundaries corresponding to the various levels of the CU block’s layered structure. This diagram maps the features extracted by the GFH-CNN model to the partitioning at each level and boundary. In conclusion, a LightGBM-based decision tree classification model (L-DT) is constructed to predict the corresponding partition structure based on the prediction vector output from the GFH-CNN model. Subsequently, any errors in the partitioning results are corrected in accordance with the encoding constraints specified by the VTM, which ultimately determines the final CU block partitioning. The experimental results demonstrate that, in comparison with VTM-10.0, the proposed algorithm achieves a 48.14% reduction in complexity with only a 0.83% increase in bitrate under the top-three configuration, which is negligible. In comparison, the top-two configuration resulted in a higher complexity reduction of 63.78%, although this was accompanied by a 2.08% increase in bitrate. These results demonstrate that, in comparison to existing solutions, our approach provides an optimal balance between encoding efficiency and computational complexity. Full article
Show Figures

Figure 1

26 pages, 1960 KB  
Article
Fast CU Partition Decision Algorithm Based on Bayesian and Texture Features
by Erlin Tian, Yifan Yang and Qiuwen Zhang
Electronics 2024, 13(20), 4082; https://doi.org/10.3390/electronics13204082 - 17 Oct 2024
Viewed by 1076
Abstract
As internet speeds increase and user demands for video quality grow, video coding standards continue to evolve. H.266/Versatile Video Coding (VVC), as the new generation of video coding standards, further improves compression efficiency but also brings higher computational complexity. Despite the significant advancements [...] Read more.
As internet speeds increase and user demands for video quality grow, video coding standards continue to evolve. H.266/Versatile Video Coding (VVC), as the new generation of video coding standards, further improves compression efficiency but also brings higher computational complexity. Despite the significant advancements VVC has made in compression ratio and video quality, the introduction of new coding techniques and complex coding unit (CU) partitioning methods have also led to increased encoding complexity. This complexity not only extends encoding time but also increases hardware resource consumption, limiting the application of VVC in real-time video processing and low-power devices.To alleviate the encoding complexity of VVC, this paper puts forward a Bayesian and texture-feature-based fast splitting algorithm for coding intraframe bloc of VVC, which aims to reduce unnecessary computational steps, enhance encoding efficiency, and maintain video quality as much as possible. In the stage of rapid coding, the video frames are coded by the original VVC test model (VTM), and Joint Rough Mode Decision (JRMD) evaluation cost is used to update the parameter in the Bayesian algorithm to come and set the two thresholds to judge whether the current coding block continues to be split or not. Then, for coding blocks larger than those satisfying the above threshold conditions, the predominant direction of the texture within the coding block is ascertained by calculating the standard deviations along both the horizontal and vertical axes so as to skip some unnecessary splits in the current coding block patterns. The findings from our experiments demonstrate that our proposed approach improves the encoding rate by 1.40% on average, and the execution time of the encoder has been reduced by 49.50%. The overall algorithm has optimized the VVC intraframe coding technology and reduced the coding complexity of VVC. Full article
Show Figures

