Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = flavanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1928 KB  
Article
Hibiscus moscheutos L. Flower Petals Extract Phenolic Profile and In Vitro Antimicrobial, Biofilm Formation, Autoaggregation, Prebiotic, Genotoxicity, and Anti-Inflammatory Properties
by Patryk Kowalczyk, Elżbieta Klewicka, Joanna Milala, Lidia Piekarska-Radzik, Elżbieta Karlińska, Michał Sójka and Robert Klewicki
Molecules 2025, 30(17), 3569; https://doi.org/10.3390/molecules30173569 - 31 Aug 2025
Viewed by 46
Abstract
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, [...] Read more.
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, the phenolic composition and in vitro biological activity of an ethanolic extract from H. moscheutos petals were investigated. The total phenolic content was 219.52 mg/g (HPLC method), including phenolic acids (5.17 mg/g), flavanols (59.18 mg/g), flavonols (93.09 mg/g), and anthocyanins (62.08 mg/g). Many species of the genus Staphylococcus, as well as two probiotic strains of Lacticaseibacillus spp., were sensitive to the extract’s effects (100 mg/mL), which appeared to be strain-dependent. The MIC values for Staphylococcus spp. ranged from 6.25 to 100.00 mg/mL, while for the two probiotic strains, they were 12.50 and 100.00 mg/mL, respectively. The extract did not show prebiotic activity. Nevertheless, it enhanced the biofilm-forming ability of both probiotic and pathogenic microbiota on abiotic (polystyrene) and biotic (mucin and gelatin) surfaces. The stimulation of Staphylococcus spp. biofilms is considered undesirable and may justify limiting the use of the extract, for example, in pharmaceutical or medical applications. At concentrations above 25 mg/mL, the extract reduced bacterial autoaggregation. It also exhibited low genotoxicity in the Ames test and demonstrated anti-inflammatory activity comparable to sodium diclofenac. Hibiscus petal extracts might represent a promising source of bioactive compounds for novel pharmaceutical, nutraceutical, and food applications; however, their potential requires further in-depth investigation. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Graphical abstract

16 pages, 2539 KB  
Article
Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes
by Na Xu and Yun Wu
Foods 2025, 14(17), 3047; https://doi.org/10.3390/foods14173047 - 29 Aug 2025
Viewed by 171
Abstract
To reveal the characteristic physicochemical indicators of wines of different quality grades and explore their feasibility as auxiliary indicators for grading, 23 wines from the Manas subregion of Xinjiang were used as test materials. Sensory evaluation, colour difference analysis, and electronic tongue technology [...] Read more.
To reveal the characteristic physicochemical indicators of wines of different quality grades and explore their feasibility as auxiliary indicators for grading, 23 wines from the Manas subregion of Xinjiang were used as test materials. Sensory evaluation, colour difference analysis, and electronic tongue technology were employed, combined with nontargeted metabolomics and quantitative analysis, to analyze differences in phenolic compounds, colour parameters, and taste characteristics among wines of different grades. Finally, a quality evaluation model for Cabernet Sauvignon wine was constructed using partial least squares regression (PLSR). The results revealed significant differences in the L* values, a* values, and C*ab values among wines of different grades. Grade A wines presented lower L* values, higher a* values, and higher C*ab values, indicating lower brightness, deeper red tones, and higher saturation. Taste characteristic differences were primarily manifested in Grade A wines, which have higher acidity, astringency, bitterness, and richness but exhibit lower bitterness aftertaste and astringency aftertaste. The results of the quantitative analysis and correlation analysis indicate that the differences in sensory characteristics among different grades of wine stem from variations in their polyphenolic compound contents. The higher anthocyanin content in Grade A wine is associated with higher a* values; higher flavonoid content is closely related to higher astringency and bitterness values; and lower flavanol content is associated with lower bitterness aftertaste and astringency aftertaste values. The PLSR model results indicate that when sensory characteristic parameters and phenolic compound content are used as predictor variables (X) and grade is used as the response variable (Y), the PLSR model has a calibration set R2 = 0.97 and a validation set R2 = 0.92, the calibration set RMSE is 0.13, and the validation set RMSE is 0.25. The model demonstrates good fitting performance, establishing an objective method for evaluating wine quality that avoids evaluation errors caused by the subjective factors of winemakers and tasters. This study is the first to conduct a comprehensive evaluation of the sensory characteristic and chemical components of three grades of wine, providing data support and theoretical references for the improvement of wine quality evaluation systems. Full article
Show Figures

