Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ferrous foundries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 516 KB  
Article
Waste Management in Foundries: The Reuse of Spent Foundry Sand in Compost Production—State of the Art and a Feasibility Study
by Stefano Saetta and Gianluca Fratta
Sustainability 2025, 17(13), 6004; https://doi.org/10.3390/su17136004 - 30 Jun 2025
Viewed by 529
Abstract
The management of spent foundry sand (SFS) presents environmental and operational challenges for foundries. According to the European Union, European foundries generate approximately 9 million tonnes of SFS annually, mainly from the production of ferrous castings (iron and steel). Nowadays, around 25% of [...] Read more.
The management of spent foundry sand (SFS) presents environmental and operational challenges for foundries. According to the European Union, European foundries generate approximately 9 million tonnes of SFS annually, mainly from the production of ferrous castings (iron and steel). Nowadays, around 25% of the spent foundry sand in Europe is recycled for specific applications, primarily in the cement industry. However, the presence of chemical residues limits the application of this solution. A possible alternative for reusing the spent foundry sand is its employment as a raw material in the production of compost. Studies in the literature indicate that the amount of chemical residue present in the sand can be reduced through the composting process, making the final product suitable for different purposes. However, information about the implementation of this technology in industrial contexts is lacking. To address this issue, this paper proposes a techno-economic analysis to assess the feasibility of composting SFS on a large scale, using information gathered during the testing phase of the Green Foundry LIFE project. This project explored the reuse of sand from organic and inorganic binder processes to create compost for construction purposes, which allowed for the final product. Since the new BREF (Best Available Techniques Reference Document) introduced by the European Union at the start of 2025 recommends composting SFS as a way to reduce solid waste from foundries, this initial study can represent practical guidance for both researchers and companies evaluating the adoption of this technology. Full article
Show Figures

Figure 1

12 pages, 1160 KB  
Article
Green Innovation Practices: A Case Study in a Foundry
by Gianluca Fratta, Ivan Stefani, Sara Tapola and Stefano Saetta
J. Manuf. Mater. Process. 2024, 8(3), 111; https://doi.org/10.3390/jmmp8030111 - 26 May 2024
Cited by 4 | Viewed by 2474
Abstract
The foundry industry is responsible for the production of several potentially polluting and hazardous compounds. One of the major sources of pollution is the use of organic binders for the manufacturing of sand cores and sand moulds. To address this problem, in recent [...] Read more.
The foundry industry is responsible for the production of several potentially polluting and hazardous compounds. One of the major sources of pollution is the use of organic binders for the manufacturing of sand cores and sand moulds. To address this problem, in recent years, the use of low-emission products, known as inorganic binders, has been proposed. Their use in ferrous foundries, otherwise, is limited due to some problematic features that complicate their introduction in the manufacturing process, as often happens when a breakthrough innovation is introduced. In light of this, the aim of this work is to provide a Green Innovation Practice (GIP) to manage the introduction of green breakthrough innovations, as previously described, within an existing productive context. This practice was applied to better manage the experimental phase of the Green Casting Life Project, which aims to evaluate the possibility of using inorganic binders for the production of ferrous castings. After describing the state of the art of GIPs and their application in manufacturing contexts, the paper described the proposed GIP and its application to a real case consisting of testing inorganic binders in a ferrous foundry. Full article
Show Figures

Figure 1

15 pages, 2520 KB  
Article
Foundry Sand Source Reduction Options: Life Cycle Assessment Evaluation
by Samuel Ghormley, Robert Williams and Bruce Dvorak
Environments 2020, 7(9), 66; https://doi.org/10.3390/environments7090066 - 29 Aug 2020
Cited by 9 | Viewed by 6934
Abstract
Foundries represent a significant part of the world’s economy and are a large consumer of energy and producer of solid waste. Sand-handling processes can use 5–10% of a foundry’s total energy. The goal of this research was to explore source reduction and waste [...] Read more.
Foundries represent a significant part of the world’s economy and are a large consumer of energy and producer of solid waste. Sand-handling processes can use 5–10% of a foundry’s total energy. The goal of this research was to explore source reduction and waste minimization at a foundry, using both economic and Life Cycle Assessment (LCA) techniques to compare three secondary sand-reclamation options. LCA software modeled all sand processes at a mid-sized ferrous foundry in the USA. The LCA showed all secondary reclamation technologies, while more energy intensive at the foundry, lowered life cycle environmental impacts, including GHG emissions, ecotoxicity, and human health indicators, due primarily to source reduction and corresponding reduction in transportation both from the virgin sand source and to the landfill. Varying transportation distance had a large impact on LCA results to the point where the life cycle benefit of secondary reclamation became a liability in a zero distance scenario. Varying electricity generation to favor greener sources was also examined, but proved to have minimal impact on the LCA results. This research suggests that the greatest reduction of life cycle impacts in the sand-handling processes for a foundry is to find a geographically closer source for virgin sand. Full article
(This article belongs to the Special Issue Pollution Prevention/Environmental Sustainability for Industry)
Show Figures

