Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = first-order feedback control system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3806 KB  
Article
Sensorless Induction Motor Control Based on an Improved Full-Order State Observer
by Qiuyue Xie, Qiwei Xu, Lingyan Luo, Yuxiaoying Tu and Wuyu Song
Energies 2025, 18(16), 4374; https://doi.org/10.3390/en18164374 - 17 Aug 2025
Viewed by 359
Abstract
To eliminate the dependence of the induction motor (IM) flux-oriented control system on position sensors, IM sensorless control based on a full-order state observer is studied in this paper. First, according to the IM rotor flux linkage models of current and voltage, the [...] Read more.
To eliminate the dependence of the induction motor (IM) flux-oriented control system on position sensors, IM sensorless control based on a full-order state observer is studied in this paper. First, according to the IM rotor flux linkage models of current and voltage, the speed of the full-order state observer for IM and the solution for the feedback matrix are designed. Then, to simplify the expression of the feedback matrix and improve the stability of the observer for high-speed operation, a novel solving method of the feedback matrix by left-shifting the poles of the observer is proposed, and the terms containing rotor speed are simplified. On this basis, a speed estimation method based on the current error and Lyapunov theory is proposed. For low-speed operation, the feedback matrix parameter design method is proposed based on the stability conditions of d–q axis current error model. Finally, the feasibility and effectiveness of the proposed full-order state observer are verified by simulation and experiment. Since the improved full-order state observer can provide accurate speed feedback and rotor flux position for flux-oriented vector control systems, the IM drive system exhibits good steady-state and dynamic performance. Full article
(This article belongs to the Special Issue Recent Advances in Control Algorithms for Fault-Tolerant PMSM Drives)
Show Figures

Figure 1

15 pages, 338 KB  
Article
Nonoscillatory Solutions for m-th-Order Nonlinear Neutral Differential Equations with General Delays: Fixed-Point Approach and Application
by Mouataz Billah Mesmouli, Ioan-Lucian Popa and Taher S. Hassan
Mathematics 2025, 13(15), 2362; https://doi.org/10.3390/math13152362 - 23 Jul 2025
Viewed by 217
Abstract
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The [...] Read more.
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The results extend and generalize previous works by relaxing assumptions on the nonlinear terms and accommodating a wider range of feedback structures, including positive, negative, bounded, and unbounded cases. The mathematical framework is unified and applicable to a broad class of problems, providing a comprehensive treatment of neutral equations beyond the first or second order. To demonstrate the practical relevance of the theoretical findings, we analyze a delayed temperature control system as an application and provide numerical simulations to illustrate nonoscillatory behavior. This paper concludes with a discussion of analytical challenges, limitations of the numerical scope, and possible future directions involving stochastic effects and more complex delay structures. Full article
(This article belongs to the Special Issue Research on Delay Differential Equations and Their Applications)
Show Figures

Figure 1

25 pages, 6057 KB  
Article
Physical Implementation and Experimental Validation of the Compensation Mechanism for a Ramp-Based AUV Recovery System
by Zhaoji Qi, Lingshuai Meng, Haitao Gu, Ziyang Guo, Jinyan Wu and Chenghui Li
J. Mar. Sci. Eng. 2025, 13(7), 1349; https://doi.org/10.3390/jmse13071349 - 16 Jul 2025
Viewed by 357
Abstract
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation [...] Read more.
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation was designed and constructed. The system integrates attitude feedback provided by an attitude sensor and dual-motor actuation to achieve active roll and pitch compensation of the capture window. Based on the structural and geometric characteristics of the platform, a dual-channel closed-loop control strategy was proposed utilizing midpoint tracking of the capture window, accompanied by multi-level software limit protection and automatic centering mechanisms. The control algorithm was implemented using a discrete-time PID structure, with gain parameters optimized through experimental tuning under repeatable disturbance conditions. A first-order system approximation was adopted to model the actuator dynamics. Experiments were conducted under various disturbance scenarios and multiple control parameter configurations to evaluate the attitude tracking performance, dynamic response, and repeatability of the system. The results show that, compared to the uncompensated case, the proposed compensation mechanism reduces the MSE by up to 76.4% and the MaxAE by 73.5%, significantly improving the tracking accuracy and dynamic stability of the recovery window. The study also discusses the platform’s limitations and future optimization directions, providing theoretical and engineering references for practical AUV recovery operations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