Figure 1

21 pages, 2108 KB  
Article
Valorization of Carménère Grape Pomace: Extraction, Microencapsulation, and Evaluation of the Bioactivity of Polyphenols in Caco-2 Cells
by Paula Valenzuela-Bustamante, Paula Cornejo, Nicolás Nolan, Alina Concepción-Alvarez, Raquel Bridi, Miguel Ángel Rincón-Cervera, Omar Porras, Adriano Costa de Camargo and M. Fernanda Arias-Santé
Int. J. Mol. Sci. 2025, 26(16), 7994; https://doi.org/10.3390/ijms26167994 - 19 Aug 2025
Viewed by 369
Abstract
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to [...] Read more.
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to recover and stabilize bioactive compounds from Carménère grape pomace. Five extracts were obtained using ethanol–water mixtures (0–100%) and characterized by HPLC-DAD and antioxidant assays (DPPH, FRAP, ORAC-FL). The 80% ethanol extract (EET-80) showed the highest antioxidant capacity (FRAP: 2909.3 ± 37.6; ORAC-FL: 1864.3 ± 157.8 µmol TE/g dw) and was selected for microencapsulation via spray drying using maltodextrin. This scalable technique protects thermosensitive compounds and enhances their applicability. The optimized 1:50 extract-to-carrier ratio achieved high encapsulation efficiency (85.7 ± 0.7%). In Caco-2 cells, the microencapsulated extract (5–250 µg/mL) showed no alteration in metabolic activity and significantly reduced intracellular ROS levels (65% inhibition at 250 µg/mL). Solvent polarity selectively influenced polyphenol recovery—50% ethanol favored catechin (581.1 µg/g) and epicatechin (1788.3 µg/g), while 80% ethanol enhanced malvidin-3-O-glucoside (118.0 µg/g). These findings support the valorization of Carménère grape pomace as a sustainable source of antioxidants and highlight the role of microencapsulation in improving extract stability and functionality. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Graphical abstract

26 pages, 7326 KB  
Article
Cocoa Polyphenols Alter the Fecal Microbiome Without Mitigating Colitis in Mice Fed Healthy or Western Basal Diets
by Eliza C. Stewart, Mohammed F. Almatani, Marcus Hayden, Giovanni Rompato, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(15), 2482; https://doi.org/10.3390/nu17152482 - 29 Jul 2025
Viewed by 759
Abstract
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This [...] Read more.
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This study investigated the impact of cocoa polyphenol (CP) supplementation on inflammation and microbiome composition in mice with colitis, fed either a healthy or Western diet, before, during, and after the onset of disease. We hypothesized that CPs would attenuate inflammation and promote distinct shifts in the microbiome, especially in the context of a Western diet. Methods: A 2 × 2 factorial design tested the effects of the basal diet (AIN93G vs. total Western diet [TWD]) and CP supplementation (2.6% w/w CocoaVia™ Cardio Health Powder). Inflammation was induced using the AOM/DSS model of colitis. Results: CP supplementation did not reduce the severity of colitis, as measured by disease activity index or histopathology. CPs did not alter gene expression in healthy tissue or suppress the colitis-associated pro-inflammatory transcriptional profile in either of the two diet groups. However, fecal microbiome composition shifted significantly with CPs before colitis induction, with persistent effects on several rare taxa during colitis and recovery. Conclusions: CP supplementation did not mitigate inflammation or mucosal injury at the tissue level, nor did it affect the expression of immune-related genes. While CPs altered microbiome composition, most notably in healthy mice before colitis, these shifts did not correspond to changes in inflammatory signaling. Basal diet remained the primary determinant of inflammation, mucosal damage, and colitis severity in this model. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

