Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,038)

Search Parameters:
Keywords = fire activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7735 KB  
Article
Preparation of Ecological Refractory Bricks from Phosphate Washing By-Products
by Mariem Hassen, Raja Zmemla, Mouhamadou Amar, Abdalla Gaboussa, Nordine Abriak and Ali Sdiri
Appl. Sci. 2025, 15(19), 10647; https://doi.org/10.3390/app151910647 - 1 Oct 2025
Abstract
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using [...] Read more.
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (TGA-DTA). Bricks were formulated by substituting phosphate sludge with clay and diatomite, then activated with potassium silicate solution to produce geopolymeric materials. Specific formulations exhibited mechanical performance ranging from 7 MPa to 26 MPa, highlighting the importance of composition and minimal water absorption values of approximately 17.8% and 7.7%. The thermal conductivity of the bricks was found to be dependent on the proportions of diatomite and clay, reflecting their insulating potential. XRD analysis indicated the formation of an amorphous aluminosilicate matrix, while FTIR spectra confirmed the development of new chemical bonds characteristic of geopolymerization. Thermal analysis revealed good stability of the materials, with mass losses mainly related to dehydration and dehydroxylation processes. Environmental assessments showed that most samples are inert or non-hazardous, though attention is required for those with elevated chromium content. Overall, these findings highlight the viability of incorporating phosphate sludge into fired brick production, offering a sustainable solution for waste valorization in accordance with the circular economy. Full article
Show Figures

Figure 1

21 pages, 8233 KB  
Article
Integrated Optimization of Ground Support Systems and UAV Task Planning for Efficient Forest Fire Inspection
by Ze Liu, Zhichao Shi, Wei Liu, Lu Zhang and Rui Wang
Drones 2025, 9(10), 684; https://doi.org/10.3390/drones9100684 - 1 Oct 2025
Abstract
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This [...] Read more.
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This paper proposes an unmanned aerial vehicle (UAV)-based forest fire inspection system that integrates a ground support system (GSS), aiming to enhance automation and flexibility in inspection tasks. A three-layer mixed-integer linear programming model is developed: the first layer focuses on the site selection and capacity planning of the GSS; the second layer defines the coverage scope of different GSS units; and the third layer plans the inspection routes of UAVs and coordinates multi-UAV collaborative tasks. For planning UAV patrol routes and collaborative tasks, a goal-driven greedy algorithm (GDGA) based on traditional greedy methods is proposed. Simulation experiments based on a real forest fire case in Turkey demonstrate that the proposed model reduces the total annual costs by 28.1% and 16.1% compared to task-only and renewable-only models, respectively, with a renewable energy penetration rate of 68.71%. The goal-driven greedy algorithm also shortens UAV patrol distances by 7.0% to 12.5% across different rotation angles. These results validate the effectiveness of the integrated model in improving inspection efficiency and economic benefits, thereby providing critical support for forest fire prevention. Full article
Show Figures

Figure 1

25 pages, 957 KB  
Article
The Role of Traditional Fire Management Practices in Mitigating Wildfire Risk: A Case Study of Greece
by Dimitrios Kalfas, Stavros Kalogiannidis, Konstantinos Spinthiropoulos, Fotios Chatzitheodoridis and Maria Georgitsi
Fire 2025, 8(10), 389; https://doi.org/10.3390/fire8100389 - 1 Oct 2025
Abstract
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were [...] Read more.
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were historically and culturally employed by local communities—such as weather condition monitoring, prescribed burning, proper land use planning, and mosaic burning—in the general mitigation of wildfire risks. An online questionnaire was used to collect data from 397 environmental experts in Greece. The study shows that traditional fire control methods reduce wildfire risk. First, weather monitoring was found to be crucial to wildfire forecasting and prevention. The results showed that early warning, successful firefighting, and fire prevention depend on meteorological data. Additionally, prescribed burning was revealed to have reduced wildfire risk. Respondents accepted that they could reduce unprescribed fires, protect natural ecosystems, remove wildfire-prone areas, and regulate flame intensity. This suggests that scheduled burning in Greece may reduce wildfire damage. The study underlines the importance of including conventional fire management in the wildfire mitigation strategy of Greece. The aforementioned activities may help the environment and civilization progress by safeguarding ecosystems and reducing wildfire damage. These techniques, combined with community engagement and improved early warning systems, may help manage climate change-induced wildfires. Overall, the study contributes to wildfire management in Greece and other Mediterranean countries. The study emphasizes the need to incorporate traditional fire practices into Greece’s wildfire risk reduction strategies. Taking into account the success rates of these practices in other areas, as well as Greece’s old tradition of conducting fire, this paper stresses that further studies and policy developments be made in order to reinstate these practices in today’s wildfire management. Full article
(This article belongs to the Section Fire Social Science)
Show Figures