34 pages, 3299 KB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 316
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

21 pages, 8715 KB  
Article
DDPG-ADRC-Based Load Frequency Control for Multi-Region Power Systems with Renewable Energy Sources and Energy Storage Equipment
by Zhenlan Dou, Chunyan Zhang, Xichao Zhou, Dan Gao and Xinghua Liu
Energies 2025, 18(14), 3610; https://doi.org/10.3390/en18143610 - 8 Jul 2025
Viewed by 345
Abstract
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region [...] Read more.
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region interconnected power systems are analyzed, which provides a basis for the subsequent RES access. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are adopted due to their rapid response capabilities and fast charge–discharge characteristics. To stabilize the frequency fluctuation, a first-order ADRC is designed, utilizing the anti-perturbation estimation capability of the first-order ADRC to achieve effective control. In addition, the system states are estimated using a linear expansion state observer. Based on the output of the observer, the appropriate feedback control law is selected. The DDPG-ADRC parameter optimization model is constructed to adaptively adjust the control parameters of ADRC based on the target frequency deviation and power deviation. The actor and critic networks are continuously updated according to the actual system response to ensure stable system operation. Finally, the experiment demonstrated that the proposed method outperforms traditional methods across all performance indicators, particularly excelling in reducing adjustment time (45.8% decrease) and overshoot (60% reduction). Full article
Show Figures

Figure 1

20 pages, 317 KB  
Article
Linking Controllability to the Sturm–Liouville Problem in Ordinary Time-Varying Second-Order Differential Equations
by Manuel De la Sen
AppliedMath 2025, 5(3), 87; https://doi.org/10.3390/appliedmath5030087 - 8 Jul 2025
Viewed by 338
Abstract
This paper establishes some links between Sturm–Liouville problems and the well-known controllability property in linear dynamic systems, together with a control law design that allows any prefixed arbitrary final state finite value to be reached via feedback from any given finite initial conditions. [...] Read more.
This paper establishes some links between Sturm–Liouville problems and the well-known controllability property in linear dynamic systems, together with a control law design that allows any prefixed arbitrary final state finite value to be reached via feedback from any given finite initial conditions. The scheduled second-order dynamic systems are equivalent to the stated second-order differential equations, and they are used for analysis purposes. In the first study, a control law is synthesized for a forced time-invariant nominal version of the current time-varying one so that their respective two-point boundary values are coincident. Afterward, the parameter that fixes the set of eigenvalues of the Sturm–Liouville system is replaced by a time-varying parameter that is a control function to be synthesized without performing, in this case, any comparison with a nominal time-invariant version of the system. Such a control law is designed in such a way that, for given arbitrary and finite initial conditions of the differential system, prescribed final conditions along a time interval of finite length are matched by the state trajectory solution. As a result, the solution of the dynamic system, and thus that of its differential equation counterpart, is subject to prefixed two-point boundary values at the initial and at the final time instants of the time interval of finite length under study. Also, some algebraic constraints between the eigenvalues of the Sturm–Liouville system and their evolution operators are formulated later on. Those constraints are based on the fact that the solutions corresponding to each of the eigenvalues match the same two-point boundary values. Full article
15 pages, 467 KB  
Article
Practical Fixed-Time Tracking Control for Strict-Feedback Nonlinear Systems with Flexible Prescribed Performance
by Xing Wang, Yongzhi Wang, Yulong Ji, Ben Niu and Jianing Hu
Mathematics 2025, 13(13), 2213; https://doi.org/10.3390/math13132213 - 7 Jul 2025
Viewed by 306
Abstract
This paper addresses the issue of practical fixed-time tracking control for a class of strict-feedback nonlinear systems subject to external disturbances, while ensuring flexible prescribed performance. First, a fixed-time disturbance observer is designed to estimate the unknown external disturbances. The primary advantage of [...] Read more.
This paper addresses the issue of practical fixed-time tracking control for a class of strict-feedback nonlinear systems subject to external disturbances, while ensuring flexible prescribed performance. First, a fixed-time disturbance observer is designed to estimate the unknown external disturbances. The primary advantage of the proposed fixed-time disturbance observer lies in its capability to estimate both the disturbance itself and its higher-order derivatives in fixed time. In addition, various prescribed performance behaviors can be realized via a set of function transformations, merely by modifying certain critical parameters, without the need to redesign the controller. It is shown that, under the proposed control strategy, the system output can track the reference signal in fixed time, and the tracking error always remains within the prescribed performance boundaries. Finally, the simulation results are provided to demonstrate the feasibility and effectiveness of the proposed control scheme. Full article
Show Figures

