Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation
Abstract
:1. Introduction
- •
- This work investigates IFO chaotic neural networks with inherent parametric uncertainties, establishing enhanced generality through multi-order dynamics compared to existing chaotic system formulations.
- •
- Ensures the state synchronization of the master–slave system can still be accomplished with a certain degree of robustness when the control protocol parameters have relatively small perturbations.
- •
- Using the principle of multiple FO comparison, sufficient conditions are given to achieve synchronization of master–slave systems, and the obtained sufficient conditions are also applicable to FO chaotic systems of the same metric as well as integer orders.
- •
- The design of the IFO uncertain chaotic neural network synchronization control circuit is completed, and the circuit simulation is carried out by Mutisim and the results coincide with the numerical simulation results of Matlab, which verifies the validity of the FO operator as well as the correctness of the circuit design.
2. System Description and Basics
2.1. Fractional Calculus
2.2. Relevant Lemmas
2.3. System Description
3. Main Elements
4. Numerical Examples
4.1. Numerical Simulation
4.2. Circuit Implementation
4.2.1. Realization of the FO Circuit
4.2.2. Design of the Multisim Circuits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Che, H.; Wang, J. A Two-Timescale Duplex Neurodynamic Approach to Biconvex Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2503–2514. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ding, D.; Dong, H.; Wei, G. Distributed Resilient Filtering for Power Systems Subject to Denial-of-Service Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1688–1697. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Z.; Han, Q.L. A Set-Membership Approach to Event-Triggered Filtering for General Nonlinear Systems Over Sensor Networks. IEEE Trans. Autom. Control 2020, 65, 1792–1799. [Google Scholar] [CrossRef]
- Zong, G.; Ren, H.; Karimi, H.R. Event-Triggered Communication and Annular Finite-Time Filtering for Networked Switched Systems. IEEE Trans. Cybern. 2021, 51, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shao, S.Y.; Shi, P.; Shi, Y. Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 417–421. [Google Scholar] [CrossRef]
- Heng, L.; Sheng-Gang, L.; Ye-Guo, S.; Hong-Xing, W. Prescribed performance synchronization for fractional-order chaotic systems. Chin. Phys. B 2015, 24, 157–164. [Google Scholar]
- Liu, X.; Li, C.; Ge, S.S.; Li, D. Time-Synchronized Control of Chaotic Systems in Secure Communication. IEEE Trans. Circuits Syst. I: Regul. Pap. 2022, 69, 3748–3761. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Liu, X.; Li, W. Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control. Chaos Solitons Fractals 2021, 142, 110465. [Google Scholar]
- Aadhithiyan, S.; Raja, R.; Zhu, Q.; Alzabut, J.O.; Niezabitowski, M.; Lim, C.P. Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control. Chaos Solitons Fractals 2021, 147, 110853. [Google Scholar] [CrossRef]
- Zambrano-Serrano, E.; Bekiros, S.; Platas-Garza, M.A.; Posadas-Castillo, C.; Agarwal, P.; Jahanshahi, H.; Aly, A.A. On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control. Phys. A Stat. Mech. Its Appl. 2021, 578, 126100. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.O.; Fang, H. Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 317–328. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Sun, F. A Novel Fractional Order Model for State of Charge Estimation in Lithium Ion Batteries. IEEE Trans. Veh. Technol. 2019, 68, 4130–4139. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Zhang, Y.; Cao, Y. A New Hyperchaotic Map Based on Discrete Memristor and Meminductor: Dynamics Analysis, Encryption Application, and DSP Implementation. IEEE Trans. Ind. Electron. 2024, 71, 5094–5104. [Google Scholar] [CrossRef]
- Sha, Y.; Mou, J.; Banerjee, S.; Zhang, Y. Exploiting Flexible and Secure Cryptographic Technique for Multidimensional Image Based on Graph Data Structure and Three-Input Majority Gate. IEEE Trans. Ind. Informatics 2024, 20, 3835–3846. [Google Scholar] [CrossRef]
- Lundstrom, B.N.; Higgs, M.H.; Spain, W.J.; Fairhall, A.L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.M.; Elsonbaty, A.; Elsaid, A. A novel fractional nonautonomous chaotic circuit model and its application to image encryption. Chaos Solitons Fractals 2021, 144, 110686. [Google Scholar] [CrossRef]
- Gökdoğan, A.; Merdan, M.; Yildirim, A. A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1–8. [Google Scholar] [CrossRef]
- Xingce, L.; Jun, M.; Jue, W.; Santo, B.; Peng, L. Dynamical Analysis of a Novel Fractional-Order Chaotic System Based on Memcapacitor and Meminductor. Fractal Fract. 2022, 6, 671. [Google Scholar] [CrossRef]
- Liu, X.; Tong, X.; Wang, Z.; Zhang, M. Efficient high nonlinearity S-box generating algorithm based on third-order nonlinear digital filter. Chaos Solitons Fractals 2021, 150, 111109. [Google Scholar] [CrossRef]
- Shi, Q.; An, X.; Xiong, L.; Yang, F.; Zhang, L. Dynamic analysis of a fractional-order hyperchaotic system and its application in image encryption. Phys. Scr. 2022, 97, 045201. [Google Scholar] [CrossRef]