22 pages, 1765 KB  
Review
Polyphenols as Antiviral Agents: Their Potential Against a Range of Virus Types
by Nurten Coşkun, Ranya Demir, Ahmet Alperen Canbolat, Sümeyye Sarıtaş, Burcu Pekdemir, Mikhael Bechelany and Sercan Karav
Nutrients 2025, 17(14), 2325; https://doi.org/10.3390/nu17142325 - 16 Jul 2025
Cited by 1 | Viewed by 1233
Abstract
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, [...] Read more.
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, and lignans. Polyphenols mainly possess inhibition of viral replication, interference with viral protein synthesis, and modulation of immune responses, providing significant antiviral effects against several viruses, including herpes simplex virus, hepatitis C virus, and influenza. They are crucial for medical compounds in diverse, versatile treatments, namely in diabetes, cardiovascular disorders, cancer, and neurodegenerative problems. Plants are the primary source of bioactive molecules, which are valued for their anti-inflammatory, antioxidant, anticancer, and antiviral activities. Especially, polyphenols are extracted as the most abundant bioactive compounds of plants. Moreover, viral infections are one of the major factors in illnesses and diseases, along with bacteria and fungi. Numerous in vitro and in vivo studies report antiviral activity against SARS-CoV-2, Mayaro virus, dengue virus, herpesvirus, and influenza A virus, though clinical validation remains limited. Additionally, inhibition of viral entry, interference with viral replication, modulation of host immune response, and direct virucidal effects were examined. Full article
Show Figures

Figure 1

23 pages, 1756 KB  
Article
Rhododendron Microshoot Culture as a Source of Phenolic Antioxidants for Biomedicine
by Vera M. Katanskaya, Olga G. Vasilyeva, Elena P. Khramova, Natalia N. Sazhina, Evgenia A. Goncharuk, Tatiana L. Nechaeva, Maria Y. Zubova, Maria A. Aksenova, Petr V. Lapshin and Natalia V. Zagoskina
Molecules 2025, 30(14), 2949; https://doi.org/10.3390/molecules30142949 - 12 Jul 2025
Viewed by 442
Abstract
The search for alternative sources of biologically active compounds of plant origin, including phenolic compounds (PCs), is of great importance in medicine and pharmacology. Morphophysiological characteristics, photosynthetic pigments, PCs content, phenolic profile, as well as antioxidant (AOA) and antiradical activity (ARA), were studied [...] Read more.
The search for alternative sources of biologically active compounds of plant origin, including phenolic compounds (PCs), is of great importance in medicine and pharmacology. Morphophysiological characteristics, photosynthetic pigments, PCs content, phenolic profile, as well as antioxidant (AOA) and antiradical activity (ARA), were studied for in vitro rhododendrons’ microshoots (R. smirnowii, R. PJM Elite, R. japonicum). The microshoots of R. PJM Elite had the highest photosynthetic pigments content (chlorophylls a and b), exceeding that of R. smirnowii and R. japonicum, it was 33% and 42%, respectively. The total phenolic content increased in the row R. PJM Elite < R. smirnowii < R. japonicum. Twelve to twenty phenolic compounds were identified in ethanol extracts of rhododendron microshoots, using high-performance liquid chromatography. Quercetin, kaempferol, and myricetin dominated in the phenolic complex of R. japonicum and R. smirnowii, whereas in R. PJM Elite, they were taxifolin and (−)-epicatechin. The AOA and ARA evaluation in DPPH-radical system and the model of initiated liposomes oxidation allowed to determine the highest activity in both systems for R. japonicum extracts, which was not typical for the other two species extracts. A high correlation was found between AOA extracts and the flavonoid content in them. The results obtained indicate the prospects of using R. japonicum and R. PJM Elite microshoots as an alternative source of flavonols and flavanols, accordingly. Full article
(This article belongs to the Special Issue Bioactive Natural Products and Derivatives)
Show Figures

Graphical abstract

17 pages, 4293 KB  
Article
Predicting Nitrogen Flavanol Index (NFI) in Mentha arvensis Using UAV Imaging and Machine Learning Techniques for Sustainable Agriculture
by Bhavneet Gulati, Zainab Zubair, Ankita Sinha, Nikita Sinha, Nupoor Prasad and Manoj Semwal
Drones 2025, 9(7), 483; https://doi.org/10.3390/drones9070483 - 9 Jul 2025
Viewed by 2044
Abstract
Crop growth monitoring at various growth stages is essential for optimizing agricultural inputs and enhancing crop yield. Nitrogen plays a critical role in plant development; however, its improper application can reduce productivity and, in the long term, degrade soil health. The aim of [...] Read more.
Crop growth monitoring at various growth stages is essential for optimizing agricultural inputs and enhancing crop yield. Nitrogen plays a critical role in plant development; however, its improper application can reduce productivity and, in the long term, degrade soil health. The aim of this study was to develop a non-invasive approach for nitrogen estimation through proxies (Nitrogen Flavanol Index) in Mentha arvensis using UAV-derived multispectral vegetation indices and machine learning models. Support Vector Regression, Random Forest, and Gradient Boosting were used to predict the Nitrogen Flavanol Index (NFI) across different growth stages. Among the tested models, Random Forest achieved the highest predictive accuracy (R2 = 0.86, RMSE = 0.32) at 75 days after planting (DAP), followed by Gradient Boosting (R2 = 0.75, RMSE = 0.43). Model performance was lowest during early growth stages (15–30 DAP) but improved markedly from mid to late growth stages (45–90 DAP). The findings highlight the significance of UAV-acquired data coupled with machine learning approaches for non-destructive nitrogen flavanol estimation, which can immensely contribute to improving real-time crop growth monitoring. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