Figure 1

26 pages, 4613 KB  
Article
Adaptive Neural Network-Based Fixed-Time Trajectory Tracking Control of Space Robot with Uncertainties and Input Nonlinearities
by Haiping Ai, Lei Jiang, An Zhu and Xiaodong Fu
Aerospace 2025, 12(7), 593; https://doi.org/10.3390/aerospace12070593 - 30 Jun 2025
Viewed by 460
Abstract
In this paper, a fixed-time control strategy based on neural networks is proposed for a space robot with an input dead zone. First, a model-based control method is proposed based on the fixed-time convergence framework. Due to internal errors and external environmental disturbances, [...] Read more.
In this paper, a fixed-time control strategy based on neural networks is proposed for a space robot with an input dead zone. First, a model-based control method is proposed based on the fixed-time convergence framework. Due to internal errors and external environmental disturbances, the inertial parameters of dynamic models generally exhibit uncertainties, and model-based control methods may exhibit deviations in trajectory tracking. In order to counteract the adverse effects of uncertain inertial parameters on the system and ensure the stability of the control system, an adaptive learning control method based on neural networks is further proposed. To enhance the learning rate of neural networks and achieve the convergence of neural weights within a fixed time, a neural network update rate combined with virtual control rate is proposed. In addition, considering the issue of the joint input dead zone affecting the precision and stability of the space robot, a novel adaptive law is proposed in conjunction with system error signal feedback to mitigate adverse effects. According to the Lyapunov stability theory, the stability of the closed-loop system is proven, with the trajectory tracking error converging to a small neighborhood around zero. Finally, numerical simulation results demonstrate the effectiveness of the control algorithm. Full article
(This article belongs to the Special Issue Space Mechanisms and Robots)
Show Figures

Figure 1

18 pages, 2176 KB  
Article
Suppressing Nonlinear Resonant Vibrations via NINDF Control in Beam Structures
by Yasser A. Amer, Rageh K. Hussein, Sharif Abu Alrub, Ahmed S. Elgazzar, Tarek M. Salman, Fatma Mousa and M. N. Abd El-Salam
Mathematics 2025, 13(13), 2137; https://doi.org/10.3390/math13132137 - 30 Jun 2025
Viewed by 277
Abstract
In this paper, a unique method for controlling the effects of nonlinear vibrational responses in a cantilever beam system under harmonic excitation is presented. The Nonlinear Integral Negative Derivative Feedback (NINDF) controller is used for this purpose in this study. With this method, [...] Read more.
In this paper, a unique method for controlling the effects of nonlinear vibrational responses in a cantilever beam system under harmonic excitation is presented. The Nonlinear Integral Negative Derivative Feedback (NINDF) controller is used for this purpose in this study. With this method, the cantilever beam is represented by a three-DOF nonlinear system, and the NINDF controller is represented by a first-order and second-order filter. The authors derive analytical solutions for the autonomous system with the controller by utilising perturbation analysis on the linearised system model. This study aims to reduce vibration amplitudes in a nonlinear dynamic system, specifically when 1:1 internal resonance occurs. The stability of the system is assessed using the Routh–Hurwitz criterion. Moreover, symmetry is present in the frequency–response curves (FRCs) for a variety of parameter values. The results show that, when compared to other controllers, the effectiveness of vibration suppression is directly correlated with the product of the NINDF control signal. The amplitude response of the system is demonstrated, and the analytical solutions are validated through numerical simulations using the fourth-order Runge–Kutta method. The accuracy and reliability of the suggested approach are demonstrated via the significant correlation between the analytical and numerical results. Full article
Show Figures

