Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = fault-tolerant tracking control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10231 KB  
Article
Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances
by Ziyang Zhang, Yang Liu, Pengju Si, Haoxiang Ma and Huan Wang
Drones 2025, 9(9), 630; https://doi.org/10.3390/drones9090630 - 7 Sep 2025
Viewed by 261
Abstract
In this paper, an adaptive sliding mode fault-tolerant control (FTC) scheme is proposed for small Quadrotor Unmanned Aerial Vehicles (QUAVs) used in education and teaching formation in the presence of systematic unknown external disturbances with actuator failures. A radial basis function neural network [...] Read more.
In this paper, an adaptive sliding mode fault-tolerant control (FTC) scheme is proposed for small Quadrotor Unmanned Aerial Vehicles (QUAVs) used in education and teaching formation in the presence of systematic unknown external disturbances with actuator failures. A radial basis function neural network (RBFNN) is employed to handle the nonlinear interaction function, and a fault-tolerant-based NN extended state observer (NNESO) is designed to estimate the unknown external disturbance. Meanwhile, an adaptive fault observer is developed to estimate and compensate for the fault parameters of the system. To achieve satisfactory trajectory tracking performance for the QUAV, an adaptive sliding mode control (SMC) strategy is designed. This strategy mitigates the strong coupling effects among the design parameters within the QUAV formation. The stability of the closed-loop system is rigorously demonstrated by Lyapunov analysis, and the controlled QUAV formation can achieve the desired tracking position. Simulation results verify the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

28 pages, 6585 KB  
Article
Active Fault Tolerant Trajectory-Tracking Control of Autonomous Distributed-Drive Electric Vehicles Considering Steer-by-Wire Failure
by Xianjian Jin, Huaizhen Lv, Yinchen Tao, Jianning Lu, Jianbo Lv and Nonsly Valerienne Opinat Ikiela
Symmetry 2025, 17(9), 1471; https://doi.org/10.3390/sym17091471 - 6 Sep 2025
Viewed by 419
Abstract
In this paper, the concept of symmetry is utilized to design active fault tolerant trajectory-tracking control of autonomous distributed-drive electric vehicles—that is, the construction and the solution of active fault tolerant trajectory-tracking controllers are symmetrical. This paper presents a hierarchical fault tolerant control [...] Read more.
In this paper, the concept of symmetry is utilized to design active fault tolerant trajectory-tracking control of autonomous distributed-drive electric vehicles—that is, the construction and the solution of active fault tolerant trajectory-tracking controllers are symmetrical. This paper presents a hierarchical fault tolerant control strategy for improving the trajectory-tracking performance of autonomous distributed-drive electric vehicles (ADDEVs) under steer-by-wire (SBW) system failures. Since ADDEV trajectory dynamics are inherently affected by complex traffic conditions, various driving maneuvers, and other road environments, the main control objective is to deal with the ADDEV trajectory-tracking control challenges of system uncertainties, SBW failures, and external disturbance. First, the differential steering dynamics model incorporating a 3-DOF coupled system and stability criteria based on the phase–plane method is established to characterize autonomous vehicle motion during SBW failures. Then, by integrating cascade active disturbance rejection control (ADRC) with Karush–Kuhn–Tucker (KKT)-based torque allocation, the active fault tolerant control framework of trajectory tracking and lateral stability challenges caused by SBW actuator malfunctions and steering lockup is addressed. The upper-layer ADRC employs an extended state observer (ESO) to estimate and compensate against uncertainties and disturbances, while the lower-layer utilizes KKT conditions to optimize four-wheel torque distribution to compensate for SBW failures. Simulations validate the effectiveness of the controller with serpentine and double-lane-change maneuvers in the co-simulation platform MATLAB/Simulink-Carsim® (2019). Full article
Show Figures