- Bao, H.; Park, J.H.; Cao, J. Synchronization of fractional-order complex-valued neural networks with time delay. Neural Networks 2016, 81, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.-J.; Zhang, G.-B.; Wang, J.-X.; Yan, T.-H. Improved Sliding Mode Control for Finite-Time Synchronization of Nonidentical Delayed Recurrent Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2209–2216. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Cao, J.; Velmurugan, G. Existence and Uniform Stability Analysis of Fractional-Order Complex-Valued Neural Networks With Time Delays. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yu, J.; Hu, C.; Jiang, H. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks. Neural Networks 2018, 104, 104–113. [Google Scholar] [CrossRef]
- Hong-Li, L.; Cheng, H.; Jinde, C.; Haijun, J.; Ahmed, A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019, 118, 102–109. [Google Scholar]
- Boulkroune, A.; Bouzeriba, A.; Bouden, T. Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 2016, 173, 606–614. [Google Scholar] [CrossRef]
- Qi, F.; Qu, J.; Chai, Y.; Chen, L.; Lopes, A.M. Synchronization of Incommensurate Fractional-Order Chaotic Systems Based on Linear Feedback Control. Fractal Fract. 2022, 6, 221. [Google Scholar] [CrossRef]
- Debbouche, N.; Almatroud, A.O.; Ouannas, A.; Batiha, I.M. Chaos and coexisting attractors in glucose-insulin regulatory system with incommensurate fractional-order derivatives. Chaos Solitons Fractals 2021, 143, 110575. [Google Scholar] [CrossRef]
- Chen, L.; Xue, M.; Lopes, A.M.; Wu, R.; Zhang, X.; Chen, Y. New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems. IEEE Trans. Circuits Syst. II: Express Briefs 2024, 71, 455–459. [Google Scholar] [CrossRef]
- Zouari, F.; Boulkroune, A.; Ibeas, A. Neural adaptive quantized output-feedback control-based synchronization of uncertain time-delay incommensurate fractional-order chaotic systems with input nonlinearities. Neurocomputing 2017, 237, 200–225. [Google Scholar] [CrossRef]
- Deepika, D.; Kaur, S.; Narayan, S. Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control. Chaos Solitons Fractals 2018, 115, 196–203. [Google Scholar] [CrossRef]
- Hajipour, A.; Aminabadi, S.S. Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method. Optik 2016, 127, 7704–7709. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Ye, X. A new fractional-order chaos system of Hopfield neural network and its application in image encryption. Chaos Solitons Fractals 2022, 157, 111889. [Google Scholar] [CrossRef]
- Ma, T.; Mou, J.; Li, B.; Banerjee, S.; Yan, H. Study on the Complex Dynamical Behavior of the Fractional-Order Hopfield Neural Network System and Its Implementation. Fractal Fract. 2022, 6, 637. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Chen, L.; Guo, W.; Gu, P.; Lopes, A.M.; Chu, Z.; Chen, Y. Stability and Stabilization of Fractional-Order Uncertain Nonlinear Systems With Multiorder. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 576–580. [Google Scholar] [CrossRef]
- Lenka, B.K. Fractional comparison method and asymptotic stability results for multivariable fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2018, 69, 398–415. [Google Scholar] [CrossRef]
- Lu, J.G.; Zhu, Z.; Ma, Y.D. Robust stability and stabilization of multi-order fractional-order systems with interval uncertainties: An LMI approach. Int. J. Robust Nonlinear Control 2021, 31, 4081–4099. [Google Scholar] [CrossRef]
- Luo, S.; Song, Y.; Lewis, F.L.; Garrappa, R. Neuroadaptive Optimal Fixed-Time Synchronization and its Circuit Realization for Unidirectionally Coupled FO Self-Sustained Electromechanical Seismograph Systems. IEEE Trans. Cybern. 2023, 53, 2454–2466. [Google Scholar] [CrossRef]
- Luo, S.; Song, Y.; Lewis, F.L.; Deng, G. Dynamical Analysis, Circuit Design, and Fuzzy Prescribed Performance Backstepping Control of the FO Weakly Coupled MEMS Resonators. IEEE Trans. Fuzzy Syst. 2024, 32, 1768–1781. [Google Scholar] [CrossRef]
Notations | Descriptions |
---|---|
set of n-dimensional real vectors | |
set of real matrices | |
I | the identity matrix with appropriate dimension |
⊗ | the Kronecker product |
a block diagonal matrix | |
the real symmetric positive definite matrix set | |
the transpose of the matrix X | |
the inverse of the matrix X | |
a real symmetric and positive (negative) definite matrix | |
equivalent to |
Fractional Order | Circuit Diagram | Circuit Parameters | |
---|---|---|---|
= 0.99 | = 10.002 nF = 208.054 nF | = 976.784 M = 448.251 k | |
= 0.993 | = 9.93018 nF = 208.9 nF = 199.7 nF | = 983.949 M = 62.0449 k = 80.0960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Qiu, K.; Liu, C.; Ma, H.; Chu, Z. Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation. Fractal Fract. 2025, 9, 273. https://doi.org/10.3390/fractalfract9050273
Zhang R, Qiu K, Liu C, Ma H, Chu Z. Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation. Fractal and Fractional. 2025; 9(5):273. https://doi.org/10.3390/fractalfract9050273
Chicago/Turabian StyleZhang, Rongbo, Kun Qiu, Chuang Liu, Hongli Ma, and Zhaobi Chu. 2025. "Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation" Fractal and Fractional 9, no. 5: 273. https://doi.org/10.3390/fractalfract9050273
APA StyleZhang, R., Qiu, K., Liu, C., Ma, H., & Chu, Z. (2025). Comparison Principle Based Synchronization Analysis of Fractional-Order Chaotic Neural Networks with Multi-Order and Its Circuit Implementation. Fractal and Fractional, 9(5), 273. https://doi.org/10.3390/fractalfract9050273