Figure 1

19 pages, 9250 KB  
Article
Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints
by Huaiwen He, Xiangdong Yang, Xin Mi, Hong Shen and Xuefeng Liao
Sensors 2024, 24(16), 5141; https://doi.org/10.3390/s24165141 - 8 Aug 2024
Cited by 6 | Viewed by 3547
Abstract
Device-to-device (D2D) is a pivotal technology in the next generation of communication, allowing for direct task offloading between mobile devices (MDs) to improve the efficient utilization of idle resources. This paper proposes a novel algorithm for dynamic task offloading between the active MDs [...] Read more.
Device-to-device (D2D) is a pivotal technology in the next generation of communication, allowing for direct task offloading between mobile devices (MDs) to improve the efficient utilization of idle resources. This paper proposes a novel algorithm for dynamic task offloading between the active MDs and the idle MDs in a D2D–MEC (mobile edge computing) system by deploying multi-agent deep reinforcement learning (DRL) to minimize the long-term average delay of delay-sensitive tasks under deadline constraints. Our core innovation is a dynamic partitioning scheme for idle and active devices in the D2D–MEC system, accounting for stochastic task arrivals and multi-time-slot task execution, which has been insufficiently explored in the existing literature. We adopt a queue-based system to formulate a dynamic task offloading optimization problem. To address the challenges of large action space and the coupling of actions across time slots, we model the problem as a Markov decision process (MDP) and perform multi-agent DRL through multi-agent proximal policy optimization (MAPPO). We employ a centralized training with decentralized execution (CTDE) framework to enable each MD to make offloading decisions solely based on its local system state. Extensive simulations demonstrate the efficiency and fast convergence of our algorithm. In comparison to the existing sub-optimal results deploying single-agent DRL, our algorithm reduces the average task completion delay by 11.0% and the ratio of dropped tasks by 17.0%. Our proposed algorithm is particularly pertinent to sensor networks, where mobile devices equipped with sensors generate a substantial volume of data that requires timely processing to ensure quality of experience (QoE) and meet the service-level agreements (SLAs) of delay-sensitive applications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 2579 KB  
Article
Site-Level Modelling Comparison of Carbon Capture by Mixed-Species Forest and Woodland Reforestation in Australia
by Koen Kramer, Lauren T. Bennett, Remi Borelle, Patrick Byrne, Paul Dettman, Jacqueline R. England, Hielke Heida, Ysbrand Galama, Josephine Haas, Marco van der Heijden, Anna Pykoulas, Rodney Keenan, Vithya Krishnan, Helena Lindorff, Keryn I. Paul, Veronica Nooijen, Jeroen van Veen, Quinten Versmissen and Arnout Asjes
Forests 2024, 15(6), 990; https://doi.org/10.3390/f15060990 - 5 Jun 2024
Cited by 1 | Viewed by 2340
Abstract
Large areas of Australia’s natural woodlands have been cleared over the last two centuries, and remaining woodlands have experienced degradation from human interventions and anthropogenic climate change. Restoration of woodlands is thus of high priority both for government and society. Revegetation of deforested [...] Read more.
Large areas of Australia’s natural woodlands have been cleared over the last two centuries, and remaining woodlands have experienced degradation from human interventions and anthropogenic climate change. Restoration of woodlands is thus of high priority both for government and society. Revegetation of deforested woodlands is increasingly funded by carbon markets, with accurate predictions of site-level carbon capture an essential step in the decision making to restore. We compared predictions of carbon in above-ground biomass using both the IPCC Tier 2 modelling approach and Australia’s carbon accounting model, FullCAM, to independent validation data from ground-based measurements. The IPCC Tier 2 approach, here referred to as the FastTrack model, was adjusted to simulate carbon capture by mixed-species forests for three planting configurations: direct seeding, tubestock planting, and a mix thereof. For model validation, we collected data on above-ground biomass, crown radius, and canopy cover covering an age range of 9–35 years from 20 plantings (n = 6044 trees). Across the three planting configurations, the FastTrack model showed a bias of 2.4 tC/ha (+4.2% of the observed mean AGB), whilst FullCAM had a bias of −24.6 tC/ha (−42.9% of the observed mean AGB). About two-thirds of the error was partitioned to unsystematic error in FastTrack and about one-quarter in FullCAM, depending on the goodness-of-fit metric assessed. Model bias differed strongly between planting configurations. For the FastTrack model, we found that additional canopy cover data estimated from satellite images obtained at different years can improve the carbon capture projections. To attain the highest accuracy of carbon projection at the site level, we recommend using a model with parameters calibrated for the specific planting configuration using local representative data. Full article
(This article belongs to the Special Issue Planted Forests: A Path towards Sustainable Development)
Show Figures

