Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = flavins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 954 KB  
Article
The Molecular Drivers of Honey Robbing in Apis mellifera L.: Morphological Divergence and Oxidative-Immune Regulation Mechanisms Based on Proteomic Analysis
by Xinyu Wang, Xijie Li, Zhanfeng Yan, Mengjuan Hao, Xiao Cui, Zhenxing Liu, Jun Guo and Yazhou Zhao
Insects 2025, 16(9), 987; https://doi.org/10.3390/insects16090987 - 22 Sep 2025
Viewed by 212
Abstract
Honey robbing, as an extreme adaptive response of honey bee colonies to resource scarcity, poses devastating threats to apiaries, yet the underlying molecular mechanisms remain poorly understood. We compared morphological traits and survival rates between robber bees and normal foragers and conducted proteomic [...] Read more.
Honey robbing, as an extreme adaptive response of honey bee colonies to resource scarcity, poses devastating threats to apiaries, yet the underlying molecular mechanisms remain poorly understood. We compared morphological traits and survival rates between robber bees and normal foragers and conducted proteomic sequencing of bee head samples. The results demonstrated that robber bees exhibited darker tergite coloration and significantly shortened lifespan. Proteomic analysis revealed that the darker coloration was primarily attributed to enhanced cuticular melanin deposition mediated by upregulated laccase-5, while the shortened lifespan mainly resulted from oxidative stress and immune suppression: the downregulation of heat shock protein 75 kDa and glutathione transferase weakened antioxidant capacity, and despite compensatory upregulation of the cytochrome P450 enzyme system, flavin-containing monooxygenases and other enzymes, oxidative damage continued to accumulate. Concurrently, downregulation of Defense protein 3 and C-type lectin 5 caused immune deficiency in robber bees. The results also showed metabolic and protein synthesis reprogramming in robber bees, specifically manifested by upregulated key enzymes in nicotinate and nicotinamide metabolism, the pentose phosphate pathway, and nucleotide metabolism, along with activation of protein synthesis-transport-export systems. We found that robber bees employ a “metabolic-synthetic co-enhancement” physiological strategy to boost short-term foraging efficiency, but this strategy simultaneously induces oxidative damage and immune suppression, ultimately shortening their lifespan. This study provides the first proteomic evidence revealing the physiological trade-offs underlying this behavior at the molecular level, offering novel insights into the physiological costs of behavioral adaptation in animals. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Graphical abstract

17 pages, 3726 KB  
Perspective
Recent Advances in Elucidating the Mechanism of the NADPH–Cytochrome P450 Reductase-Mediated Electron Transfer Cycle: Experimental and Computational Perspectives
by Songyan Xia and Hajime Hirao
Molecules 2025, 30(18), 3733; https://doi.org/10.3390/molecules30183733 - 13 Sep 2025
Viewed by 424
Abstract
NADPH–cytochrome P450 reductase (CPR) is an essential redox partner for a wide range of metal-containing proteins, mediating the stepwise transfer of two electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the redox centers of its partner proteins. This Perspective summarizes recent advances in [...] Read more.
NADPH–cytochrome P450 reductase (CPR) is an essential redox partner for a wide range of metal-containing proteins, mediating the stepwise transfer of two electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the redox centers of its partner proteins. This Perspective summarizes recent advances in understanding the mechanisms underlying the CPR-mediated electron transfer (ET) cycle. Emphasis is placed on human and other mammalian CPRs, which provide critical insights into human biology and drug metabolism. Recent experimental and computational approaches that have deepened our mechanistic understanding of CPR function are highlighted. Selected studies are reviewed to illustrate progress in elucidating the interflavin ET within CPR, the interplay between its redox states and structural dynamics, and its protein–protein interactions with redox partners, along with the associated ET pathways. Finally, the remaining challenges and future research directions are outlined. Full article
Show Figures

Figure 1

19 pages, 1479 KB  
Article
Blue Light (λ = 453 nm) Significantly Reduces TGF-β-Induced Fibroblast Differentiation Through Reversible Disruption of Mitochondrial Respiration, Glycolysis, and ATP Production Rate
by Pia Steentjes, Julia Krassovka, Christoph V. Suschek, Uwe Maus and Lisa Oezel
Biomedicines 2025, 13(9), 2231; https://doi.org/10.3390/biomedicines13092231 - 10 Sep 2025
Viewed by 317
Abstract
Background/Objectives: Abnormal differentiation of human skin fibroblasts into myofibroblasts contributes to fibrotic skin disorders such as hypertrophic scars, keloids, and Dupuytren’s disease. This process is characterized by increased fibroblast proliferation, enhanced differentiation into myofibroblasts, and reduced programmed cell death (apoptosis). We previously [...] Read more.
Background/Objectives: Abnormal differentiation of human skin fibroblasts into myofibroblasts contributes to fibrotic skin disorders such as hypertrophic scars, keloids, and Dupuytren’s disease. This process is characterized by increased fibroblast proliferation, enhanced differentiation into myofibroblasts, and reduced programmed cell death (apoptosis). We previously demonstrated that blue light irradiation (λ = 453 nm) significantly and dose-dependently inhibits both spontaneous and TGF-β-induced fibroblast differentiation. Methods: Because fibroblast differentiation depends on cellular energy metabolism, we investigated whether the inhibitory effect of blue light is linked to changes in the cells’ energy balance. Results: We found that blue light reduced TGF-β-induced differentiation, as shown by decreased levels of α-SMA and EDA-fibronectin, key markers of myofibroblast formation. This effect was strongly associated with almost complete inhibition of mitochondrial respiration, reduced glycolysis, a lower NAD+/NADH ratio, and decreased ATP production. ATP-dependent processes, including endocytosis and lysosomal activity, both essential parameters of fibroblast differentiation, were also strongly suppressed. Importantly, all these changes were fully reversible within 24 h after the last irradiation. Conclusions: Mechanistically, we propose that blue light triggers photochemical reduction in flavins in proteins of the respiratory chain and possibly the Krebs cycle, which temporarily alters cellular energy metabolism. These findings suggest that non-toxic blue light therapy (80 J/cm2) can effectively prevent factor-induced fibroblast differentiation and may serve as a standalone or supportive treatment to reduce fibrotic events such as scarring and keloid formation. Furthermore, our results indicate that targeting cellular energy metabolism, whether physically or pharmacologically, could be a promising strategy to prevent sclerotic skin disorders. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 3216 KB  
Article
The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2
by Polina I. Koroleva, Alexey V. Kuzikov, Andrei A. Gilep, Sergey V. Ivanov, Alexander I. Archakov and Victoria V. Shumyantseva
Molecules 2025, 30(18), 3673; https://doi.org/10.3390/molecules30183673 - 10 Sep 2025
Viewed by 394
Abstract
The activity of cytochrome P450 enzymes decreases in older adults, which can lead to toxic effects from polypharmacy. Cytochromes P450 are the most significant enzymes involved in the metabolism of foreign compounds, including pharmaceutical substances. Vitamin B2, or riboflavin (RF), is a potent [...] Read more.
The activity of cytochrome P450 enzymes decreases in older adults, which can lead to toxic effects from polypharmacy. Cytochromes P450 are the most significant enzymes involved in the metabolism of foreign compounds, including pharmaceutical substances. Vitamin B2, or riboflavin (RF), is a potent antioxidant that is vital for the body and participates in numerous enzyme-catalyzed redox reactions. RF is phosphorylated intracellularly to form flavin mononucleotide (FMN), which is further metabolized into flavin adenine dinucleotide (FAD). The active site of the NADPH-dependent cytochrome P450 reductase (CPR), a redox partner of CYP enzymes, is necessary for the catalytic functions of cytochromes P450. The active site of reductase is a complex formed by two types of vitamin B2, such as flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). In our study, we investigated the impact of the phosphorylated form of vitamin B2, FAD, and FMN on the catalytic activity of cytochrome P450 2C9 (CYP2C9) towards non-steroidal anti-inflammatory medications diclofenac and naproxen. It was shown that FAD significantly enhanced the catalytic efficiency of CYP2C9. The 4-hydroxylation of diclofenac was enhanced by 148 ± 10%. The O-demethylation of naproxen showed an increase of 120 ± 14%. Based on these data, we can assume that intake of vitamin B2 (riboflavin) improves catalytic efficiency of CYP2C9. This finding is essential for the modulation of catalytic activity of CYP2C9. The proposed electroanalytic approach is a sensitive and robust method for drug metabolism assay. Full article
Show Figures

Figure 1

13 pages, 1633 KB  
Article
Stimuli-Responsive Luminescence of an Amphiphilic Flavin Derivative via Thermodynamic and Kinetic Aggregation in Water
by Soichiro Kawamorita, Koyo Okamoto, Shufang Huang and Takeshi Naota
Photochem 2025, 5(3), 25; https://doi.org/10.3390/photochem5030025 - 8 Sep 2025
Viewed by 281
Abstract
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like [...] Read more.
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like aggregates were formed, leading to a yellow emission. In contrast, under rapid freezing conditions, fibrous aggregates were formed under kinetic control, which also exhibited a yellow emission. These distinct aggregation modes are attributed to the cooperative effects of molecular design: the π-stacking ability of the tricyclic isoalloxazine core, flexible long alkyl chains, and the hydrophilic sulfonate moiety. This work demonstrates photoluminescent color switching based on aggregation-state control of a biogenic and potentially sustainable flavin luminophore, offering a new perspective for designing responsive and sustainable photofunctional materials. Full article
(This article belongs to the Special Issue Photochemistry Directed Applications of Organic Fluorescent Materials)
Show Figures

Figure 1

19 pages, 3297 KB  
Article
Plant Growth Regulators Promote Petaloidy and Modulate Related Gene Expression in Ornamental Pomegranate
by Yan Huo, Fei Lu, Lili Mu, Han Yang, Wenjie Ding, Zhaohe Yuan and Zunling Zhu
Horticulturae 2025, 11(9), 1059; https://doi.org/10.3390/horticulturae11091059 - 3 Sep 2025
Viewed by 437
Abstract
Double-petal ornamental pomegranate presents for its enhanced ornamental value. Thus, cultivation techniques that promote petaloidy while modulating related gene expression are desired. To screen out the efficient treatments of plant growth regulator and key genes that enhance petaloidy, this study treated the flower [...] Read more.
Double-petal ornamental pomegranate presents for its enhanced ornamental value. Thus, cultivation techniques that promote petaloidy while modulating related gene expression are desired. To screen out the efficient treatments of plant growth regulator and key genes that enhance petaloidy, this study treated the flower buds of double- and single-petal ornamental pomegranate varieties with different concentrations of plant growth regulators naphthaleneacetic acid (NAA), methyl jasmonate (MeJA), abscisic acid (ABA), and ethephon (ETH) and quantified the number of petalized stamens (NOPSs) and the number of petals (NOPs) in both varieties. Furthermore, we investigated the expression levels of the genes flavin-containing monooxygenase (YUC), IAA-amino acid hydrolase (ILR1),indole-3-acetic acid-amido synthetase (GH3.17), auxin transporter (LAX2), auxin response factor (ARF), auxin-induced in root cultures protein (AIR12), jasmonic acid-amido synthetase (JAR1), and ABA stress ripening-induced protein (ASR) under the different treatments and analyzed their role in regulating relevant phenotypic traits. Plant growth regulator experiments demonstrated that NAA (10 mg/L) significantly increased the number of petalized stamens (NOPSs) and petals (NOPs), MeJA (100 mg/L) significantly increased the number of petalized stamens, while neither ABA nor ETH induced this morphological shift. qRT-PCR analysis confirmed that NAA upregulated ILR1, LAX2, ARF, and JAR1 in the stamens of single-petal flowers (StSi) and double-petal flowers (StDo) and petals of single-petal flowers (PeSi) and double-petal flowers (PeDo), with their expression levels strongly positively correlated with NOPS in both single- and double-petal flowers and NOP in double-petal flowers. MeJA upregulated ILR1, GH3.17, LAX2, ARF, and JAR1 in StDo and PeDo and was strongly positively correlated with NOPS and NOP in double-petal flowers. Consequently, NAA (10 mg/L) and MeJA (100 mg/L) were efficient treatments, and ILR1, GH3.17, LAX2, ARF, and JAR1 were identified as key genes in NAA- and MeJA-mediated petaloidy in ornamental pomegranates. Our results provide theoretical support for identifying the formation mechanism and improving industrial cultivation techniques for double-petal pomegranates. Full article
Show Figures

Figure 1

16 pages, 4715 KB  
Article
Comparative Metabolomics Reveals Phosphine-Induced Metabolic Disruptions in Planococcus citri (Risso)
by Junbeom Lee, Soo-Jung Suh, Bong-Su Kim and Dae-Weon Lee
Int. J. Mol. Sci. 2025, 26(16), 8020; https://doi.org/10.3390/ijms26168020 - 19 Aug 2025
Viewed by 519
Abstract
Phosphine (PH3) is a fumigant often used to control insect pests, but its metabolic effects on insect physiology remain unclear. In this study, a comparative metabolomics analysis was performed to elucidate the physiological metabolic pathways affected by PH3 exposure in [...] Read more.
Phosphine (PH3) is a fumigant often used to control insect pests, but its metabolic effects on insect physiology remain unclear. In this study, a comparative metabolomics analysis was performed to elucidate the physiological metabolic pathways affected by PH3 exposure in Planococcus citri, and significant changes in the metabolic profiles induced by PH3 treatment were identified. Principal component analysis and correlation analysis revealed different metabolic changes, and a total of 45 metabolites were identified and mapped to metabolic pathways using the KEGG database. PH3 exposure inhibited energy metabolism by down-regulating riboflavin and flavin adenine dinucleotide, which are important cofactors in oxidative phosphorylation and reactive oxygen species generation. In addition, purine and pyrimidine metabolism, essential for nucleotide synthesis and cellular energy homeostasis, were also suppressed. Notably, lipid metabolism was significantly altered, and the juvenile hormone biosynthesis pathway was down-regulated. These results suggest that PH3 inhibits electron transport chain activity, induces oxidative stress, and disrupts lipid homeostasis. This study enhances our understanding of the potential biomarkers of PH3 exposure, the metabolic processes involved, and the resistance mechanisms that pests may develop in response to such exposure. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