Figure 1

8 pages, 1515 KB  
Proceeding Paper
Spatiotemporal Analysis of Forest Fires in Cyprus Using Earth Observation and Climate Data
by Maria Prodromou, Stella Girtsou, George Leventis, Georgia Charalampous, Alexis Apostolakis, Marios Tzouvaras, Christodoulos Mettas, Giorgos Giannopoulos, Charalampos Kontoes and Diofantos Hadjimitsis
Environ. Earth Sci. Proc. 2025, 35(1), 54; https://doi.org/10.3390/eesp2025035054 - 29 Sep 2025
Abstract
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from [...] Read more.
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from 2008 to 2024 and integrating Earth observation data and anthropogenic, environmental, meteorological, topographic, and fire-related features. This study evaluates, through time series analysis, the impact of climate trends such as increased temperature in comparison with anthropogenic activities such as deliberate fires. Time series analysis reveals that although climatic conditions with increased temperature and reduced precipitation in Cyprus intensify the risk of fire, the presence of fire events is primarily due to deliberate actions. The findings of this study support national-scale fire modeling, offering a foundation for targeted prevention, early warning systems, and sustainable forest fire management strategies. Full article
Show Figures

Figure 1

22 pages, 487 KB  
Article
Beyond Borders and Sects: The Ōbaku Canon as a Cross-Sectarian and Transnational Project
by Guangzuo Jia
Religions 2025, 16(10), 1248; https://doi.org/10.3390/rel16101248 - 29 Sep 2025
Abstract
The Ōbaku Edition of the Buddhist Canon, initiated and spearheaded by Tetsugen Dōkō (鐵眼道光 1630–1682), profoundly influenced Japanese Buddhism and printing culture. Although the Ōbaku Edition has long been recognized as a product of cross-border collaboration, earlier studies have primarily focused on its [...] Read more.
The Ōbaku Edition of the Buddhist Canon, initiated and spearheaded by Tetsugen Dōkō (鐵眼道光 1630–1682), profoundly influenced Japanese Buddhism and printing culture. Although the Ōbaku Edition has long been recognized as a product of cross-border collaboration, earlier studies have primarily focused on its textual features and religious significance after publication. As a result, the specific mechanisms and significance of its transnational nature have remained underexplored. This study revisits the canon’s compilation as a complex trans-sectarian and transnational social practice. Drawing on a variety of sources, it provides new insights into the production of the Ōbaku Canon, showing that this trans-sectarian project was driven by the interplay of several key dynamics: transnational networks supplying its base text, intellectual contributions from Chinese migrants, local social needs in post-fire Nagasaki, and Tetsugen’s personal aim to use the canon in doctrinal debate. Tetsugen’s printing endeavor continued the medieval tradition of kanjin (fundraising), serving as a religious, educational, and institutional undertaking shaped by interactions with broader socio-economic support. Positioned within a wider social framework, Tetsugen’s cross-sectarian activities facilitated the successful circulation and popularization of the canon, promoting a shift in the use of Buddhist scriptures from prayer-centered practice to doctrinal study and reflecting a broader transformation in Japanese Buddhism, from state-supported Buddhism to more popular forms. Full article
37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