Figure 1

25 pages, 940 KB  
Article
Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications
by Lei Chen, Baoping Cheng, Haotian Zhu, Haowen Qin, Lihua Deng and Lei Luo
Electronics 2024, 13(11), 2150; https://doi.org/10.3390/electronics13112150 - 31 May 2024
Cited by 10 | Viewed by 2423
Abstract
Versatile Video Coding (VVC) achieves impressive coding gain improvement (about 40%+) over the preceding High-Efficiency Video Coding (HEVC) technology at the cost of extremely high computational complexity. Such an extremely high complexity increase is a great challenge for power-constrained applications, such as Internet [...] Read more.
Versatile Video Coding (VVC) achieves impressive coding gain improvement (about 40%+) over the preceding High-Efficiency Video Coding (HEVC) technology at the cost of extremely high computational complexity. Such an extremely high complexity increase is a great challenge for power-constrained applications, such as Internet of video things. In the case of intra coding, VVC utilizes the brute-force recursive search for both the partition structure of the coding unit (CU), which is based on the quadtree with nested multi-type tree (QTMT), and 67 intra prediction modes, compared to 35 in HEVC. As a result, we offer optimization strategies for CU partition decision and intra coding modes to lessen the computational overhead. Regarding the high complexity of the CU partition process, first, CUs are categorized as simple, fuzzy, and complex based on their texture characteristics. Then, we train two random forest classifiers to speed up the RDO-based brute-force recursive search process. One of the classifiers directly predicts the optimal partition modes for simple and complex CUs, while another classifier determines the early termination of the partition process for fuzzy CUs. Meanwhile, to reduce the complexity of intra mode prediction, a fast hierarchical intra mode search method is designed based on the texture features of CUs, including texture complexity, texture direction, and texture context information. Extensive experimental findings demonstrate that the proposed approach reduces complexity by up to 77% compared to the latest VVC reference software (VTM-23.1). Additionally, an average coding time saving of 70% is achieved with only a 1.65% increase in BDBR. Furthermore, when compared to state-of-the-art methods, the proposed method also achieves the largest time saving with comparable BDBR loss. These findings indicate that our method is superior to other up-to-date methods in terms of lowering VVC intra coding complexity, which provides an elective solution for power-constrained applications. Full article
Show Figures

Figure 1

23 pages, 5497 KB  
Article
Fast Decision-Tree-Based Series Partitioning and Mode Prediction Termination Algorithm for H.266/VVC
by Ye Li, Zhihao He and Qiuwen Zhang
Electronics 2024, 13(7), 1250; https://doi.org/10.3390/electronics13071250 - 27 Mar 2024
Cited by 5 | Viewed by 1602
Abstract
With the advancement of network technology, multimedia videos have emerged as a crucial channel for individuals to access external information, owing to their realistic and intuitive effects. In the presence of high frame rate and high dynamic range videos, the coding efficiency of [...] Read more.
With the advancement of network technology, multimedia videos have emerged as a crucial channel for individuals to access external information, owing to their realistic and intuitive effects. In the presence of high frame rate and high dynamic range videos, the coding efficiency of high-efficiency video coding (HEVC) falls short of meeting the storage and transmission demands of the video content. Therefore, versatile video coding (VVC) introduces a nested quadtree plus multi-type tree (QTMT) segmentation structure based on the HEVC standard, while also expanding the intra-prediction modes from 35 to 67. While the new technology introduced by VVC has enhanced compression performance, it concurrently introduces a higher level of computational complexity. To enhance coding efficiency and diminish computational complexity, this paper explores two key aspects: coding unit (CU) partition decision-making and intra-frame mode selection. Firstly, to address the flexible partitioning structure of QTMT, we propose a decision-tree-based series partitioning decision algorithm for partitioning decisions. Through concatenating the quadtree (QT) partition division decision with the multi-type tree (MT) division decision, a strategy is implemented to determine whether to skip the MT division decision based on texture characteristics. If the MT partition decision is used, four decision tree classifiers are used to judge different partition types. Secondly, for intra-frame mode selection, this paper proposes an ensemble-learning-based algorithm for mode prediction termination. Through the reordering of complete candidate modes and the assessment of prediction accuracy, the termination of redundant candidate modes is accomplished. Experimental results show that compared with the VVC test model (VTM), the algorithm proposed in this paper achieves an average time saving of 54.74%, while the BDBR only increases by 1.61%. Full article
(This article belongs to the Special Issue Signal, Image and Video Processing: Development and Applications)
Show Figures