Figure 1

28 pages, 2429 KB  
Article
Neural Network Disturbance Observer-Based Adaptive Fault-Tolerant Attitude Tracking Control for UAVs with Actuator Faults, Input Saturation, and External Disturbances
by Yan Zhou, Ye Liu, Jiaze Li and Huiying Liu
Actuators 2025, 14(9), 437; https://doi.org/10.3390/act14090437 - 3 Sep 2025
Viewed by 164
Abstract
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast [...] Read more.
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast response and is augmented by a neural network disturbance observer to enhance the adaptability and robustness. Considering input saturation, actuator faults, and external disturbances in the inner loop of attitude angle velocities, the unbalanced input saturation is first converted into a time-varying system with unknown parameters and disturbances using a nonlinear function approximation method. An L1 adaptive fault-tolerant controller is then introduced to compensate for the effects of lumped uncertainties including system uncertainties, actuator faults, external disturbances, and approximation errors, and the stability and performance boundaries are verified by Lyapunov theorem and L1 reference system. Some simulation examples are carried out to demonstrate its effectiveness. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 3781 KB  
Article
Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults
by Yuanbo Su, Renhai Yu, Wanyu Tang and Tieshan Li
J. Mar. Sci. Eng. 2025, 13(8), 1592; https://doi.org/10.3390/jmse13081592 - 20 Aug 2025
Viewed by 445
Abstract
This article investigates the problem of adaptive fault-tolerant trajectory tracking control for a differential-driven unmanned surface vehicle (USV) with propeller faults. A new USV control system considering a propeller servo loop is established, which is composed of kinematics, kinetics including unhealthy surge force [...] Read more.
This article investigates the problem of adaptive fault-tolerant trajectory tracking control for a differential-driven unmanned surface vehicle (USV) with propeller faults. A new USV control system considering a propeller servo loop is established, which is composed of kinematics, kinetics including unhealthy surge force and yaw moment, and propeller motor shaft speed dynamics. Firstly, the control design of the kinematic level derives the virtual surge speed and yaw rate, which can accurately guide the tracking design of the kinetic level. Secondly, by estimating the bound of the unknown propeller fault parameters, the virtual fault-tolerant control laws are constructed in the kinetic level, which can generate the desired motor angular shaft speeds with an active compensation feature. Thirdly, in the control design of the propeller servo loop, the command duty cycles are designed to force the actual motor shaft speeds to track the desired signals produced from the kinetic level. It can be proven that tracking errors are semiglobally ultimately uniformly bounded based on Lyapunov stability theory. Finally, simulations considering single propeller and twin propeller faults prove the validity of the developed method. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

26 pages, 2471 KB  
Article
Fault-Tolerant Tracking Observer-Based Controller Design for DFIG-Based Wind Turbine Affected by Stator Inter-Turn Short Circuit
by Yossra Sayahi, Moez Allouche, Mariem Ghamgui, Sandrine Moreau, Fernando Tadeo and Driss Mehdi
Symmetry 2025, 17(8), 1343; https://doi.org/10.3390/sym17081343 - 17 Aug 2025
Viewed by 472
Abstract
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early [...] Read more.
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early detection is therefore essential to reduce maintenance costs and prevent severe damage to the wind turbine system. To address this, a Fault Detection and Diagnosis (FDD) approach is proposed to identify and assess the severity of ITSC faults in the stator windings. A state-space model of the DFIG under ITSC fault conditions is first developed in the (d,q) reference frame. Based on this model, an Unknown Input Observer (UIO) structured using Takagi–Sugeno (T-S) fuzzy models is designed to estimate the fault level. To mitigate the impact of the fault and ensure continued operation under degraded conditions, a T-S fuzzy fault-tolerant controller is synthesized. This controller enables natural decoupling and optimal power extraction across a wide range of rotor speed variations. Since the effectiveness of the FTC relies on accurate fault information, a Proportional-Integral Observer (PIO) is employed to estimate the ITSC fault level. The proposed diagnosis and compensation strategy is validated through simulations performed on a 3 kW wind turbine system, demonstrating its efficiency and robustness. Full article
(This article belongs to the Special Issue Symmetry, Fault Detection, and Diagnosis in Automatic Control Systems)
Show Figures

Figure 1

19 pages, 3698 KB  
Article
Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications
by Hengrui Cao, Konghao Xu, Li Zhang, Zhongqiu Liu, Ziyang Wang and Haijun Fu
Energies 2025, 18(14), 3857; https://doi.org/10.3390/en18143857 - 20 Jul 2025
Viewed by 321
Abstract
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back [...] Read more.
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back electromotive force (EMF) content of five-phase FIFT-IPM motors, the existing model predictive current fault-tolerant control algorithms fail to effectively track fundamental and third-harmonic currents. This results in high harmonic distortion in the phase current. Hence, this paper innovatively proposes a multi-plane virtual vector model predictive fault-tolerant control strategy that can achieve rapid and effective control of both the fundamental and harmonic planes while ensuring good dynamic stability performance. Additionally, considering that electric agricultural equipment is usually in a multi-disturbance working environment, this paper introduces an adaptive gain sliding-mode disturbance observer. This observer estimates complex disturbances and feeds them back into the control system, which possesses good resistance to complex disturbances. Finally, the feasibility and effectiveness of the proposed control strategy are verified by experimental results. Full article
Show Figures

Figure 1

15 pages, 3342 KB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 319
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