44 pages, 9564 KB  
Review
Oxidative Stress, Inflammation, and Cellular Senescence in Neuropathic Pain: Mechanistic Crosstalk
by Bojan Stojanovic, Ivana Milivojcevic Bevc, Milica Dimitrijevic Stojanovic, Bojana S. Stojanovic, Tatjana Lazarevic, Marko Spasic, Marko Petrovic, Ivana Stefanovic, Marina Markovic, Jelena Nesic, Danijela Jovanovic, Miodrag Peulic, Ana Azanjac Arsic, Ana Lukovic, Nikola Mirkovic, Stevan Eric and Nenad Zornic
Antioxidants 2025, 14(10), 1166; https://doi.org/10.3390/antiox14101166 - 25 Sep 2025
Abstract
Neuropathic pain is a chronic condition driven by intertwined mechanisms of oxidative stress, inflammation, and cellular senescence. Nerve injury and metabolic stress elevate reactive oxygen and nitrogen species, disrupt mitochondrial function, and activate the DNA-damage response, which stabilizes p53 and induces p16/p21-mediated cell-cycle [...] Read more.
Neuropathic pain is a chronic condition driven by intertwined mechanisms of oxidative stress, inflammation, and cellular senescence. Nerve injury and metabolic stress elevate reactive oxygen and nitrogen species, disrupt mitochondrial function, and activate the DNA-damage response, which stabilizes p53 and induces p16/p21-mediated cell-cycle arrest. These events promote a senescence-associated secretory phenotype (SASP) rich in cytokines, chemokines, and prostanoids that amplify neuroimmune signaling. In the spinal dorsal horn and dorsal root ganglia, microglia and astroglia respond to redox imbalance and danger cues by engaging NF-κB and MAPK pathways, increasing COX-2–dependent prostaglandin synthesis, and releasing mediators such as IL-1β and BDNF that enhance synaptic transmission and reduce inhibitory tone through KCC2 dysfunction. At the periphery, persistent immune-glial cross-talk lowers activation thresholds of nociceptors and sustains ectopic firing, while impaired autophagy and mitophagy further exacerbate mitochondrial dysfunction and ROS production. Collectively, these processes establish a feed-forward loop in which redox imbalance triggers senescence programs and SASP, SASP perpetuates neuroinflammation, and neuroinflammation maintains central sensitization—thereby consolidating a self-sustaining redox–senescence–inflammatory circuit underlying neuropathic pain chronicity. Full article
(This article belongs to the Special Issue Chronic Pain and Oxidative Stress)
Show Figures

Figure 1

16 pages, 4190 KB  
Article
Influence of Flexibilizers on the Thermal and Combustion Properties of Soundproof Enclosures in Ultrahigh Voltage Converter Transformer Equipment
by Jiaqing Zhang, Fengju Shang, Yi Guo, Wenlong Zhang and Yanming Ding
Fire 2025, 8(10), 381; https://doi.org/10.3390/fire8100381 - 24 Sep 2025
Viewed by 43
Abstract
Soundproof enclosures are essential components in ultra-high voltage converter transformer equipment. However, conventional designs pose considerable fire risks, as they may impede fire suppression efforts in case of equipment failure. This study adopted a multi-technique experimental strategy to systematically evaluate the influence of [...] Read more.
Soundproof enclosures are essential components in ultra-high voltage converter transformer equipment. However, conventional designs pose considerable fire risks, as they may impede fire suppression efforts in case of equipment failure. This study adopted a multi-technique experimental strategy to systematically evaluate the influence of flexibilizer content on the thermal and combustion properties of soundproof enclosures. The methodology combined scanning electron microscopy and thermogravimetric analysis, cone calorimetry and thermal deformation tests. Subsequently, the entropy method was applied to quantify comprehensive fire risk based on the experimental data. The results showed that incorporation of a flexibilizer reduced thermal stability, evidenced by a decrease in the initial pyrolysis temperature from 570 K to 505–545 K at a heating rate of 5 K/min. As flexibilizer content increased, the activation energy (Eα) exhibited a pattern of initial decrease, followed by an increase, and then a subsequent decrease, with most samples exhibiting Eα values below 250 kJ/mol. Simultaneously, flexibilizer addition improved critical fire safety parameters, including reduced heat release rate, total heat release, smoke production, CO2 release rate, mass loss rate, thermal deformation temperatures, and increased CO release rate. The comprehensive fire risk score decreased significantly from 0.2801 to a range of 0.1147–0.2522 after the addition of the flexibilizer. Thus, this study provides a quantitative assessment of fire safety in ultra-high voltage converter transformer equipment through risk evaluation, offering valuable insights for developing safer enclosure materials. Full article
(This article belongs to the Special Issue Smart Firefighting Technologies and Advanced Materials)
Show Figures

Figure 1

22 pages, 8022 KB  
Article
Spatiotemporal Analysis of Vegetation Fires and Carbon Monoxide Pollution in Indonesia
by Griffin McAvoy and Krishna Vadrevu
Remote Sens. 2025, 17(19), 3275; https://doi.org/10.3390/rs17193275 - 24 Sep 2025
Viewed by 156
Abstract
Vegetation fires in Indonesia, particularly in forests and peatlands, are major drivers of air pollution, with impacts on public health, biodiversity, and climate. Using satellite-derived data from 2012 to 2024, we identified an average of 21,271 fires annually, with peak activity during the [...] Read more.
Vegetation fires in Indonesia, particularly in forests and peatlands, are major drivers of air pollution, with impacts on public health, biodiversity, and climate. Using satellite-derived data from 2012 to 2024, we identified an average of 21,271 fires annually, with peak activity during the dry season (August–October). 32.0% of total fires occurred in forests; and 21.9% in peatlands. While a seasonal Mann–Kendall trend analysis revealed a statistically significant decline in fire activity over this period (approximately 502 fewer fires per month), seasonal peaks remain persistent during the late and post-monsoon periods. Notably, fire activity increased by more than 400% during El Niño years (2015–2016, 2018–2019, 2023–2024) compared to non-El Niño years. Through geographically weighted regression (GWR), we found that fire activity is closely correlated to carbon monoxide (CO) pollution. The relationship was strongest in the forested regions of central Kalimantan, western Sulawesi, and southern Java. Our findings highlight the amplifying effects of El Niño events on fire dynamics and air quality and the urgent need for targeted, climate-responsive fire management strategies. Strengthening mitigation and adaptation efforts in tropical forests and peatlands will be critical for protecting human health and reducing emissions in the region. Full article
Show Figures

Figure 1

14 pages, 3887 KB  
Article
Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments
by Xiaohui Zha, Kaikai Feng, Yang Wang, Yuchen Yang, Xin-Yun Zeng and Cheng Zhang
Materials 2025, 18(19), 4446; https://doi.org/10.3390/ma18194446 - 23 Sep 2025
Viewed by 94
Abstract
Ti150 has potential applications in aeroengine components. However, the lack of research on its flame resistance, combustion behavior, and mechanisms makes it difficult to assess the risk of “titanium fire” and leaves fire protection design without theoretical support. This study aimed to determine [...] Read more.
Ti150 has potential applications in aeroengine components. However, the lack of research on its flame resistance, combustion behavior, and mechanisms makes it difficult to assess the risk of “titanium fire” and leaves fire protection design without theoretical support. This study aimed to determine the combustion resistance of Ti150 and elucidate its combustion behavior and mechanisms to address these issues. Through comparative Promoted Ignition-Combustion (PIC) tests between Ti150 and TC11 alloys, microstructural characterization, and thermodynamic/kinetic analyses, the following conclusions were drawn. Ti150 alloy exhibited a higher critical oxygen pressure and a higher ignition temperature but a significantly faster burning velocity, compared with TC11 alloy. The relationship between pressure and ignition temperature was in good agreement with the modified Frank-Kamenetskii ignition model. The ignition activation energy of Ti150 alloy was determined to be 118.41 kJ/mol, which was approximately 21% higher than that of TC11 alloy (97.72 kJ/mol). Moreover, post-combustion microstructural observations of Ti150 alloy revealed a higher oxygen content in the melting zone and an enrichment of Zr at the solid–liquid interface, both of which contribute to the higher burning velocity of Ti150 alloy compared with TC11 alloy. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 4002 KB  
Article
Fire Extinction Analysis and OH-PLIF Visualization of the Methane–Air Premixed Laminar Flame Interacting with the Downward Water Mist
by Yangpeng Liu, Yufei Zhou, Yingxia Zhong, Chuanyu Pan, Guochun Li and Zepeng Wu
Fire 2025, 8(10), 375; https://doi.org/10.3390/fire8100375 - 23 Sep 2025
Viewed by 101
Abstract
In this study, a McKenna burner made for calibration is used to generate the laminar flame with the equivalence ratio of 0.78~2.0. The effect of the downward water mist spray on the extinction of the methane–air premixed laminar flame is investigated using hydroxide [...] Read more.
In this study, a McKenna burner made for calibration is used to generate the laminar flame with the equivalence ratio of 0.78~2.0. The effect of the downward water mist spray on the extinction of the methane–air premixed laminar flame is investigated using hydroxide planar laser-induced fluorescence (OH-PLIF). The variation of the water flow rate for flame extinction is analyzed by the hydroxyl radical concentration distribution and the effective water mist flow rate. The required water flow rate for flame extinction is higher in the cases of rich fuel mixtures. The maximum critical extinguishing water flow rate for the methane–air premixed laminar flame is about 9.55 L/min under the conditions of water mist spray with a 45° solid cone spray angle and a 24 μm droplet size. Furthermore, the evolution of OH-PLIF flame behavior revealed that the stability of the hydroxyl radical concentration at the base of the flame mainly contributed to the flame extinction. This study provides a theoretical reference for the critical extinguishing conditions of water mist in the application of an active fire suppression system. Full article
Show Figures

Figure 1

22 pages, 4442 KB  
Article
Study on Qinghai Province Residents’ Perception of Grassland Fire Risk and Influencing Factors
by Wenjing Xu, Qiang Zhou, Weidong Ma, Fenggui Liu, Baicheng Niu and Long Li
Fire 2025, 8(9), 371; https://doi.org/10.3390/fire8090371 - 19 Sep 2025
Viewed by 295
Abstract
Grassland fire risk perception constitutes a fundamental element of fire risk assessment and underpins the evaluation of response capacities in grassland regions. This study examines Qinghai Province, the fourth-largest pastoral region in China, as a case study to develop an evaluation index system [...] Read more.
Grassland fire risk perception constitutes a fundamental element of fire risk assessment and underpins the evaluation of response capacities in grassland regions. This study examines Qinghai Province, the fourth-largest pastoral region in China, as a case study to develop an evaluation index system for assessing residents’ perceptions of grassland fire risk. Using micro-level survey data, the study quantifies these perceptions and applies a quantile regression model to investigate influencing factors. The results indicate that: (1) the average grassland fire risk perception index among residents in Qinghai Province’s grassland areas is 0.509, with response behaviors contributing the most and response attitudes contributing the least; (2) Residents in agricultural areas perceive higher risks than those in semi-agricultural/semi-pastoral or purely pastoral areas, and individuals in regions with moderate dependency ratios and moderate fire-susceptibility conditions demonstrate the highest performance, whereas those in pastoral and high-susceptibility zones exhibit signs of “risk desensitization”; (3) risk communication and information dissemination are the primary drivers of enhanced perception, followed by climate variables, whereas individual characteristics of residents attributes exert no significant effect. It is recommended to monitor the impacts of climate change on fire risk patterns, update risk information dynamically, address deficits in residents’ cognition and capabilities, strengthen behavioral guidance and capacity-building initiatives, and foster a transition from passive acceptance to active engagement, thereby enhancing both cognitive and behavioral responses to grassland fires. Full article
Show Figures

Figure 1

17 pages, 4418 KB  
Article
Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion
by Lola Rueda-Ruzafa, Ana Campos-Ríos, Paula Rivas-Ramírez, Manuela Rodríguez-Castañeda, Salvador Herrera-Pérez and José Antonio Lamas
Int. J. Mol. Sci. 2025, 26(18), 9119; https://doi.org/10.3390/ijms26189119 - 18 Sep 2025
Viewed by 252
Abstract
Temperature homeostasis is controlled by the vagus nerve. Thermal information is collected by thermoreceptors present in the viscera and driven across sensory neurons of the nodose ganglia (NG), which in turn send it to the hypothalamus. While transient receptor potential channels (TRPs) are [...] Read more.
Temperature homeostasis is controlled by the vagus nerve. Thermal information is collected by thermoreceptors present in the viscera and driven across sensory neurons of the nodose ganglia (NG), which in turn send it to the hypothalamus. While transient receptor potential channels (TRPs) are traditionally considered for thermal transduction, TREK channels belonging to the two-pore domain K+ channels family are emerging as thermosensors, but their role in the NG remains understudied. Patch-clamp recordings revealed that increasing the temperature to physiological levels causes a hyperpolarization of the membrane potential followed by a depolarization and, despite physiological temperature increased the firing rate, we have demonstrated that TREK channels might be taking part in the excitability control by counteracting TRPs’ effects. In fact, single-channel experiments revealed an increase in TREK channel open probability and a subsequent rise in their activity in NG neurons. All this indicates that TREK channels, mainly TREK1, may be responsible along with TRPs for the maintenance of the membrane potential at physiological temperature in NG neurons. Full article
(This article belongs to the Special Issue Role of Ion Channels in Human Health and Diseases)
Show Figures