Figure 1

23 pages, 1647 KB  
Article
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing
by Irina Kochetkova, Kseniia Leonteva, Ibram Ghebrial, Anastasiya Vlaskina, Sofia Burtseva, Anna Kushchazli and Konstantin Samouylov
Future Internet 2024, 16(1), 18; https://doi.org/10.3390/fi16010018 - 31 Dec 2023
Cited by 1 | Viewed by 3035
Abstract
Fifth-generation (5G) networks provide network slicing capabilities, enabling the deployment of multiple logically isolated network slices on a single infrastructure platform to meet specific requirements of users. This paper focuses on modeling and analyzing resource capacity planning and reallocation for network slicing, specifically [...] Read more.
Fifth-generation (5G) networks provide network slicing capabilities, enabling the deployment of multiple logically isolated network slices on a single infrastructure platform to meet specific requirements of users. This paper focuses on modeling and analyzing resource capacity planning and reallocation for network slicing, specifically between two providers transmitting elastic traffic, such during as web browsing. A controller determines the need for resource reallocation and plans new resource capacity accordingly. A Markov decision process is employed in a controllable queuing system to find the optimal resource capacity for each provider. The reward function incorporates three network slicing principles: maximum matching for equal resource partitioning, maximum share of signals resulting in resource reallocation, and maximum resource utilization. To efficiently compute the optimal resource capacity planning policy, we developed an iterative algorithm that begins with maximum resource utilization as the starting point. Through numerical demonstrations, we show the optimal policy and metrics of resource reallocation for two services: web browsing and bulk data transfer. The results highlight fast convergence within three iterations and the effectiveness of the balanced three-principle approach in resource capacity planning for 5G network slicing. Full article
(This article belongs to the Special Issue Performance and QoS Issues of 5G Wireless Networks and Beyond)
Show Figures

Figure 1

18 pages, 4394 KB  
Article
Efficient CU Decision Algorithm for VVC 3D Video Depth Map Using GLCM and Extra Trees
by Fengqin Wang, Zhiying Wang and Qiuwen Zhang
Electronics 2023, 12(18), 3914; https://doi.org/10.3390/electronics12183914 - 17 Sep 2023
Cited by 2 | Viewed by 1757
Abstract
The new generation of 3D video is an international frontier research hotspot. However, the large amount of data and high complexity are core problems to be solved urgently in 3D video coding. The latest generation of video coding standard versatile video coding (VVC) [...] Read more.
The new generation of 3D video is an international frontier research hotspot. However, the large amount of data and high complexity are core problems to be solved urgently in 3D video coding. The latest generation of video coding standard versatile video coding (VVC) adopts the quad-tree with nested multi-type tree (QTMT) partition structure, and the coding efficiency is much higher than other coding standards. However, the current research work undertaken for VVC is less for 3D video. In light of this context, we propose a fast coding unit (CU) decision algorithm based on the gray level co-occurrence matrix (GLCM) and Extra trees for the characteristics of the depth map in 3D video. In the first stage, we introduce an edge detection algorithm using GLCM to classify the CU in the depth map into smooth and complex edge blocks based on the extracted features. Subsequently, the extracted features from the CUs, classified as complex edge blocks in the first stage, are fed into the constructed Extra trees model to make a fast decision on the partition type of that CU and avoid calculating unnecessary rate-distortion cost. Experimental results show that the overall algorithm can effectively reduce the coding time by 36.27–51.98%, while the Bjøntegaard delta bit rate (BDBR) is only increased by 0.24% on average which is negligible, all reflecting the superior performance of our method. Moreover, our algorithm can effectively ensure video quality while saving much encoding time compared with other algorithms. Full article
Show Figures

Figure 1

18 pages, 2611 KB  
Article
A Low-Complexity Fast CU Partitioning Decision Method Based on Texture Features and Decision Trees
by Yanjun Wang, Yong Liu, Jinchao Zhao and Qiuwen Zhang
Electronics 2023, 12(15), 3314; https://doi.org/10.3390/electronics12153314 - 2 Aug 2023
Cited by 3 | Viewed by 2002
Abstract
The rapid advancement of information technology, particularly in artificial intelligence and communication, is driving significant transformations in video coding. There is a steadily increasing demand for high-definition video in society. The latest video coding standard, versatile video coding (VVC), offers significant improvements in [...] Read more.
The rapid advancement of information technology, particularly in artificial intelligence and communication, is driving significant transformations in video coding. There is a steadily increasing demand for high-definition video in society. The latest video coding standard, versatile video coding (VVC), offers significant improvements in coding efficiency compared with its predecessor, high-efficiency video coding (HEVC). The improvement in coding efficiency is achieved through the introduction of a quadtree with nested multi-type tree (QTMT). However, this increase in coding efficiency also leads to a rise in coding complexity. In an effort to decrease the computational complexity of VVC coding, our proposed algorithm utilizes a decision tree (DT)-based approach for coding unit (CU) partitioning. The algorithm uses texture features and decision trees to efficiently determine CU partitioning. The algorithm can be summarized as follows: firstly, a statistical analysis of the new features of the VVC is carried out. More representative features are considered to extract to train classifiers that match the framework. Secondly, we have developed a novel framework for rapid CU decision making that is specifically designed to accommodate the distinctive characteristics of QTMT partitioning. The framework predicts in advance whether the CU needs to be partitioned and whether QT partitioning is required. The framework improves the efficiency of the decision-making process by transforming the partition decision of QTMT into multiple binary classification problems. Based on the experimental results, it can be concluded that our method significantly reduces the coding time by 55.19%, whereas BDBR increases it by only 1.64%. These findings demonstrate that our method is able to maintain efficient coding performance while significantly saving coding time. Full article
Show Figures