24 pages, 2920 KB  
Article
The MiBlend Randomized Trial: Investigating Genetic Polymorphisms in Personalized Responses to Fruit and Vegetable Interventions for Chronic Disease Prevention
by Julia N. DeBenedictis, Na Xu, Theo M. de Kok and Simone G. van Breda
Antioxidants 2025, 14(7), 828; https://doi.org/10.3390/antiox14070828 - 4 Jul 2025
Viewed by 505
Abstract
Background: The MiBlend Study investigated the effect of consuming different combinations of fruits and vegetables (F&Vs) blends on markers of chronic disease risk and gene expression changes in healthy human subjects. Overall, the increase in F&Vs led to reduced susceptibility to the induction [...] Read more.
Background: The MiBlend Study investigated the effect of consuming different combinations of fruits and vegetables (F&Vs) blends on markers of chronic disease risk and gene expression changes in healthy human subjects. Overall, the increase in F&Vs led to reduced susceptibility to the induction of DNA damage ex vivo, higher antioxidant capacity of plasma, and improved microvasculature as reflected by retinal analysis. As with most dietary intervention studies, inter-individual variability was observed in the responses, which might be the consequence of genetic differences. Therefore, this study aims to identify if genetic variants in relevant genes affect outcomes and responses to the dietary interventions. Methods: The literature review identified 15 polymorphic genes related to phytochemical metabolism, oxidative stress, and detoxification, which were tested in 146 participant samples using TaqMan and PCR analysis. The effect of genotypes on study outcomes was determined via analysis of variance. Results: XRCC1 wildtype carriers were more protected from ex vivo-induced DNA damage after consuming flavanol-rich F&Vs than other variants. XRCC1 is involved in DNA repair, particularly oxidative damage, and its wildtype allele enhances repair efficiency. GSTP1 wildtype carriers had a larger improvement in microvasculature after all F&V blends, especially those rich in polyphenols. GSTP1 polymorphisms likely affect microvascular responses to polyphenol-rich F&V intake by modulating detoxification and fiber-derived butyrate that can influence arterial dilation and endothelial function. Conclusions: Stratifying participants by relevant genetic polymorphisms can reveal predisposed responses to nutrients and guide efforts to personalize disease prevention strategies. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

22 pages, 1759 KB  
Article
The Impact of Cocoa Flavanols in Modulating Resting Cerebral Blood Flow During Prolonged Sitting in Healthy Young and Older Adults
by Alessio Daniele, Samuel J. E. Lucas and Catarina Rendeiro
Nutrients 2025, 17(13), 2099; https://doi.org/10.3390/nu17132099 - 24 Jun 2025
Viewed by 1740
Abstract
Background: Sitting is highly prevalent among young and older adults and can transiently reduce cerebral blood flow. Dietary flavanols confer benefits to the peripheral vasculature and may be effective at counteracting the impact of sitting in the cerebrovasculature. The aim of this study [...] Read more.
Background: Sitting is highly prevalent among young and older adults and can transiently reduce cerebral blood flow. Dietary flavanols confer benefits to the peripheral vasculature and may be effective at counteracting the impact of sitting in the cerebrovasculature. The aim of this study was to investigate whether the acute ingestion of flavanols prior to sitting improves common carotid artery (CCA) blood flow/shear rate (BF/SR) in young and older individuals. Methods: Two acute randomized, double-blinded, cross-over, placebo-controlled studies were conducted in 40 healthy young males (high-fit: 22.2 ± 2.9 yr., low-fit: 23.2 ± 4.1 yr., N = 20 per group) and 20 healthy older adults (72.4 ± 5.0 yr.). Participants consumed either a high- (695 mg) or low-flavanol (5.6 mg) cocoa beverage just before a 2 h sitting bout. Resting CCA retrograde/anterograde BF and SR, as well as arterial diameter, were assessed before and after the intervention. Results: Sitting reduced anterograde BF and/or SR in young and older individuals (p < 0.001) but only resulted in increases in retrograde BF (p = 0.021) and SR (p = 0.022) in the older group. Flavanols did not affect anterograde BF/SR in either group (p > 0.05) but mitigated (non-significant interaction: p = 0.053) sitting-induced increases in retrograde BF/SR in older individuals, with retrograde BF (p = 0.028) and SR (p = 0.033) increasing significantly only after intake of the low-flavanol beverage. No changes in arterial diameter were detected. Conclusions: This suggests that flavanols may have the potential to attenuate the detrimental sitting-induced increases in retrograde BF and SR in older adults, although larger well-powered studies are required to confirm this. Full article
Show Figures