Figure 1

21 pages, 1675 KB  
Article
H Preview Tracking Control of Time-Delay Discrete Systems and Its Application in Nuclear Reactor Problems
by Fucheng Liao, Hao Xie, Xianchun Meng, Jiang Wu, Yucheng Wei and Jiamei Deng
Axioms 2025, 14(7), 505; https://doi.org/10.3390/axioms14070505 - 27 Jun 2025
Viewed by 268
Abstract
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For [...] Read more.
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For the simplified control system model of the pressurizer, we first study its general structure, which can be characterized as a discrete-time system with state delay. Unlike conventional control systems, the system considered in this study features control inputs that are represented as cumulative sums of historical inputs. In order to design a preview tracking controller for such systems, we adopt the difference method and state augmentation technique and introduce an equality containing the reference signal and a discrete integrator to construct an augmented error system. Simultaneously, a performance signal is defined to evaluate the impact of external disturbances on system performance. Thus, the preview tracking control problem of the original system is reformulated as an H control problem for the augmented error system. Subsequently, a memory-based state feedback controller is designed for the augmented error system. Then, by employing the Lyapunov function and linear matrix inequality (LMI), the H preview tracking controller for the original system is derived. Finally, the proposed control strategy is applied to a pressurizer control system model, and numerical simulations are conducted to validate the effectiveness of the proposed controller by using MATLAB (R2023a, MathWorks, Natick, MA, USA). Full article
Show Figures

Figure 1

24 pages, 1293 KB  
Article
Singular Perturbation Decoupling and Composite Control Scheme for Hydraulically Driven Flexible Robotic Arms
by Jianliang Xu, Zhen Sui and Xiaohua Wei
Processes 2025, 13(6), 1805; https://doi.org/10.3390/pr13061805 - 6 Jun 2025
Viewed by 534
Abstract
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical [...] Read more.
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical coupling effects lead to multi-timescale control challenges, severely limiting high-precision trajectory tracking performance. The present study introduces a novel hierarchical control framework employing dual-timescale perturbation analysis, which effectively addresses the constraints inherent in conventional single-timescale control approaches. First, the system is decoupled into three subsystems via dual perturbation parameters: a second-order rigid-body motion subsystem (SRS), a second-order flexible vibration subsystem (SFS), and a first-order hydraulic dynamic subsystem (FHS). For SRS/SFS, an adaptive fast terminal sliding mode active disturbance rejection controller (AFTSM-ADRC) is designed, featuring a dual-bandwidth extended state observer (BESO) to estimate parameter perturbations and unmodeled dynamics in real time. A novel reaching law with power-rate hybrid characteristics is developed to suppress sliding mode chattering while ensuring rapid convergence. For FHS, a sliding mode observer-integrated sliding mode coordinated controller (SMO-ISMCC) is proposed, achieving high-precision suppression of hydraulic pressure fluctuations through feedforward compensation of disturbance estimation and feedback integration of tracking errors. The globally asymptotically stable property of the composite system has been formally verified through systematic Lyapunov-based analysis. Through comprehensive simulations, the developed methodology demonstrates significant improvements over conventional ADRC and PID controllers, including (1) joint tracking precision reaching 104 rad level under nominal conditions and (2) over 40% attenuation of current oscillations when subjected to stochastic disturbances. These results validate its superiority in dynamic decoupling and strong disturbance rejection. Full article
(This article belongs to the Special Issue Modelling and Optimizing Process in Industry 4.0)
Show Figures

Figure 1

21 pages, 860 KB  
Review
Fuzzy Adaptive Dynamic Surface Control with Constant Gain for Non-Affine Pure-Feedback Systems
by Lian Chen, Yixu Wang, Jianjun Cui, Daiyue Wang and Song Ling
Appl. Sci. 2025, 15(11), 6352; https://doi.org/10.3390/app15116352 - 5 Jun 2025
Viewed by 408
Abstract
This paper considers tracking control of non-affine pure-feedback systems with uncertain disturbances. The “explosion of complexity” in the process of backstepping design is eliminated by introducing the output of first-order filter to replace the derivative of virtual control signal. The mean-value theorem is [...] Read more.
This paper considers tracking control of non-affine pure-feedback systems with uncertain disturbances. The “explosion of complexity” in the process of backstepping design is eliminated by introducing the output of first-order filter to replace the derivative of virtual control signal. The mean-value theorem is utilized to overcome the non-affine difficulties appearing from the pure-feedback systems. By employing fuzzy logic systems (FLSs) and dynamic surface approach, an adaptive fuzzy controller with only one adaptive parameter is presented. Stability analysis shows that the proposed control method guarantees that all closed-loop system signals are semi-globally uniformly ultimately bounded. The main innovations of this paper are that the final gain function is viewed as an adjustable constant gain in the procedure of actual control signal design and the FLSs only handle state errors and disturbances. The new controller not only has the advantages of tracking performance, but it also reduces the computational burden in comparison with traditional adaptive backstepping method whose FLSs need to tackle with all gain function and system dynamics. A comparison simulation example shows the effectiveness of the proposed controller. Full article
Show Figures

Figure 1

26 pages, 3036 KB  
Article
Road Feel Simulation Strategy for Steer-by-Wire System in Electric Vehicles Based on an Improved Nonlinear Second-Order Sliding Mode Observer
by Leiyan Yu, Zihua Hu, Hao Zhang, Xinyue Wu, Haijie Huang and Xiaobin Liu
World Electr. Veh. J. 2025, 16(6), 294; https://doi.org/10.3390/wevj16060294 - 26 May 2025
Viewed by 635
Abstract
Addressing the shortcoming that steer-by-wire (SBW) system cannot directly transmit road feel, this study investigates a SBW system dynamics model, steering angle tracking control, and road feel simulation algorithm design. This study proposes a high-precision observer-based road feel simulation method that achieves road [...] Read more.
Addressing the shortcoming that steer-by-wire (SBW) system cannot directly transmit road feel, this study investigates a SBW system dynamics model, steering angle tracking control, and road feel simulation algorithm design. This study proposes a high-precision observer-based road feel simulation method that achieves road feel feedback torque design through the real-time estimation of system disturbance torque based on accurate front-wheel angle tracking. The methodology employs an improved nonlinear second-order sliding mode observer (INSOSMO) to estimate the system disturbance torque. This observer incorporates proportional–integral terms into the super-twisting algorithm to enhance dynamic response, replaces the sign function with a Sigmoid function to eliminate chattering, and utilizes the sparrow search algorithm (SSA) for global parameter optimization. Meanwhile, a two-stage filter combining a strong tracking Kalman filter (STKF) and first-order low-pass filtering processes the observer values to generate road feel feedback torque. Additionally, for the active return control of the steering wheel, a backstepping sliding mode control (BSSMC) integrated with an extended state observer (ESO) is employed, where the ESO enhances the robustness of BSSMC through real-time nonlinear disturbance estimation and compensation. MATLAB/Simulink-CarSim co-simulation demonstrates that, under sinusoidal testing, the INSOSMO reduces mean absolute error (MAE) by 34.7%, 62.5%, and 60.1% compared to the ESO, Kalman filter observer (KFO), and conventional sliding mode observer (SMO), respectively. The designed road feel feedback torque meets operational requirements. The active return controller maintains accurate steering wheel repositioning across various speed ranges. Full article
Show Figures

Figure 1

20 pages, 10553 KB  
Article
Output Feedback Control of Dual-Valve Electro-Hydraulic Valve Based on Cascade Structure Extended State Observer Systems with Disturbance Compensation
by Cunde Jia, Shaoguang Li, Xiangdong Kong, Hangtian Ma, Zhuowei Yu, Chao Ai and Yunhong Jiang
Machines 2025, 13(5), 392; https://doi.org/10.3390/machines13050392 - 8 May 2025
Viewed by 350
Abstract
In the development trend of intelligent and high-performance construction machinery, the dual-spool electro-hydraulic valve, as a new-generation core control element, directly affects the operation accuracy and energy-efficiency level of construction machinery. The standard linear extended state observer (LESO) produces relatively serious peaks as [...] Read more.
In the development trend of intelligent and high-performance construction machinery, the dual-spool electro-hydraulic valve, as a new-generation core control element, directly affects the operation accuracy and energy-efficiency level of construction machinery. The standard linear extended state observer (LESO) produces relatively serious peaks as the system order increases, which leads to the degradation of the observer’s performance and affects the controller’s accuracy. To solve this problem, this paper innovatively proposes an output feedback control strategy for a cascaded structure observer for the dual-spool electro-hydraulic valve. This paper designs an output feedback controller based on the cascaded structure observer. The uniform exponential stability (USE) criterion ensures that the tracking error of the observer for the system state is bounded. The expected load pressure is constructed based on the expected trajectory to replace the actual load pressure, avoiding the influence of the nonlinear coupling between the load pressure and the input signal on the control system. Finally, a stable output feedback controller is obtained based on the backstepping control method and Hurwitz polynomial stability analysis. This study first applies the cascaded structure observer to the field of dual-spool electro-hydraulic valve control, providing a new theoretical framework and technical path for the high-precision control of the hydraulic system of construction machinery. Theoretical analysis shows that compared with the standard LESO, the cascaded structure observer can significantly reduce the online computational burden and effectively suppress the peak phenomenon, providing stronger estimation ability. Finally, a large number of simulation examples verify the effectiveness and superiority of the output feedback controller based on the cascaded structure observer. In all four test scenarios, the average tracking error of C1 (the output feedback controller designed based on the cascaded structure linear extended state observer) is about 5.1%, the average tracking error of C2 (the output feedback controller designed based on the standard structure linear extended state observer) is about 7.8%, and the average tracking error of C3 (the high-gain PID controller) is about 19.2%. The average control accuracy of the designed C1 controller is improved by 2.7% and 14.1% compared with C2 and C3, respectively. In terms of the estimation of external disturbances, the average error of C1 is 14% and the average error of C2 is 29.6%. The estimation accuracy of the former is improved by 15.6% compared with the latter. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

16 pages, 1576 KB  
Article
Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation
by Rongbo Zhang, Kun Qiu, Chuang Liu, Hongli Ma and Zhaobi Chu
Fractal Fract. 2025, 9(5), 273; https://doi.org/10.3390/fractalfract9050273 - 23 Apr 2025
Cited by 1 | Viewed by 404
Abstract
This article investigates non-fragile synchronization control and circuit implementation for incommensurate fractional-order (IFO) chaotic neural networks with parameter uncertainties. In this paper, we explore three aspects of the research challenges, i.e., theoretical limitations of uncertain IFO systems, the fragility of the synchronization controller, [...] Read more.
This article investigates non-fragile synchronization control and circuit implementation for incommensurate fractional-order (IFO) chaotic neural networks with parameter uncertainties. In this paper, we explore three aspects of the research challenges, i.e., theoretical limitations of uncertain IFO systems, the fragility of the synchronization controller, and the lack of circuit implementation. First, we establish an IFO chaotic neural network model incorporating parametric uncertainties, extending beyond conventional commensurate-order architectures. Second, a novel, non-fragile state-error feedback controller is designed. Through the formulation of FO Lyapunov functions and the application of inequality scaling techniques, sufficient conditions for asymptotic synchronization of master–slave systems are rigorously derived via the multi-order fractional comparison principle. Third, an analog circuit implementation scheme utilizing FO impedance units is developed to experimentally validate synchronization efficacy and accurately replicate the system’s dynamic behavior. Numerical simulations and circuit experiments substantiate the theoretical findings, demonstrating both robustness against parameter perturbations and the feasibility of circuit realization. Full article
(This article belongs to the Topic Fractional Calculus: Theory and Applications, 2nd Edition)
Show Figures

Figure 1

Back to TopTop