molecules-logo

Journal Browser

Journal Browser

Research Progress on Functional Lipids and Their Applications in Health Food Systems

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Food Chemistry".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 6884

Special Issue Editor

JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
Interests: processing and modification of lipids

Special Issue Information

Dear Colleagues,

I am pleased to invite you to submit your recent studies in the field of “Research Progress on Functional Lipids and Their Applications in Health Food Systems” to a Special Issue of Molecules.

In today's food industry, there is a growing emphasis on health, nutrition, and sustainability, which is driving research into functional lipids and their applications in health food systems. Functional lipids are essential for food formulation, enhancing sensory properties, and improving nutritional value. As consumer preferences shift toward healthier and more sustainable options, the study of functional lipids has become a critical area of investigation.

Key research directions include lipid crystallization and oxidation, enzymatic lipid modification, and the development of structured emulsions and lipid capsules that deliver health benefits. Despite significant advancements in our understanding of lipid chemistry and functionality, there is still a pressing need for innovative processing techniques and modifications that can enhance the nutritional profiles and sensory qualities of health food products.

This Special Issue aims to provide a platform for researchers to showcase the current and recent developments in the field of functional lipids and their applications in health food systems. We welcome original research papers and review articles that explore various aspects of lipid processing, modification, and application in the food industry.

Dr. Zhen Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lipid crystallization
  • lipid oxidation
  • enzymatic lipid modification
  • processing
  • health benefits
  • structured emulsions
  • lipid emulsions
  • lipids capsules

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

13 pages, 621 KB  
Article
5-Hydroxymethylfurfural: A Particularly Harmful Molecule Inducing Toxic Lipids and Proteins?
by Joachim Greilberger, Georg Feigl, Matthias Greilberger, Simona Bystrianska and Michaela Greilberger
Molecules 2025, 30(19), 3897; https://doi.org/10.3390/molecules30193897 - 26 Sep 2025
Abstract
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in [...] Read more.
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in presence of metals and/or radicals. Methods: Peroxynitrite (ONOO)-induced chemiluminescence and ONOO nitration of tyrosine residues on BSA using anti-nitro-tyrosine-antibodies were used to measure the protection of 5-HMF against peroxides or nitration compared to vitamin C (VitC). The reductive potential of 5-HMF or VitC on Cu2+ or Fe3 was estimated using the bicinchoninic acid (BCA) or Fenton-complex method. Human plasma was used to measure the generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and total thiols after Fe2+/H2O2 oxidation in the presence of different concentrations of 5-HMF or VitC. Finally, Cu2+ oxidation of LDL after 4 h was carried out with 5-HMF or VitC, measuring the concentration of MDA in LDL with the thiobarbituric assay (TBARS). Results: VitC was 4-fold more effective than 5-HMF in scavenging ONOO to nearly 91.5% at 4 mM, with the exception of 0.16 mM, where the reduction of ONOO by VitC was 3.3-fold weaker compared to 0.16 mM 5-HMF. VitC or 5-HMF at a concentration of 6 mM inhibited the nitration of tyrosine residues on BSA to nearly 90% with a similar course. While 5-HMF reduced free Fe3+ in presence of phenanthroline, forming Fe2+ (phenantroleine)3 [Fe2+(phe)3] or complexed Cu2+(BCA)4 to Cu+(BCA)4 weakly, VitC was 7- to 19-fold effective in doing so over all the used concentrations (0–25 mM). A Fe2+—H2O2 solution mixed with human plasma showed a 6–10 times higher optical density (OD) of MDA or HNE in the presence of 5-HMF compared to VitC. The level of thiols was significantly decreased in the presence of higher VitC levels (1 mM: 198.4 ± 7.7 µM; 2 mM: 160.0 ± 13.4 µM) compared to equal 5-HMF amounts (2562 ± 7.8 µM or 242.4 ± 2.5 µM), whereas the usage of lower levels at 0.25 µM 5-HMF resulted in a significant decrease in thiols (272.4 ± 4.0 µM) compared to VitC (312.3 ± 19.7 µM). Both VitC and 5-HMF accelerated copper-mediated oxidation of LDL equally: while the TBARS levels from 4 h oxidized LDL reached 137.7 ± 12.3 nmol/mg, it was 1.7-fold higher using 6 mM VitC (259.9 ± 10.4 nmol/mg) or 6 mM 5-HMF (239.3 ± 10.2 nmol/mg). Conclusions: 5-HMF appeared to have more pro-oxidative potential compared to VitC by causing lipid peroxidation as well as protein oxidation. Full article
Show Figures

Figure 1

17 pages, 1248 KB  
Article
Lipids from Oilcakes—High Quality Ingredients for Functional Food Products
by Ancuța Petraru, Sonia Amariei and Lacrimioara Senila
Molecules 2025, 30(17), 3640; https://doi.org/10.3390/molecules30173640 - 6 Sep 2025
Viewed by 882
Abstract
Fatty acids (FAs) are vital for human nutrition and are classified into three categories (saturated, unsaturated, and trans). FAs have different physiological effects and can contribute to health problems in different ways. By-products from the oil industry are rich in bioactive compounds. These [...] Read more.
Fatty acids (FAs) are vital for human nutrition and are classified into three categories (saturated, unsaturated, and trans). FAs have different physiological effects and can contribute to health problems in different ways. By-products from the oil industry are rich in bioactive compounds. These make them useful for further utilization in food formulation. There is a quantity of residual oil in the oilcake. Analysis of the fatty acid composition shows that unsaturated fatty acids are predominant. The predominant fatty acids in oilcakes are arachidic (sunflower), oleic, elaidic (flax), linoleic (LA), and linolelaidic (hemp, rape, and sesame) acids. The favorable and ideal (within the regulatory recommendations) results for the n-6/n-3 ratios of 3:1 indicate the high nutritional profile with beneficial effects for the human body of the oilcakes. The hypocholesterolemic/hypercholesterolemic for all samples ranged from 4.52 to 116.06, while atherogenicity and thrombogenicity indexes ranged from 0.01 to 0.3. This is in line with the favorable values found in the literature benchmarks. Full article
Show Figures