Figure 1

17 pages, 1001 KB  
Article
The Effect of Freeze-Dried Cherry Pomace and Red Potato Pulp on the Content of Bioactive Substances in Pasta
by Dorota Gumul, Wiktor Berski, Eva Ivanišová, Joanna Oracz and Marek Kruczek
Int. J. Mol. Sci. 2025, 26(13), 6020; https://doi.org/10.3390/ijms26136020 - 23 Jun 2025
Viewed by 381
Abstract
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content [...] Read more.
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content of health-promoting ingredients, such as dietary fiber, minerals, vitamins, and polyphenols. Food industry by-products, or even waste, can be applied as a source of many bioactive substances, thus enriching pasta with bioactive ingredients. Two by-products, Cherry Pomace (CP) and Red Potato Pulp (RPP) were applied as health-promoting supplements for wheat pasta, at three levels (10, 20, and 30%). The antioxidant potential of the resulting pasta was examined (by DPPH, ABTS, FRAP, and FOMO methods), and the antioxidant’s content was also tested. The amount of polyphenols determined by HPLC was higher in the case of CP than in RPP, and the main ones were 5-O-Caffeoylquinic acid and Cyanidin 3-O-rutinoside in CP, whereas for RPP it was Pelargonidin 3-(4‴-p-coumaroylrutinoside)-5-glucoside. Fortified pasta samples were characterized by a higher content of total polyphenols and phenolic acids, flavonoids, flavanols, and anthocyanins. In pasta with a share of CP, some polyphenols were unstable during pasta production. Pasta with a share of CP was characterized by very high antioxidant activity due to a high level of phenolic acids and anthocyanins acting synergistically. It was also characterized by a higher content of phytosterols. A 30% addition of CP into pasta is considered the most beneficial in terms of increasing the health-promoting properties of such a product. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Compounds in Human Health)
Show Figures

Graphical abstract

28 pages, 1754 KB  
Article
Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes
by Katelene Lima, Maryam Malmir, Shabnam Sabiha, Rui Pinto, Isabel Moreira da Silva, Maria Eduardo Figueira, João Rocha, Maria Paula Duarte and Olga Silva
Pharmaceuticals 2025, 18(6), 913; https://doi.org/10.3390/ph18060913 - 18 Jun 2025
Viewed by 551
Abstract
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic [...] Read more.
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic (70%) extracts of the P. chevalieri dried aerial parts (PcAE and PcEE) and evaluate their potential to modulate postprandial glycemia and inhibit key carbohydrate-hydrolyzing enzymes. Methods: The chemical characterization was performed by LC/UV-DAD-ESI/MS/MS. An in vivo evaluation of postprandial glycemia modulation was conducted on healthy CD1 mice submitted to an oral sucrose tolerance test. In vitro enzymatic inhibition was performed for the α-amylase, α-glucosidase, and DPP4 enzymes. Additionally, antioxidant and antiglycation activities were also assessed. Results: Phenolic acid derivatives, flavanols, proanthocyanidins, and flavonols were the major classes of secondary metabolites identified. PcEE at 170 mg/kg of body weight significantly (p < 0.05) reduced the postprandial glycemia peak in CD1 mice submitted to sucrose overload. Regarding the enzymatic inhibition, both extracts showed concentration-dependent inhibitory potential against the α-amylase, α-glucosidase, and DPP4 enzymes. Both extracts inhibited α-glucosidase more effectively than acarbose. Conclusions: The obtained results supports the traditional use of P. chevalieri and suggest the potential for further pharmacological investigation. Full article
Show Figures