Figure 1

11 pages, 3267 KB  
Article
Unlocking Sustainability Potentials in Heat Treatment Processes
by Stefan Scharf, Niklas Bergedieck, Eric Riedel, Hans Richter and Norbert Stein
Sustainability 2020, 12(16), 6457; https://doi.org/10.3390/su12166457 - 11 Aug 2020
Cited by 9 | Viewed by 4084
Abstract
Energy consumption, greenhouse gas emissions, environmental impact levels, and the availability of materials as well as their sustainable usage are all topics of high current interest. The energy intensive processes of casting production such as heat treatment are particularly affected by the pursuit [...] Read more.
Energy consumption, greenhouse gas emissions, environmental impact levels, and the availability of materials as well as their sustainable usage are all topics of high current interest. The energy intensive processes of casting production such as heat treatment are particularly affected by the pursuit of sustainability. It has been estimated that up to 20% of the total energy demand in a non-ferrous foundry is required to provide the heat energy necessary during heat treatment processes. This paper addresses the application-oriented development of a sustainable configuration of the heat treatment process at the example of the aluminium-casting alloy A356 (AlSi7Mg0.3). Based on calculations of the physically necessary operating modes and under investigation of previous parameter recommendations, experimental studies were carried out to investigate the effects of various heat treatment parameters on the ultimate mechanical properties of the alloy. Since the achievable mechanical properties of the finished casting are decisive, the static and dynamic casting properties resulting from the heat treatment with optimized process parameters were compared with those of conventional process control. Significant optimization potential is shown for reducing the treatment time and thus lowering the energy consumption. Full article
(This article belongs to the Special Issue Sustainable Manufacturing Processes and Machine Tool Technology)
Show Figures

Figure 1

15 pages, 2973 KB  
Article
Mechanical Properties of Ultra-High Performance Concrete with Partial Utilization of Waste Foundry Sand
by Piotr Smarzewski
Buildings 2020, 10(1), 11; https://doi.org/10.3390/buildings10010011 - 14 Jan 2020
Cited by 39 | Viewed by 7277
Abstract
Waste foundry sand (WFS) is a ferrous and non-ferrous foundry industry by-product, produced in the amount of approximately 700 thousand tons annually in Poland and it is estimated that only a small percentage of this waste is recycled. The study used WFS to [...] Read more.
Waste foundry sand (WFS) is a ferrous and non-ferrous foundry industry by-product, produced in the amount of approximately 700 thousand tons annually in Poland and it is estimated that only a small percentage of this waste is recycled. The study used WFS to produce ultra-high performance concrete (UHPC) as a partial substitute for quartz sand. It was replaced with WFS levels of 0%, 5%, 10%, and 15% by weight of quartz sand content. The UHPC mixtures were produced and tested to determine the compressive strength, flexural strength, splitting tensile strength as well as the modulus of elasticity at 28, 56, and 112 days. Scanning electron microscope (SEM) analysis was done to identify the presence of various compounds and micro-cracks in UHPC with WFS. The results revealed an increase as well as an insignificant decrease in the mechanical properties up to 5% and 10% WFS replacement, respectively. These studies also prove improvement in the microstructure of UHPC up to a 5% WFS level. In all the tested properties in this work, 5% WFS was found to be an apt substitute for quartz sand. Full article
Show Figures

Figure 1

10 pages, 1894 KB  
Article
Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy
by Vadim Selivorstov, Yuri Dotsenko and Konstantin Borodianskiy
Materials 2017, 10(5), 560; https://doi.org/10.3390/ma10050560 - 20 May 2017
Cited by 26 | Viewed by 4918
Abstract
One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, [...] Read more.
One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively. Full article
(This article belongs to the Special Issue Welding, Joining and Casting of Advanced Materials)
Show Figures

Figure 1

Back to TopTop