20 pages, 2119 KB  
Article
Robust Trajectory Tracking Fault-Tolerant Control for Quadrotor UAVs Based on Adaptive Sliding Mode and Fault Estimation
by Yukai Wu, Guobi Ling and Yaoke Shi
Computation 2025, 13(7), 162; https://doi.org/10.3390/computation13070162 - 7 Jul 2025
Viewed by 430
Abstract
This paper presents a composite disturbance-tolerant control framework for quadrotor unmanned aerial vehicles (UAVs). By constructing an enhanced dynamic model that incorporates parameter uncertainties, external disturbances, and actuator faults and considering the inherent underactuated and highly coupled characteristics of the UAV, a novel [...] Read more.
This paper presents a composite disturbance-tolerant control framework for quadrotor unmanned aerial vehicles (UAVs). By constructing an enhanced dynamic model that incorporates parameter uncertainties, external disturbances, and actuator faults and considering the inherent underactuated and highly coupled characteristics of the UAV, a novel robust adaptive sliding mode controller (RASMC) is designed. The controller adopts a hierarchical adaptive mechanism and utilizes a dual-loop composite adaptive law to achieve the online estimation of system parameters and fault information. Using the Lyapunov method, the asymptotic stability of the closed-loop system is rigorously proven. Simulation results demonstrate that, under the combined effects of external disturbances and actuator faults, the RASMC effectively suppresses position errors (<0.05 m) and attitude errors (<0.02 radians), significantly outperforming traditional ADRC and LQR control methods. Further analysis shows that the proposed adaptive law enables the precise online estimation of aerodynamic coefficients and disturbance boundaries during actual flights, with estimation errors controlled within ±10%. Moreover, compared to ADRC and LQR, RASMC reduces the settling time by more than 50% and the tracking overshoot by over 70% while using the (tanh(·)) approximation to eliminate chattering. Prototype experiments validate the fact that the method achieves centimeter-level trajectory tracking under real uncertainties, demonstrating the superior performance and robustness of the control framework in complex flight missions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

31 pages, 5327 KB  
Article
Global Fixed-Time Fault-Tolerant Control for Tracked Vehicles with Hierarchical Unknown Input Observers
by Xihao Yan, Dongjie Wang, Aixiang Ma, Weixiong Zheng and Sihai Zhao
Actuators 2025, 14(7), 330; https://doi.org/10.3390/act14070330 - 1 Jul 2025
Viewed by 329
Abstract
This paper addresses the issues of sensor failures and actuator faults in mining tracked mobile vehicles (TMVs) operating in harsh environments by proposing a global fixed-time fault-tolerant control strategy based on a hierarchical unknown input observer structure. First, a kinematic and dynamic model [...] Read more.
This paper addresses the issues of sensor failures and actuator faults in mining tracked mobile vehicles (TMVs) operating in harsh environments by proposing a global fixed-time fault-tolerant control strategy based on a hierarchical unknown input observer structure. First, a kinematic and dynamic model of the TMV is established considering side slip and track slip, and its linear parameter-varying (LPV) model is constructed through parameter-dependent linearization. Then, a distributed structure consisting of four collaborating low-dimensional observers is designed, including a state observer, a disturbance observer, a position sensor fault observer, and a wheel speed sensor fault observer, and the fixed-time convergence of the closed-loop system is proven. Additionally, by equivalently treating actuator faults as power losses, an observer capable of identifying and compensating for motor efficiency losses is designed. Finally, an adaptive fault-tolerant control law is proposed by combining nominal control, disturbance compensation, and sliding mode switching terms, achieving global fixed-time stability and fault tolerance. Experimental results demonstrate that the proposed control system maintains excellent trajectory tracking performance even in the presence of sensor faults and actuator power losses, with tracking errors less than 0.1 m. Full article
Show Figures

Figure 1

26 pages, 5946 KB  
Article
Event-Triggered Fault-Tolerant ADRC for Variable-Load Quadrotor with Prescribed Performance
by Zhichen Li, Qiaoran Wang and Huaicheng Yan
Appl. Sci. 2025, 15(13), 7021; https://doi.org/10.3390/app15137021 - 22 Jun 2025
Viewed by 693
Abstract
This study proposes an event-triggered fault-tolerant active disturbance rejection control (ADRC) method for variable-load quadrotors with prescribed performance. The quadrotor, as a nonlinear and underactuated system, faces challenges such as payload variations, actuator faults, and external disturbances, which degrade trajectory tracking accuracy and [...] Read more.
This study proposes an event-triggered fault-tolerant active disturbance rejection control (ADRC) method for variable-load quadrotors with prescribed performance. The quadrotor, as a nonlinear and underactuated system, faces challenges such as payload variations, actuator faults, and external disturbances, which degrade trajectory tracking accuracy and stability. The proposed approach integrates a cascaded ADRC framework, decoupling the system into position and velocity subsystems, each equipped with extended state observers (ESOs) for real-time disturbance estimation and compensation. To enhance robustness, prescribed performance functions dynamically constrain tracking errors within predefined bounds, while event-triggered mechanisms reduce computational load through condition-based updates of control signals. Additionally, a particle swarm optimization (PSO) algorithm is employed for online parameter tuning, improving adaptability. Theoretical analysis confirms the system stability, and simulation results demonstrate the controller effectiveness in handling actuator faults and variable payloads, ensuring accurate trajectory tracking and reduced resource consumption. The method offers a promising solution for robust and efficient quadrotor control in complex environments. Full article
Show Figures