Graphical abstract

28 pages, 1265 KB  
Review
Polyphenols in Foods and Their Use in the Food Industry: Enhancing the Quality and Nutritional Value of Functional Foods
by Nurten Coşkun, Sümeyye Sarıtaş, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(12), 5803; https://doi.org/10.3390/ijms26125803 - 17 Jun 2025
Viewed by 1610
Abstract
Polyphenols are known as secondary metabolites, which are crucial bioactive compounds that play a significant role in enhancing human health. Chromatographic methods are typically used to identify polyphenols after food extraction. The extraction methods are fundamental, however, they are implemented with some differences, [...] Read more.
Polyphenols are known as secondary metabolites, which are crucial bioactive compounds that play a significant role in enhancing human health. Chromatographic methods are typically used to identify polyphenols after food extraction. The extraction methods are fundamental, however, they are implemented with some differences, including extractant type, according to the food. Polyphenols are mostly found in some foods, including grapes, olives, cherries, and apples. Foods have diverse polyphenols, which differ according to the food type. Moreover, they have flavonols, flavanols, flavones, flavanones, isoflavones, and anthocyanins as various subgroups of polyphenols, which can change in terms of quantity and quality along with several factors, including the type, growing region, germination time, and harvest season of the food. The consumption of polyphenols is crucial for human health due to their anti-cancer, anti-tumor, anti-inflammatory, cardiometabolic risk management, antimicrobial, immunomodulatory, and antioxidant effects. In the valorization of polyphenols, the consumption dose is also important to effectively benefit from the polyphenols of plant-based foods. Several in vitro and in vivo studies have tested the polyphenols’ digestion ability and preservation ability in gut microbiota and their effect on the microbiota to determine the benefits and effects of polyphenols in several areas. According to these studies, polyphenols can be used to fight against disease. In addition, diverse applications, including encapsulation and polyphenol coating, are used to stabilize, preserve, and improve the bioaccessibility of polyphenols. Even though polyphenol-rich foods are consumed for nutrition in daily life, they are also used as nutritional ingredients in the food industry to produce functional foods, and functional foods are enriched with food by-products to enhance their nutritional value, especially in terms of polyphenols. Particularly, food by-products are used to enrich functional foods, which are preferred in healthy life diets due to the diversity and amount of bioactive ingredients, including the polyphenol types of the food by-products. Furthermore, polyphenols also provide the preservation ability of storage and improve the bioaccessibility of bioactive ingredients during the digestion of functional foods. This review article examines the polyphenol ingredients of several types of food used in the food industry. It explains the effective factors that affect the amount and type of food and determines the impact of polyphenols on polyphenol-enriched products and functional foods. The article also provides a brief exemplification of the value of polyphenol-rich food by-products in the context of functional food production. Several studies presented in this review article demonstrate the value of polyphenols, particularly in the food industry and functional food production. Full article
Show Figures

Figure 1

14 pages, 2244 KB  
Article
Positive Effects of (+)-Epicatechin on Traumatic Spinal Cord Injury Recovery
by Cristian Gonzalez-Ruiz, Rodrigo Mondragón-Lozano, Hermelinda Salgado-Ceballos, Francisco Villarreal, Yuridia Martínez-Meza, Eduardo Meaney, Nayelli Nájera and Guillermo Ceballos
Biomolecules 2025, 15(6), 869; https://doi.org/10.3390/biom15060869 - 14 Jun 2025
Viewed by 563
Abstract
Neurological damage from traumatic spinal cord injury (SCI) results in a grade of disability ranging from mild to severe motor and sensory dysfunction. It occurs more frequently in men of productive age. Treatment essentially consists of anti-inflammatories and rehabilitation. Other treatments are only [...] Read more.
Neurological damage from traumatic spinal cord injury (SCI) results in a grade of disability ranging from mild to severe motor and sensory dysfunction. It occurs more frequently in men of productive age. Treatment essentially consists of anti-inflammatories and rehabilitation. Other treatments are only partially effective, and inadequate treatment and secondary conditions often cause premature mortality. The search for pharmacological approaches is a continuous effort. This study aimed to assess the effects of a natural compound on spinal cord injury (SCI) as an alternative damage prevention maneuver. We evaluated the protective effects of the flavanol (+)-epicatechin (EC) in a rat model of moderate trauma-induced SCI on protein markers of damage events. The results showed that EC induced significant protection against SCI. No changes were found in angiopoietin-1, beclin-1, myelin basic protein, glial fibrillary acidic protein, neurofilament heavy polypeptide, and neuronal nuclear antigen after the injury, suggesting that damage progression was impeded. The reduction in damage translates into better movement. The results suggest that (+)-epicatechin may be a suitable alternative for treating SCI. Full article
(This article belongs to the Special Issue Feature Papers in the Natural and Bio-Derived Molecules Section)
Show Figures

Figure 1

20 pages, 1295 KB  
Article
Phenolic Profile, Fatty Acid Composition, and Antioxidant Activity of Italian Riesling Grape Pomace from Two Transylvanian Microclimates
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Comșa, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Horia Silviu Răcoare, Corina Ioana Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Plants 2025, 14(12), 1809; https://doi.org/10.3390/plants14121809 - 12 Jun 2025
Cited by 1 | Viewed by 1437
Abstract
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty [...] Read more.
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty acids, as well as its antioxidant activity. Thus, two Italian Riesling GPs from two distinct Transylvanian microclimates (Crăciunelu de Jos and Ciumbrud) were analysed in terms of their phenolic and fatty acid composition and antioxidant activity while considering the influence of their respective microclimates. Every vineyard has unique geographical and meteorological characteristics that significantly influence grape production and consequently the structure of the resultant pomace. For example, Ciumbrud has a warmer, drier microclimate, whereas Crăciunelu de Jos has a colder, more humid environment. Biochemically, GP from Ciumbrud Italian Riesling grapes (RICI) contained greater amounts of gallic acid, total phenolic acids, and procyanidins and presented improved antioxidant activities, as reflected by DPPH˙, ABTS˙+, CUPRAC, and FRAP assays. RICI pomace also possessed a better fatty acid profile with higher oleic and linolenic acid levels, leading to a lower thrombogenicity index (TI) and a better PUFAω-6/PUFA ω-3 ratio. However, GP produced from Crăciunelu de Jos Italian Riesling grapes (RICR) possessed more catechin, epicatechin, epicatechin gallate, total flavanols, and higher COX values. The findings demonstrate that the two GPs have significant and distinct nutritional content, highlighting them as valuable resources for food consumption, providing benefits to consumers’ health. Full article
Show Figures

Graphical abstract

19 pages, 1751 KB  
Article
Purification of Flavonoids from an Aqueous Cocoa (Theobroma cocoa L.) Extract Using Macroporous Adsorption Resins
by Nicole Beeler, Tilo Hühn, Sascha Rohn and Renato Colombi
Molecules 2025, 30(11), 2336; https://doi.org/10.3390/molecules30112336 - 27 May 2025
Viewed by 629
Abstract
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) [...] Read more.
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) were evaluated for their adsorption and desorption properties for the enrichment of flavonoids from an aqueous cocoa (Theobroma cacao L.) extract. The influence of adsorption and desorption temperatures and the concentration of the desorption solvent (a hydroalcoholic solution) were investigated by static adsorption and desorption methods. The results of the resin comparison showed that the adsorbent XAD-7HP had the best adsorption characteristics, with an adsorption capacity of 39.8 mg ECE/g. XAD-7HP was found to be the most suitable adsorbent, and 70% ethanol was the best desorbing solvent, based on static experiments. In addition, the optimal conditions for the adsorption of flavonoids were obtained at a temperature of 30 °C, where equilibrium was reached after 80 min. The static adsorption process was well-described by a pseudo-second-order kinetics model, while the adsorption isotherm data were fitted well by the Freundlich isotherm model. Further dynamic adsorption and desorption characteristics were evaluated on a packed glass column, and it was shown that XAD-7HP could enrich the flavanol content by 5.03-fold, with a dry matter content of 456.05 mg/mL (as estimated by the degree of DP1–DP7 procyanidin polymers using ultra-pressure liquid chromatography). Full article
Show Figures

Graphical abstract

Back to TopTop