Figure 1

15 pages, 1891 KB  
Article
Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch
by Viviane de Souza Silva, Luna Valentina Angulo Arias, José Ignacio Velasco, Farayde Matta Fakhouri and Rafael Augustus de Oliveira
Molecules 2025, 30(16), 3363; https://doi.org/10.3390/molecules30163363 - 13 Aug 2025
Viewed by 657
Abstract
Starch is the main source of carbohydrates in human and animal diets. The extraction of this polysaccharide from unconventional residues of minimally processed foods represents an innovation in the production chain and promotes an appropriate destination for organic waste. Kabocha pumpkin produces minimally [...] Read more.
Starch is the main source of carbohydrates in human and animal diets. The extraction of this polysaccharide from unconventional residues of minimally processed foods represents an innovation in the production chain and promotes an appropriate destination for organic waste. Kabocha pumpkin produces minimally processed products, but the discarded peel is not processed and becomes organic waste. In this study, starch was obtained from kabocha pumpkin residues and characterized according to its physicochemical composition, morphology, and thermal properties. Kabocha pumpkin peel starch (KPPS) showed variations in granule morphology. X-ray diffraction analysis revealed about 22% crystallinity. The pasting temperature of KPPS was 69.1 °C and the peak, trough, breakdown, final, and setback viscosities were 5293 cP, 2804 cP, 2849 cP, 3550 cP, and 746 cP, respectively. The stability (120 and 260 °C) observed on the thermogravimetric analysis of KPPS allows it to be used as an interesting ingredient in the production of new foods and non-food products, such as packaging. Moreover, using a product that would otherwise be discarded minimizes residue generation, reducing environmental impact and promoting an alternative source of income for the minimal processing food industry. Full article
Show Figures

Graphical abstract

21 pages, 1442 KB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Viewed by 555
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

17 pages, 1675 KB  
Article
Assisted Extraction of Hemp Oil and Its Application to Design Functional Gluten-Free Bakery Foods
by Noemi Baldino, Mario F. O. Paleologo, Mariateresa Chiodo, Olga Mileti, Francesca R. Lupi and Domenico Gabriele
Molecules 2025, 30(12), 2665; https://doi.org/10.3390/molecules30122665 - 19 Jun 2025
Viewed by 858
Abstract
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and [...] Read more.
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and long extraction time can influence the yield and the purity of the extracts, affecting the quality of the final product. This study focused on optimizing CBD oil extraction from hemp inflorescences and its incorporation into a gluten-free bakery product for functionalization. Dynamic maceration (DME), assisted by ultrasound and microwave irradiation, was used. Our study explored the impact of varying sonication times (three distinct durations) and microwave powers (three levels, applied for two different irradiation times) on the resulting extracts. HPLC analysis was performed on these extracts. Subsequently, we used hemp flour and hemp oil to bake gluten-free cupcakes, which were fortified with the extracted CBD oil. Rheological characterization was used to investigate the cupcake properties, along with stereoscopic, color and puncture analysis performed on the baked samples. The most effective extraction parameters identified were 30 s of microwave irradiation at 700 W, yielding 45.2 ± 2.0 g of CBD extract, and 15 min of sonication, which resulted in 53.2 ± 2.5 g. Subsequent rheological characterization indicated that the product exhibited mechanical properties and a temperature profile comparable to a benchmark, evidenced by a height of 4.1 ± 0.2 cm and a hardness of 1.9 ± 0.2 N. These promising values demonstrate that hemp oil and hemp flour are viable ingredients for traditional cakes and desserts, notably contributing increased nutritional value through the CBD-enriched hemp oil and the beneficial profile of hemp flour. Full article
Show Figures

Graphical abstract

16 pages, 5535 KB  
Article
Immobilization of Lipase from Thermomyces Lanuginosus and Its Glycerolysis Ability in Diacylglycerol Preparation
by Rui Xie, Yee-Ying Lee, Pengkai Xie, Chin-Ping Tan, Yong Wang and Zhen Zhang
Molecules 2024, 29(17), 4141; https://doi.org/10.3390/molecules29174141 - 31 Aug 2024
Cited by 7 | Viewed by 2112
Abstract
In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by [...] Read more.
In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase. Full article
Show Figures

Figure 1

Other

Jump to: Research

11 pages, 4549 KB  
Brief Report
Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol
by Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Molecules 2025, 30(13), 2889; https://doi.org/10.3390/molecules30132889 - 7 Jul 2025
Cited by 1 | Viewed by 641
Abstract
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability [...] Read more.
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG’s potential as a therapeutic agent and laying a foundation for further exploration of its biological power. Full article
Show Figures

Figure 1

Back to TopTop