Figure 1

22 pages, 4043 KB  
Article
Prescribed Performance Sliding Mode Fault-Tolerant Tracking Control for Unmanned Morphing Flight Vehicles with Actuator Faults
by Ziqi Ye, Guangbin Cai, Hui Xu, Yiming Shang and Changhua Hu
Drones 2025, 9(4), 292; https://doi.org/10.3390/drones9040292 - 10 Apr 2025
Cited by 1 | Viewed by 569
Abstract
This article focuses on the prescribed performance sliding mode fault-tolerant control problem for an unmanned morphing flight vehicle (MFV) with actuator faults and composite disturbances during wing deformation. Firstly, the longitudinal nonlinear dynamic model of the unmanned MFV is introduced. Then, a control [...] Read more.
This article focuses on the prescribed performance sliding mode fault-tolerant control problem for an unmanned morphing flight vehicle (MFV) with actuator faults and composite disturbances during wing deformation. Firstly, the longitudinal nonlinear dynamic model of the unmanned MFV is introduced. Then, a control framework is proposed by decomposing the integrated dynamic model into attitude and velocity subsystems, effectively simplifying controller architecture and improving fault tolerance. Further, the constrained tracking errors are systematically transformed into unconstrained counterparts via projection operators to facilitate controller design. For each subsystem, a prescribed performance sliding mode fault-tolerant controller is developed, ensuring both transient performance and steady-state tracking accuracy. Finally, the simulation results verify the feasibility and effectiveness of the proposed fault-tolerant control strategy. Full article
Show Figures

Figure 1

23 pages, 3392 KB  
Article
Adaptive Fault-Tolerant Tracking Control with Global Prescribed Performance Function for the Twin Otter Aircraft System
by Dan Bai, Changliang Lin, Zhiwei Ding, Lin Sun, Xiaoming Xie and Chonglang Lai
Aerospace 2025, 12(4), 311; https://doi.org/10.3390/aerospace12040311 - 6 Apr 2025
Viewed by 436
Abstract
This paper investigates an adaptive fault-tolerant control strategy for the Twin Otter aircraft, aimed at addressing critical challenges arising from system uncertainties and actuator faults. A global prescribed performance function is employed to ensure pre-determined transient and steady-state tracking performance under uncertainties and [...] Read more.
This paper investigates an adaptive fault-tolerant control strategy for the Twin Otter aircraft, aimed at addressing critical challenges arising from system uncertainties and actuator faults. A global prescribed performance function is employed to ensure pre-determined transient and steady-state tracking performance under uncertainties and faults. Differing from existing prescribed performance controllers, the proposed approach is characterized by (1) no limitation on the initial tracking error; (2) no requirement for tracking error normalization; and (3) incorporation of an improved monitoring function. Specifically, this novel monitoring function dynamically adjusts prescribed error bounds based on real-time fault information, thus enhancing flexibility and robustness. Furthermore, fixed-time convergence of the tracking error is rigorously guaranteed, significantly improving system reliability and safety. Although the simplified Twin Otter aircraft model analyzed herein is a second-order parametric strict-feedback system, the theoretical framework extends naturally to higher-order strict-feedback systems. The effectiveness and advantages of the proposed method are validated through theoretical analysis and numerical simulations on a Twin Otter aircraft system with time-varying parameters and actuator faults. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
Show Figures