Figure 1

18 pages, 1811 KB  
Article
Myricetin Attenuates Hyperexcitability of Trigeminal Nociceptive Second-Order Neurons in Inflammatory Hyperalgesia: Celecoxib-like Effects
by Sana Yamaguchi and Mamoru Takeda
Molecules 2025, 30(18), 3789; https://doi.org/10.3390/molecules30183789 - 18 Sep 2025
Viewed by 240
Abstract
Myricetin (MYR), a naturally occurring flavonoid widely distributed in fruits and vegetables, was investigated for its potential to reduce inflammation-induced hyperexcitability in the spinal trigeminal nucleus caudalis (SpVc), which is associated with hyperalgesia. The study also compared MYR’s impact with that of celecoxib [...] Read more.
Myricetin (MYR), a naturally occurring flavonoid widely distributed in fruits and vegetables, was investigated for its potential to reduce inflammation-induced hyperexcitability in the spinal trigeminal nucleus caudalis (SpVc), which is associated with hyperalgesia. The study also compared MYR’s impact with that of celecoxib (CEL), a non-steroidal anti-inflammatory drug (NSAID). To induce inflammation, Complete Freund’s adjuvant was injected into the whisker pads of rats. Subsequently, we measured the mechanical escape threshold by applying mechanical stimuli to the orofacial region. We found that inflamed rats exhibited a significantly lower threshold compared to naive rats (each group, n = 4). This reduced threshold returned to the naive level two days after the administration of MYR (16 mg/kg, i.p.), CEL (10 mg/kg, i.p.), and a combination of MYR (8 mg/kg, i.p.) + CEL (5 mg/kg, i.p.). To investigate the nociceptive neural response to orofacial mechanical stimulation, we performed extracellular single-unit recordings to measure the activity of SpVc wide-dynamic range (WDR) neurons in anesthetized subjects. In inflamed rats, administration of MYR, CEL, or 1/2MYR + 1/2CEL (each group, n = 4) significantly reduced both the average spontaneous activity and the evoked firing rate of SpVc neurons in response to non-painful and painful mechanical stimuli. The increased average receptive field size in inflamed rats was normalized to the naive level following treatment with MYR, CEL, or 1/2MYR + 1/2CEL. These findings suggest that MYR administration can mitigate inflammatory hyperalgesia by reducing the heightened excitability of SpVc WDR neurons. This supports the notion that MYR could be a viable therapeutic option in complementary and alternative medicine for preventing trigeminal inflammatory mechanical hyperalgesia, potentially serving as an alternative to selective cyclooxygenase-2 blockers. Full article
Show Figures

Figure 1

24 pages, 4329 KB  
Article
Climatic and Forest Drivers of Wildfires in South Korea (1980–2024): Trends, Predictions, and the Role of the Wildland–Urban Interface
by Jinchan Park, Jihoon Suh and Minho Baek
Forests 2025, 16(9), 1476; https://doi.org/10.3390/f16091476 - 17 Sep 2025
Viewed by 608
Abstract
Wildfire activity is intensifying globally as climate change amplifies heat waves, droughts and wind extremes, threatening biodiversity. South Korea (63% forested) has experienced a sharp rise in large fires. We analysed 905 wildfires ≥ 5 ha from 1980–2024, linking burned area to maximum [...] Read more.
Wildfire activity is intensifying globally as climate change amplifies heat waves, droughts and wind extremes, threatening biodiversity. South Korea (63% forested) has experienced a sharp rise in large fires. We analysed 905 wildfires ≥ 5 ha from 1980–2024, linking burned area to maximum wind speed, relative humidity, temperature and forest structure (conifer, broadleaf and mature–stand ratios, forest cover). Pearson correlations, HC3-corrected regression, a 1000-tree Random Forest and five-fold validated XGBoost interpreted with SHAP captured linear and nonlinear effects; WUI influences were examined qualitatively. Each 1 m s−1 increase in peak wind expanded burned area by ~8.5 ha, whereas a 1% rise in humidity reduced area by ~3 ha (p < 0.01). Broadleaf prevalence restrained spread, while high conifer and mature–stand proportions enlarged it. Machine learning raised explanatory power from R2 = 0.62 to 0.66 and showed that very dry air, strong winds and conifer cover above half the landscape coincided with the largest events. Burned area during 2020–2024 reached 29,905 ha—sevenfold that of 2015–2019. These results imply that extreme fire weather, flammable pine fuels and expanding WUI settlements jointly elevate risk; implementing real-time meteorological thresholds, targeted fuel treatments and stricter WUI zoning can help mitigate this risk. Full article
Show Figures

Graphical abstract

Back to TopTop