Figure 1

18 pages, 3230 KB  
Article
Fast CU Decision Algorithm Based on CNN and Decision Trees for VVC
by Hongchan Li, Peng Zhang, Baohua Jin and Qiuwen Zhang
Electronics 2023, 12(14), 3053; https://doi.org/10.3390/electronics12143053 - 12 Jul 2023
Cited by 3 | Viewed by 1906
Abstract
Compared with the previous generation of High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC) introduces a quadtree and multi-type tree (QTMT) partition structure with nested multi-class trees so that the coding unit (CU) partition can better match the video texture features. This [...] Read more.
Compared with the previous generation of High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC) introduces a quadtree and multi-type tree (QTMT) partition structure with nested multi-class trees so that the coding unit (CU) partition can better match the video texture features. This partition structure makes the compression efficiency of VVC significantly improved, but the computational complexity is also significantly increased, resulting in an increase in encoding time. Therefore, we propose a fast CU partition decision algorithm based on DenseNet network and decision tree (DT) classifier to reduce the coding complexity of VVC and save more coding time. We extract spatial feature vectors based on the DenseNet network model. Spatial feature vectors are constructed by predicting the boundary probabilities of 4 × 4 blocks in 64 × 64 coding units. Then, using the spatial features as the input of the DT classifier, through the classification function of the DT classifier model, the top N division modes with higher prediction probability are selected, and other division modes are skipped to reduce the computational complexity. Finally, the optimal partition mode is selected by comparing the RD cost. Our proposed algorithm achieves 47.6% encoding time savings on VTM10.0, while BDBR only increases by 0.91%. Full article
Show Figures

Figure 1

18 pages, 2954 KB  
Article
Low-Complexity Fast CU Classification Decision Method Based on LGBM Classifier
by Yanjun Wang, Yong Liu, Jinchao Zhao and Qiuwen Zhang
Electronics 2023, 12(11), 2488; https://doi.org/10.3390/electronics12112488 - 31 May 2023
Cited by 2 | Viewed by 1787
Abstract
At present, the latest video coding standard is Versatile Video Coding (VVC). Although the coding efficiency of VVC is significantly improved compared to the previous generation, standard High-Efficiency Video Coding (HEVC), it also leads to a sharp increase in coding complexity. VVC significantly [...] Read more.
At present, the latest video coding standard is Versatile Video Coding (VVC). Although the coding efficiency of VVC is significantly improved compared to the previous generation, standard High-Efficiency Video Coding (HEVC), it also leads to a sharp increase in coding complexity. VVC significantly improves HEVC by adopting the quadtree with nested multi-type tree (QTMT) partition structure, which has been proven to be very effective. This paper proposes a low-complexity fast coding unit (CU) partition decision method based on the light gradient boosting machine (LGBM) classifier. Representative features were extracted to train a classifier matching the framework. Secondly, a new fast CU decision framework was designed for the new features of VVC, which could predict in advance whether the CU was divided, whether it was divided by quadtree (QT), and whether it was divided horizontally or vertically. To solve the multi-classification problem, the technique of creating multiple binary classification problems was used. Subsequently, a multi-threshold decision-making scheme consisting of four threshold points was proposed, which achieved a good balance between time savings and coding efficiency. According to the experimental results, our method achieved a significant reduction in encoding time, ranging from 47.93% to 54.27%, but only improved the Bjøntegaard delta bit-rate (BDBR) by 1.07%~1.57%. Our method showed good performance in terms of both encoding time reduction and efficiency. Full article
Show Figures

Figure 1

Back to TopTop