Figure 1

21 pages, 6753 KB  
Article
Adaptive Sliding Mode Fault-Tolerant Tracking Control for Underactuated Unmanned Surface Vehicles
by Weixiang Zhou, Hongying Cheng, Zihao Chen and Menglong Hua
J. Mar. Sci. Eng. 2025, 13(4), 712; https://doi.org/10.3390/jmse13040712 - 2 Apr 2025
Cited by 1 | Viewed by 555
Abstract
This article proposes an adaptive sliding mode fault-tolerant tracking control scheme for underactuated unmanned surface vehicles (USVs) that suffer from loss of effectiveness and increase in bias input when performing path tracking. First, the mathematical model and fault model of USVs are introduced. [...] Read more.
This article proposes an adaptive sliding mode fault-tolerant tracking control scheme for underactuated unmanned surface vehicles (USVs) that suffer from loss of effectiveness and increase in bias input when performing path tracking. First, the mathematical model and fault model of USVs are introduced. Then, the USV is driven along the planned path by back-stepping and fast terminal sliding mode control. The radial basis function (RBF) neural network is used to approximate the unknown external disturbances caused by wind, waves, and currents, the unmodeled dynamics of the system, the actuator non-executed portions and bias faults. An adaptive law is designed to account for the loss of effectiveness of the thruster. In addition, through the analysis of Lyapunov stability criteria, it is proved that the proposed control method can asymptotically converge the tracking error to zero. Finally, this paper uses a simulation to demonstrate that, when a fault occurs, the tracking effect of the fault-tolerant control method proposed in this paper is almost the same as that without a fault, which proves the effectiveness of the designed adaptive law. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 12220 KB  
Article
Preassigned Fixed-Time Synergistic Constrained Control for Fixed-Wing Multi-UAVs with Actuator Faults
by Jianhua Lu, Zehao Yuan and Ning Wang
Drones 2025, 9(4), 268; https://doi.org/10.3390/drones9040268 - 1 Apr 2025
Viewed by 397
Abstract
This study focuses on the distributed fixed-time fault-tolerant control problem for a network of six-degree-of-freedom (DOF) fixed-wing unmanned aerial vehicles (UAVs), which are subject to full-state constraints and actuator faults. The novelty of the proposed design lies in the incorporation of an enhanced [...] Read more.
This study focuses on the distributed fixed-time fault-tolerant control problem for a network of six-degree-of-freedom (DOF) fixed-wing unmanned aerial vehicles (UAVs), which are subject to full-state constraints and actuator faults. The novelty of the proposed design lies in the incorporation of an enhanced asymmetric time-varying tan-type barrier Lyapunov function (BLF), which is applicable in both constrained and unconstrained scenarios. This function ensures that the UAV states remain within compact sets at all times while achieving fixed-time convergence. Additionally, a fixed-time performance function (FTPF) is developed to eliminate the dependency on exponential functions commonly used in traditional fixed-time control methods. The adverse effects of actuator faults, including lock-in-place and loss of effectiveness, are mitigated through a bounded uniform tracking control design. A rigorous Lyapunov function analysis demonstrates that all closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB), with both velocity and attitude tracking errors converging to residual sets near the origin. Experimental validation tests are conducted to confirm the effectiveness of the theoretical findings. Full article
Show Figures

Figure 1

19 pages, 2561 KB  
Article
Prescribed Performance Bounded-H Control for Flexible-Joint Manipulators Without Initial Condition Restriction
by Ye Zhang, Ruibo Sun and Jie Shang
Sensors 2025, 25(7), 2195; https://doi.org/10.3390/s25072195 - 30 Mar 2025
Viewed by 513
Abstract
Flexible-joint manipulators have a lightweight nature, compact structure, and high flexibility, making them widely applicable in industrial manufacturing, biomedical instruments, and aerospace fields. However, the inherent flexibility of single-link flexible-joint manipulators (SLFJMs) poses substantial control challenges. Compared to traditional control algorithms, prescribed performance [...] Read more.
Flexible-joint manipulators have a lightweight nature, compact structure, and high flexibility, making them widely applicable in industrial manufacturing, biomedical instruments, and aerospace fields. However, the inherent flexibility of single-link flexible-joint manipulators (SLFJMs) poses substantial control challenges. Compared to traditional control algorithms, prescribed performance control (PPC) algorithms provide superior transient response and steady-state performance by defining a prescribed performance function. However, existing PPC algorithms are limited to a specific range of system initial states, which reduces the joint manipulator’s operational workspace and weakens the robustness of the control algorithm. To address this issue, this study proposes a prescribed performance bounded-H fault-tolerant controller for SLFJMs. By designing an improved tangent-type barrier Lyapunov function (BLF), a prescribed performance controller that is independent of the initial state of the SLFJM is developed. An input control function (ICF) is employed to mitigate the impulse response of the control input, ensuring a smooth transition from zero. Furthermore, the improved tangent-type BLF enables the tracking error to rapidly converge to a small neighborhood of zero. Finally, a stabilization control simulation experiment is conducted; the results validate the effectiveness of the proposed prescribed performance bounded-H controller. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop