Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,259)

Search Parameters:
Keywords = final causes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4723 KB  
Article
Study on Production System Optimization and Productivity Prediction of Deep Coalbed Methane Wells Considering Thermal–Hydraulic–Mechanical Coupling Effects
by Sukai Wang, Yonglong Li, Wei Liu, Siyu Zhang, Lipeng Zhang, Yan Liang, Xionghui Liu, Quan Gan, Shiqi Liu and Wenkai Wang
Processes 2025, 13(10), 3090; https://doi.org/10.3390/pr13103090 (registering DOI) - 26 Sep 2025
Abstract
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane [...] Read more.
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane reservoirs and increase their final recoverable reserves, it is urgent to construct a scientific and reasonable drainage system. This study focuses on the deep CBM reservoir in the Daning-Jixian Block of the Ordos Basin. First, a thermal–hydraulic–mechanical (THM) multi-physics coupling mathematical model was constructed and validated against historical well production data. Then, the model was used to forecast production. Finally, key control measures for enhancing well productivity were identified through production strategy adjustment. The results indicate that controlling the bottom-hole flowing pressure drop rate at 1.5 times the current pressure drop rate accelerates the early-stage pressure drop, enabling gas wells to reach the peak gas production earlier. The optimized pressure drop rates for each stage are as follows: 0.15 MPa/d during the dewatering stage, 0.057 MPa/d during the gas production rise stage, 0.035 MPa/d during the stable production stage, and 0.01 MPa/d during the production decline stage. This strategy increases peak daily gas production by 15.90% and cumulative production by 3.68%. It also avoids excessive pressure drop, which can cause premature production decline during the stable phase. Consequently, the approach maximizes production over the entire life cycle of the well. Mechanistically, the 1.5× flowing pressure drop offers multiple advantages. Firstly, it significantly shortens the dewatering and production ramp-up periods. This acceleration promotes efficient gas desorption, increasing the desorbed gas volume by 1.9%, and enhances diffusion, yielding a 39.2% higher peak diffusion rate, all while preserving reservoir properties. Additionally, this strategy synergistically optimizes the water saturation and temperature fields, which mitigates the water-blocking effect. Furthermore, by enhancing coal matrix shrinkage, it rebounds permeability to 88.9%, thus avoiding stress-induced damage from aggressive extraction. Full article
37 pages, 22901 KB  
Article
Image Sand–Dust Removal Using Reinforced Multiscale Image Pair Training
by Dong-Min Son, Jun-Ru Huang and Sung-Hak Lee
Sensors 2025, 25(19), 5981; https://doi.org/10.3390/s25195981 - 26 Sep 2025
Abstract
This study proposes an image-enhancement method to address the challenges of low visibility and color distortion in images captured during yellow sandstorms for an image sensor based outdoor surveillance system. The technique combines traditional image processing with deep learning to improve image quality [...] Read more.
This study proposes an image-enhancement method to address the challenges of low visibility and color distortion in images captured during yellow sandstorms for an image sensor based outdoor surveillance system. The technique combines traditional image processing with deep learning to improve image quality while preserving color consistency during transformation. Conventional methods can partially improve color representation and reduce blurriness in sand–dust environments. However, they are limited in their ability to restore fine details and sharp object boundaries effectively. In contrast, the proposed method incorporates Retinex-based processing into the training phase, enabling enhanced clarity and sharpness in the restored images. The proposed framework comprises three main steps. First, a cycle-consistent generative adversarial network (CycleGAN) is trained with unpaired images to generate synthetically paired data. Second, CycleGAN is retrained using these generated images along with clear images obtained through multiscale image decomposition, allowing the model to transform dust-interfered images into clear ones. Finally, color preservation is achieved by selecting the A and B chrominance channels from the small-scale model to maintain the original color characteristics. The experimental results confirmed that the proposed method effectively restores image color and removes sand–dust-related interference, thereby providing enhanced visual quality under sandstorm conditions. Specifically, it outperformed algorithm-based dust removal methods such as Sand-Dust Image Enhancement (SDIE), Chromatic Variance Consistency Gamma and Correction-Based Dehazing (CVCGCBD), and Rank-One Prior (ROP+), as well as machine learning-based methods including Fusion strategy and Two-in-One Low-Visibility Enhancement Network (TOENet), achieving a Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score of 17.238, which demonstrates improved perceptual quality, and an Local Phase Coherence-Sharpness Index (LPC-SI) value of 0.973, indicating enhanced sharpness. Both metrics showed superior performance compared to conventional methods. When applied to Closed-Circuit Television (CCTV) systems, the proposed method is expected to mitigate the adverse effects of color distortion and image blurring caused by sand–dust, thereby effectively improving visual clarity in practical surveillance applications. Full article
16 pages, 703 KB  
Article
Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia
by Minja Miličić Lazić, Nataša Jović Orsini, Miloš Lazarević, Vukoman Jokanović, Vanja Marjanović and Branimir N. Grgur
Biomedicines 2025, 13(10), 2361; https://doi.org/10.3390/biomedicines13102361 - 26 Sep 2025
Abstract
Background: To overcome the esthetic limitations of dental monolithic zirconia restorations, multichromatic systems were developed to combine improved structural integrity with a natural shade gradient that mimics the optical properties of natural teeth. In response to the clinical demand for time-efficient, i.e., chairside [...] Read more.
Background: To overcome the esthetic limitations of dental monolithic zirconia restorations, multichromatic systems were developed to combine improved structural integrity with a natural shade gradient that mimics the optical properties of natural teeth. In response to the clinical demand for time-efficient, i.e., chairside fabrication of zirconia restorations, rapid sintering protocols have become necessary to adjust clinical efficiency along with material performance. This study addresses the challenges of a rapid sintering protocol related to optical performance and phase transformation of the final restoration and the zirconia–cell interaction. Methods: The influence of a rapid sintering protocol on the color stability of the final dental restoration was evaluated by the CIE L*a*b* color space. Phase transformation was assessed through X-ray diffraction analysis. Cellular behavior was evaluated by measuring wettability, the material’s surface energy, and a cell mitochondrial activity assay on human gingival fibroblasts. Results: Optical measurements demonstrated that the total color change in all layers after rapid sintering was above the perceptibility threshold (ΔE* > 1.2), while only the polished enamel layer (ΔE* = 3.01) exceeded the acceptability threshold (ΔE* > 2.7), resulting in a clinically perceptible mismatch. Results of X-ray diffraction analysis, performed for fixed occupancy at Z0.935Y0.065O0.984, revealed that rapid sintering caused a decrease in the cubic (C-) phase and an increase in the total amount of tetragonal (T-) phases. Conventionally sintered zirconia consists of 54% tetragonal (T-) and 46% cubic (C-) phase, whereas in the speed-sintered specimens, an additional T1 phase was detected (T = 49%; T1 = 27%), along with a reduced cubic fraction (C = 24%). Additionally, a small amount of the monoclinic (M) phase is noticed. Although glazing as a surface finishing procedure resulted in increased hydrophilicity, both polished and glazed surface-treated specimens showed statistically comparable cell adhesion and proliferation (p > 0.05). Conclusions: Rapid sintering induced perceptible color changes only in the enamel layer of multichromatic zirconia, suggesting that even layer-specific alterations may have an impact on the overall esthetic outcome of the final prosthetic restoration. Five times higher heating and cooling rates caused difficulty in reaching equilibrium, leading to changes in lattice parameters and the formation of the metastable T1 phase. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
13 pages, 621 KB  
Article
5-Hydroxymethylfurfural: A Particularly Harmful Molecule Inducing Toxic Lipids and Proteins?
by Joachim Greilberger, Georg Feigl, Matthias Greilberger, Simona Bystrianska and Michaela Greilberger
Molecules 2025, 30(19), 3897; https://doi.org/10.3390/molecules30193897 - 26 Sep 2025
Abstract
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in [...] Read more.
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in presence of metals and/or radicals. Methods: Peroxynitrite (ONOO)-induced chemiluminescence and ONOO nitration of tyrosine residues on BSA using anti-nitro-tyrosine-antibodies were used to measure the protection of 5-HMF against peroxides or nitration compared to vitamin C (VitC). The reductive potential of 5-HMF or VitC on Cu2+ or Fe3 was estimated using the bicinchoninic acid (BCA) or Fenton-complex method. Human plasma was used to measure the generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and total thiols after Fe2+/H2O2 oxidation in the presence of different concentrations of 5-HMF or VitC. Finally, Cu2+ oxidation of LDL after 4 h was carried out with 5-HMF or VitC, measuring the concentration of MDA in LDL with the thiobarbituric assay (TBARS). Results: VitC was 4-fold more effective than 5-HMF in scavenging ONOO to nearly 91.5% at 4 mM, with the exception of 0.16 mM, where the reduction of ONOO by VitC was 3.3-fold weaker compared to 0.16 mM 5-HMF. VitC or 5-HMF at a concentration of 6 mM inhibited the nitration of tyrosine residues on BSA to nearly 90% with a similar course. While 5-HMF reduced free Fe3+ in presence of phenanthroline, forming Fe2+ (phenantroleine)3 [Fe2+(phe)3] or complexed Cu2+(BCA)4 to Cu+(BCA)4 weakly, VitC was 7- to 19-fold effective in doing so over all the used concentrations (0–25 mM). A Fe2+—H2O2 solution mixed with human plasma showed a 6–10 times higher optical density (OD) of MDA or HNE in the presence of 5-HMF compared to VitC. The level of thiols was significantly decreased in the presence of higher VitC levels (1 mM: 198.4 ± 7.7 µM; 2 mM: 160.0 ± 13.4 µM) compared to equal 5-HMF amounts (2562 ± 7.8 µM or 242.4 ± 2.5 µM), whereas the usage of lower levels at 0.25 µM 5-HMF resulted in a significant decrease in thiols (272.4 ± 4.0 µM) compared to VitC (312.3 ± 19.7 µM). Both VitC and 5-HMF accelerated copper-mediated oxidation of LDL equally: while the TBARS levels from 4 h oxidized LDL reached 137.7 ± 12.3 nmol/mg, it was 1.7-fold higher using 6 mM VitC (259.9 ± 10.4 nmol/mg) or 6 mM 5-HMF (239.3 ± 10.2 nmol/mg). Conclusions: 5-HMF appeared to have more pro-oxidative potential compared to VitC by causing lipid peroxidation as well as protein oxidation. Full article
Show Figures

Figure 1

16 pages, 1382 KB  
Article
Primary Care Providers Describe Barriers and Facilitators to Amputation Prevention in Oklahoma
by Austin Milton, Dana Thomas, Freddie Wilson, Blake Lesselroth, Juell Homco, Wato Nsa, Peter Nelson and Kelly Kempe
J. Clin. Med. 2025, 14(19), 6817; https://doi.org/10.3390/jcm14196817 - 26 Sep 2025
Abstract
Background: Although most amputations caused by diabetes and peripheral artery disease (PAD) are preventable, current limb preservation efforts in the United States remain poorly understood. This study aims to identify key barriers and facilitators to limb preservation from the primary care provider [...] Read more.
Background: Although most amputations caused by diabetes and peripheral artery disease (PAD) are preventable, current limb preservation efforts in the United States remain poorly understood. This study aims to identify key barriers and facilitators to limb preservation from the primary care provider (PCP) perspective. We plan to use the insights from this work to promote targeted intervention strategies. Methods: Using a mixed-methods design, an online 5–10 min survey was distributed to Oklahoma primary care providers who could elect to participate further in a semi-structured, audio-recorded interview. Descriptive analysis was used to summarize survey results. Interviews were transcribed and qualitatively analyzed using grounded theory. Donabedian’s structure, process, and outcome framework was used to categorize how each identified barrier and facilitator increases or reduces the risk of limb loss for at-risk patients at the practice level. Finally, we compared and contrasted survey and interview findings. Results: Thirty surveys were completed (approximately 14% response rate), and seven interviews were conducted with PCPs geographically dispersed across Oklahoma. Most clinicians reported in the survey that they see at-risk limbs at least once every 1–2 months (n = 29, 96.7%). Half of clinicians were satisfied or very satisfied with access to vascular surgery (n = 15, 50.0%), interventional specialists (n = 13, 43.3%), and endocrinologists (n = 12, 40.0%). Finally, survey respondents reported that social needs most often affecting their patients with a limb at risk of amputation include income, health education, transportation, and health insurance. Interviews confirmed PCPs frequently see at-risk limbs. We identified thematic barriers to limb preservation that included limited access to specialty care, limited PCP and patient amputation prevention education, and patient social struggles surrounding transportation, finances, and insurance. Patient advocates (community, clinical, or personal), affordable medications, and more time with patients were reported as facilitators in amputation prevention. Conclusions: Oklahoma PCPs frequently see at-risk feet, realize poor access to care, and desire structural change to support excellent preventive care in diabetes and PAD. Limb preservation in Oklahoma is contingent upon shifting from disempowerment to engagement that requires systemic reform, clinical innovation, and community engagement. We identified several intervention strategies, including increasing education for PCPs to empower them to initiate early prevention, improving early identification and preventive therapy for patients at risk for limb loss, and cultivating specialty care access via networking and policy change. Full article
(This article belongs to the Special Issue Vascular Surgery: Current Status and Future Perspectives)
Show Figures

Figure 1

26 pages, 4348 KB  
Article
Identification and Pathway Analysis of SNP Loci Affecting Abdominal Fat Deposition in Broilers
by Dachang Dou, Hengcong Chen, Yaowen Ge, Jiamei Zhou, Cheng Chang, Fuyang Zhang, Shengwei Yang, Zhiping Cao, Peng Luan, Yumao Li and Hui Zhang
Animals 2025, 15(19), 2811; https://doi.org/10.3390/ani15192811 - 26 Sep 2025
Abstract
Excessive abdominal fat deposition accompanying rapid growth in broiler chickens seriously affects production efficiency. Using divergently selected broiler lines from Northeast Agricultural University, we integrated transcriptome sequencing, whole-genome resequencing, and three-dimensional genomic data to identify key SNPs affecting abdominal fat deposition. From 3,850,758 [...] Read more.
Excessive abdominal fat deposition accompanying rapid growth in broiler chickens seriously affects production efficiency. Using divergently selected broiler lines from Northeast Agricultural University, we integrated transcriptome sequencing, whole-genome resequencing, and three-dimensional genomic data to identify key SNPs affecting abdominal fat deposition. From 3,850,758 initial SNPs, 22,721 high-quality SNPs were selected (|ΔAF| ≥ 0.9) and validated to obtain 7341 reliable SNPs. GWAS identified 16 SNPs significantly associated with abdominal fat weight, while LD analysis revealed 22 highly linked SNPs, finally determining 2302 candidate SNPs. Transcriptome analysis identified 825 differentially expressed genes (p ≤ 0.05, |FC| ≥ 1.5). Functional annotation revealed 201 SNPs located in differentially expressed gene regions, including 8 coding SNPs and 193 non-coding SNPs, with an additional 15 SNPs potentially regulating through long-range chromatin interactions. Mechanistic analysis showed that coding SNPs regulate gene expression by altering codon translation rates or mRNA stability, while non-coding SNPs regulate transcription by affecting transcription factor binding. Phenotypic association analysis demonstrated that all 213 SNPs can cause ≥2-fold differences in abdominal fat weight, with 182 SNPs causing ≥3-fold differences. This study successfully identified 213 functional SNPs affecting abdominal fat deposition in broilers and revealed their molecular basis for regulating fat metabolism through multiple mechanisms, providing important genetic markers for low-fat breeding in broilers. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1912 KB  
Case Report
Concomitant Autoimmune Liver Disease and Hepatic Actinomycosis: A Diagnostic Challenge—Brief Report and Review of the Literature
by Giulia Manni, Martina Pambianco, Chiara Sicuro, Erica Franceschini, Alessandra Pivetti, Laura Bertoni, Veronica Bernabucci, Marcello Bianchini, Barbara Lei, Federico Ravaioli and Antonio Colecchia
Int. J. Mol. Sci. 2025, 26(19), 9420; https://doi.org/10.3390/ijms26199420 - 26 Sep 2025
Abstract
Hepatic actinomycosis (HA) and IgG4-related inflammatory pseudotumors are rare and often overlooked causes of liver mass, which can easily be misdiagnosed as primary liver cancer or metastasis. Diagnosis is arduous due to unspecified clinical and radiological features and the fact that histology is [...] Read more.
Hepatic actinomycosis (HA) and IgG4-related inflammatory pseudotumors are rare and often overlooked causes of liver mass, which can easily be misdiagnosed as primary liver cancer or metastasis. Diagnosis is arduous due to unspecified clinical and radiological features and the fact that histology is not always conclusive. In cases of actinomycosis, the use of molecular diagnostic techniques—such as polymerase chain reaction (PCR) for bacterial DNA—can aid in establishing a definitive diagnosis, especially when conventional cultures are non-diagnostic. We present a case report of one of our patients who was incidentally diagnosed with a hepatic lesion presenting aspecific radiological features. Since radiological imaging was inconclusive, a biopsy was performed, and a diagnosis of IgG4 related hepatic inflammatory pseudotumor was then made. Because of the disease progression, during immunosuppressive therapy, our diagnosis was questioned and a new liver biopsy was carried out. At the end, it took three consequent biopsies to finally find out the presence of an actinomyces infection. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 11757 KB  
Article
Geodynamic Evolution of Flat-Slab Subduction of South Tianshan Ocean: Constraints from Devonian Dioritic Porphyrites and Granitoids in the Kumishi Area
by Wenbin Kang, Kai Weng, Xue Zhang, Xiaojian Zhao, Bo Chen and Yongwei Gao
Minerals 2025, 15(10), 1019; https://doi.org/10.3390/min15101019 - 26 Sep 2025
Abstract
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi [...] Read more.
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi area, including whole-rock geochemical data, Sr-Nb-Pb isotopic compositions, zircon U-Pb ages, and zircon Hf isotopic data. Dioritic porphyrites, medium–fine-grained monzogranites, and coarse–medium-grained monzogranites were emplaced at 397 ± 2 Ma, 397 ± 3 Ma, and 395 ± 3 Ma, respectively. The dioritic porphyrites have relatively high Sr contents, low heavy rare earth element (HREE) and Y contents, and high Sr/Y ratios, which are characteristics of adakites. High Al and Na2O contents suggest that the rocks formed through partial melting of subducted oceanic crust. The monzogranites display I-type and subduction-related arc affinities, sourced from a mixed magma of crustal materials and mantle wedge components. The granodiorites were emplaced at 373 ± 3 Ma, and also exhibit pronounced I-type and subduction-related arc affinities. Combined with previous data, our results demonstrate that the studied area of Devonian magmatism records the entire spatiotemporal evolution of subduction of the South Tianshan Ocean slab, from initial shallowing of the subduction angle to flat-slab subduction, followed by final slab rollback. Full article
Show Figures

Figure 1

19 pages, 1897 KB  
Systematic Review
Unveiling the Mechanisms for the Development of Cardiotoxicity Following Chemotherapy Regimens Administration for Primary Colorectal Cancer: A Systematic Review
by Sophia Tsokkou, Ioannis Konstantinidis, Paraskevi Chatzikomnitsa, Menelaos Papakonstantinou, Evdokia Toutziari, Dimitrios Giakoustidis, Theodora Papamitsou, Vasileios Papadopoulos and Alexandros Giakoustidis
Cancers 2025, 17(19), 3129; https://doi.org/10.3390/cancers17193129 - 26 Sep 2025
Abstract
Background/Introduction: Colorectal carcinoma (CRC) belongs to the most commonly diagnosed malignancies to this date, ranking as third across the globe. In addition, CRC remains a leading cause of cancer-related deaths as it is ranked as the second most common cause of mortality. [...] Read more.
Background/Introduction: Colorectal carcinoma (CRC) belongs to the most commonly diagnosed malignancies to this date, ranking as third across the globe. In addition, CRC remains a leading cause of cancer-related deaths as it is ranked as the second most common cause of mortality. Therapeutic strategies for the management and treatment of CRC have made significant progress in the last two decades, with both adjuvant and neoadjuvant approaches playing critical roles in enhancing favorable outcomes with regimens like FOLFOX, CAPOX, and 5-FU-based therapies demonstrating effectiveness. Nevertheless, growing evidence indicates that these therapies may pose a risk of cardiotoxicity development. A systematic review will be conducted to map the mechanistic pathways of chemotherapy-induced in CRC in order to bridge oncology and cardiology perspectives, highlighting emerging diagnostic tools and long-term surveillance gaps. Purpose: The objective of this study is the investigation of the prevalence and characteristics of cardiovascular problems linked to frequently employed chemotherapy regimens, as well as to evaluate existing diagnostic and therapeutic approaches. Methodology: A thorough search across databases, including PubMed (MEDLINE), Embase, and Cochrane Library, was performed to locate articles published up to 2025. The final studies included in the review underwent quality assessment. Results: Fourteen qualifying studies, comprising both prospective trials and case reports from diverse geographies, were included. Cardiovascular outcomes including myocardial strain, arrhythmias, angina, heart failure, and Takotsubo cardiomyopathy were evaluated. The diagnostic methods assessed comprised echocardiography, cardiac biomarkers, and electrocardiograms. In the reviewed trials, chemotherapy-induced cardiotoxicity varied from asymptomatic ventricular strain to serious cardiac complications. The FOLFOX and 5-FU regimens were predominantly linked to adverse cardiac outcomes. Prompt identification by echocardiographic strain imaging and biomarker monitoring facilitated timely intervention. Case studies revealed that, given proper cardiological support, certain patients could safely recommence chemotherapy following recovery. No standardized cardiac screening protocol was identified among the trials. Conclusions: Chemotherapy for colorectal cancer may present considerable cardiovascular hazards, highlighting the necessity for routine cardiac monitoring prior to and throughout treatment. This systematic review promotes collaborative cardio-oncology strategies to reduce risk and enhance therapeutic safety. Full article
(This article belongs to the Special Issue Cardio-Oncology: An Emerging Paradigm in Modern Medicine: 2nd Edition)
Show Figures

Figure 1

18 pages, 667 KB  
Article
Red Pepper Fermentation with Geothermal Mineral Water: Impact on Nutritional Profile and Quality Characteristics
by Anna Wrzodak, Justyna Szwejda-Grzybowska, Wioletta Popińska and Monika Mieszczakowska-Frąc
Agronomy 2025, 15(10), 2279; https://doi.org/10.3390/agronomy15102279 - 26 Sep 2025
Abstract
Red bell pepper (Capsicum annuum L.) is a valuable source of health-promoting phytochemicals and essential minerals. This study investigated the impact of using geothermal mineral water versus tap water as the fermentation medium on the nutritional, physicochemical, and sensory properties of two [...] Read more.
Red bell pepper (Capsicum annuum L.) is a valuable source of health-promoting phytochemicals and essential minerals. This study investigated the impact of using geothermal mineral water versus tap water as the fermentation medium on the nutritional, physicochemical, and sensory properties of two red bell peppers (cultivars ‘Yecla F1’ and ‘Salomon F1’). The results showed that fermentation caused a significant decrease in the content of L-ascorbic acid (by 30–50%), carotenoids (~30%) and polyphenols (by 25–30%), with lower nutrient losses observed in peppers fermented with geothermal water. In addition, fermentation with geothermal water increased the calcium, magnesium, and potassium contents of the peppers compared to tap water. Sensory analysis showed that the pepper cultivars had a greater impact on the overall sensory quality than the fermentation medium or the evaluation time, although geothermal water had a positive effect on the texture of the fermented peppers. These results suggest that geothermal water may be a beneficial alternative to traditional water sources in vegetable fermentation, improving both the nutritional and sensory properties of the final product. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 3898 KB  
Article
Selective Degradation and Inhibition of SARS-CoV-2 3CLpro by MMP14 Reveals a Novel Strategy for COVID-19 Therapeutics
by Hyun Lee, Yunjeong Hwang, Elizabeth J. Mulder, Yuri Song, Calista Choi, Lijun Rong, Dimitri T. Azar and Kyu-Yeon Han
Int. J. Mol. Sci. 2025, 26(19), 9401; https://doi.org/10.3390/ijms26199401 - 26 Sep 2025
Abstract
Novel therapies to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of respiratory coronavirus disease 2019 (COVID-19), would be of great clinical value to combat the current and future pandemics. Two viral proteases, papain-like protease (PLpro) and [...] Read more.
Novel therapies to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of respiratory coronavirus disease 2019 (COVID-19), would be of great clinical value to combat the current and future pandemics. Two viral proteases, papain-like protease (PLpro) and the main protease 3-chymotrypsin-like protease (3CLpro), are vital in processing the SARS-CoV-2 polyproteins (pp1a and pp1ab) and in releasing 16 nonstructural proteins, making them attractive antiviral drug targets. In this study, we investigated the degradation of the SARS-CoV-2 main protease 3CLpro by matrix metalloproteinase-14 (MMP14). MMP14 is known to recognize over 10 distinct substrate cleavage sequences. Through sequence analysis, we identified 17 and 10 putative MMP14 cleavage motifs within the SARS-CoV-2 3CLpro and PLpro proteases, respectively. Despite the presence of potential sites in both proteins, our in vitro proteolysis assays demonstrated that MMP14 selectively binds to and degrades 3CLpro, but not PLpro. This selective proteolysis by MMP14 results in the complete loss of 3CLpro enzymatic activity. In addition, SARS-CoV-2 pseudovirus replication was inhibited in 293 T cells when either full-length MMP14 or its catalytic domain (cat-MMP14) were overexpressed, presumably due to 3CLpro degradation by MMP14. Finally, to prevent MMP14 from degrading off-target proteins, we propose a new recombinant pro-PL-MMP14 construct that can be activated only by another SARS-CoV-2 protease, PLpro. These findings could open the potential of an alternative therapeutic strategy against SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Advances in Metalloproteinase)
Show Figures

Figure 1

39 pages, 1400 KB  
Review
Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery
by Cesar Augusto Roque-Borda, Subham Kumar Vishwakarma, Oswaldo Julio Ramirez Delgado, Heitor Leocadio de Souza Rodrigues, Laura M. D. Primo, Isabella Cardeal Campos, Tulio Spina de Lima, João Perdigão and Fernando Rogério Pavan
Pharmaceuticals 2025, 18(10), 1440; https://doi.org/10.3390/ph18101440 - 25 Sep 2025
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most devastating infectious diseases worldwide, with rising multidrug resistance limiting the effectiveness of conventional treatments. Novel therapeutic approaches are urgently needed to complement or replace existing regimens. Among emerging candidates, antimicrobial peptides [...] Read more.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most devastating infectious diseases worldwide, with rising multidrug resistance limiting the effectiveness of conventional treatments. Novel therapeutic approaches are urgently needed to complement or replace existing regimens. Among emerging candidates, antimicrobial peptides (AMPs) stand out as versatile molecules capable of exerting direct antimycobacterial effects while also modulating the host immune response. This review explores peptide-based strategies against TB, with a focus on four major axes of innovation. First, we examine host-directed pathways, including the vitamin D–cathelicidin axis and other immunomodulatory mechanisms and their regulatory role in the induction of endogenous AMPs such as cathelicidin LL-37, which contributes to host-directed defense. Second, we discuss peptide-based vaccines designed to elicit robust and durable protective immunity, representing a complementary alternative to classical vaccine approaches. Third, we highlight the synergistic potential of AMPs in combination with first-line and second-line anti-TB drugs, aiming to restore or enhance bactericidal activity against resistant strains. Finally, we analyze technological platforms, including nanocarriers and inhalable formulations, that enable targeted pulmonary delivery, improve peptide stability, and enhance bioavailability. By integrating molecular design, immune modulation, and advanced delivery systems, peptide-based strategies provide a multifaceted approach to overcoming the limitations of current TB therapy. Collectively, these advances position AMPs not only as promising standalone agents but also as key components in combination and host-directed therapies, with strong potential to reshape the future clinical management of tuberculosis. Full article
Show Figures

Graphical abstract

21 pages, 2777 KB  
Article
Optimizing Mineral Resources with Automated Mineralogy Techniques: The Case of Colquiri in the Central Andean Tin Belt
by Pura Alfonso, Miguel Ruiz, Marçal Terricabras, Arnau Martínez, Maite Garcia-Valles, Hernan Anticoi, Maria Teresa Yubero and Susanna Valls
Minerals 2025, 15(10), 1017; https://doi.org/10.3390/min15101017 - 25 Sep 2025
Abstract
Colquiri is one of several deposits from the Central Andean tin belt, where sphalerite and cassiterite are mined. Although this is a high-grade Zn-Sn deposit, processing results in a low overall yield, with significant amounts of zinc and tin being discarded as tailings. [...] Read more.
Colquiri is one of several deposits from the Central Andean tin belt, where sphalerite and cassiterite are mined. Although this is a high-grade Zn-Sn deposit, processing results in a low overall yield, with significant amounts of zinc and tin being discarded as tailings. In this study, mineralogical research was conducted to identify the causes of the low yield, so that the flow diagram could be modified to improve recovery. Particle size was measured, and chemical and mineralogical analyses were performed using optical and electron microscopy and X-ray diffraction. The mineral chemistry of the ores was determined using electron probe microanalysis (EPMA), and mineral liberation analyses were performed to complete the characterization. Mineralization occurred in four stages: (1) formation of silicates and oxides; (2) main precipitation of sulfides, including pyrrhotite, sphalerite, and stannite; (3) precipitation of fluorite and the replacement of pyrrhotite by pyrite, which was then replaced by siderite; and (4) weathering of previously formed minerals. The run-of-mine material contains approximately 12 wt.% ZnO and 1.5 wt.% SnO2. The Zn concentrate contains up to 43.90 wt.% ZnO, and the Sn concentrate contains 52 wt.% SnO2. The final tailings still retain more than 3–4.5 wt.% ZnO and 1.2 wt.% SnO2. The average grain size of sphalerite is 200 µm, while that of cassiterite and stannite is 45 µm. The liberated fraction of sphalerite is 51.43%, and binary particles of sphalerite plus stannite account for 60 wt.%. Cassiterite is liberated at 54.68 wt.%. To increase the recovery of sphalerite (with stannite) and cassiterite, as well as the grade of the concentrates, it is necessary to reduce the particle size of the processed ores to less than 100 µm. Full article
Show Figures

Figure 1

15 pages, 4216 KB  
Systematic Review
Comparative Outcomes of 1-Level vs. 2-Level Anterior Cervical Discectomy and Fusion: A Systematic Review and Meta-Analysis
by Joseph E. Nassar, Ashley Knebel, Manjot Singh, Michael J. Farias, Nicolas L. Carayannopoulos, Zvipo M. Chisango, Negin Fani, Mohammad Daher, Eren O. Kuris, Bassel G. Diebo and Alan H. Daniels
J. Clin. Med. 2025, 14(19), 6788; https://doi.org/10.3390/jcm14196788 - 25 Sep 2025
Abstract
Background/Objectives: Cervical spine disease requiring surgical intervention is a major cause of disability. Anterior cervical discectomy and fusion (ACDF) is a well-established procedure for treating cervical pathology; however, there remains no consensus on whether 1-level versus 2-level ACDF yields comparable outcomes. This [...] Read more.
Background/Objectives: Cervical spine disease requiring surgical intervention is a major cause of disability. Anterior cervical discectomy and fusion (ACDF) is a well-established procedure for treating cervical pathology; however, there remains no consensus on whether 1-level versus 2-level ACDF yields comparable outcomes. This study compares 1-level versus 2-level ACDF by evaluating surgery-related and postoperative outcomes, radiographic parameters, and patient-reported outcome measures (PROMs). Methods: PubMed, Embase, Scopus, and Cochrane Library were searched through 10 July 2024. Studies comparing 1-level with 2-level ACDF were included. Data on operating room (OR) time, estimated blood loss (EBL), length of hospital stay (LOS), complications, and PROMs, including Neck Disability Index (NDI) and Visual Analogue Scale (VAS) for neck and arm pain, were extracted. Results: Thirteen studies met our inclusion criteria, comprising 2091 patients (1078 undergoing 1-level and 1013 2-level ACDF). No statistically significant differences were observed in EBL or LOS between the cohorts. However, the 2-level ACDF group showed significantly longer OR times (p-value < 0.001) and higher odds of developing dysphagia (p-value = 0.05). Patients undergoing 2-level ACDF showed greater correction in cervical lordosis. Both cohorts reported similar statistically and clinically significant improvements in VAS neck and NDI scores at final follow-up. There was no difference in adjacent segment disease or revision surgery at final follow-up. Conclusions: Both 1-level and 2-level ACDF improve clinical and radiographic outcomes. The choice should be tailored to the patient’s pathology and anatomy while considering the higher dysphagia risk with additional fusion levels. This study highlights the importance of individualized surgical planning to optimize postoperative outcomes while minimizing complications. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 3942 KB  
Article
Transparent Elastic Wound Dressing Gel Supporting Drug Release: Synergistic Effects of Poly(Vinyl Alcohol)/Chitosan Hybrid Matrix
by Lifei Chen, Ningning Yuan, Zhenjiang Tan, Jianwei Zhang, Lishi Zhang, Wenwei Tang, Cheng Chen and Donghai Lin
Gels 2025, 11(10), 771; https://doi.org/10.3390/gels11100771 - 25 Sep 2025
Abstract
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined [...] Read more.
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined them with Poly(vinyl alcohol)/chitosan (PVA/CS), and dried the mixture into a film to fabricate a silver-loaded hydrogel film dressing with excellent antibacterial properties. Uniaxial tensile tests on the samples revealed that the prepared film dressings exhibited good mechanical properties, preventing fracture caused by external forces. Protein adsorption experiments indicated their favorable protein adsorption performance, which can adsorb microorganisms on the external surface of the dressing. By leveraging the bactericidal mechanism of AgNPs, the dressing achieves efficient antibacterial effects. Additionally, the dressing prepared by this method features good transparency, facilitating routine observation of the wound area without removing the dressing and maintaining a sterile environment for an extended period. Finally, we verified the drug loading and drug release capabilities of the dressing, and found that it has good drug loading capacity and drug release effect. This preliminarily proves its effectiveness and provides more possibilities for subsequent research on composite drugs. This study provides new insights for exploring the clinical application of multifunctional silver-loaded wound dressings. Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing (2nd Edition))
Show Figures

Figure 1

Back to TopTop