28 pages, 2883 KB  
Review
Natural Biomolecules and Light: Antimicrobial Photodynamic Strategies in the Fight Against Antibiotic Resistance
by Greta Amendola, Mariagrazia Di Luca and Antonella Sgarbossa
Int. J. Mol. Sci. 2025, 26(16), 7993; https://doi.org/10.3390/ijms26167993 - 19 Aug 2025
Viewed by 668
Abstract
The alarming increase in infections caused by antimicrobial-resistant bacteria is increasingly posing a critical threat to public health. For this reason, the scientific community is focusing on alternative therapeutic strategies, such as antimicrobial photodynamic therapy (aPDT). This review examined the use of natural [...] Read more.
The alarming increase in infections caused by antimicrobial-resistant bacteria is increasingly posing a critical threat to public health. For this reason, the scientific community is focusing on alternative therapeutic strategies, such as antimicrobial photodynamic therapy (aPDT). This review examined the use of natural photosensitizers (PSs) in aPDT, emphasizing how they may produce high yields of reactive oxygen species when activated by light and consequently inactivate a wide range of pathogens, including bacteria embedded in biofilms, efficiently. The main methodologies and several strategies of incorporation into cutting-edge nanotechnological delivery systems of the most prevalent natural PSs (curcuminoids, perylenequinones, tetrapyrrolic macrocycles, and flavins) have been analyzed. Although natural PSs have benefits in terms of environmental sustainability and biocompatibility, their clinical use is frequently constrained by low bioavailability and solubility, issues that are being addressed more and more through novel formulations and dual-mode treatments. Studies conducted both in vitro and in vivo highlight these compounds’ strong antibacterial and wound-healing properties. In conclusion, natural molecule-based aPDT is a flexible and successful strategy for combating antimicrobial resistance, deserving of more translational study and clinical advancement. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Graphical abstract

14 pages, 557 KB  
Review
Advances in Kidney Transplant, Machine Perfusion, and Viability Markers
by Stephanie Y. Ohara, Mariana Chavez-Villa, Shennen Mao, Jacob Clendenon, Julie Heimbach, Randi Ryan, Lavanya Kodali, Michelle C. Nguyen, Rafael Nateras-Nunez and Caroline C. Jadlowiec
Kidney Dial. 2025, 5(3), 37; https://doi.org/10.3390/kidneydial5030037 - 14 Aug 2025
Viewed by 1025
Abstract
Despite improvements in kidney transplantation rates, the shortage of donor kidneys remains a critical issue, exacerbated by non-utilization of recovered kidneys due to quality concerns, necessitating advancements in perfusion methods to enhance graft outcomes and usage. Although static cold storage remains the default [...] Read more.
Despite improvements in kidney transplantation rates, the shortage of donor kidneys remains a critical issue, exacerbated by non-utilization of recovered kidneys due to quality concerns, necessitating advancements in perfusion methods to enhance graft outcomes and usage. Although static cold storage remains the default standard for kidney preservation, newer methods like hypothermic machine perfusion have shown improved outcomes, including reduced delayed graft function and better survival rates. Hypothermic oxygenated machine perfusion and normothermic machine perfusion offer some potential clinical benefits but studies to date have demonstrated mixed results. In the United States, LifePort and the XVIVO’s Kidney Assist Transport are the most popular hypothermic perfusion devices, with NMP devices mostly in trials. Combining perfusion with biomarkers such as mitochondrial flavin mononucleotide, neutrophil gelatinase-associated lipocalin, and osteopontin shows promise in assessing kidney viability and predicting post-transplant outcomes, though further research is also needed. Emphasis on repair biomarkers, such as uromodulin and osteopontin, aims to better predict graft outcomes and develop new therapies. While notable advancements have been made in the use of machine perfusion and viability testing for liver transplantation, additional research with larger sample sizes is essential to substantiate these results and enhance kidney transplantation outcomes. Full article
Show Figures

Graphical abstract

20 pages, 3024 KB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 463
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

25 pages, 6054 KB  
Review
Recent Advances in Biocatalytic Dearomative Spirocyclization Reactions
by Xiaorui Chen, Changtong Zhu, Luyun Ji, Changmei Liu, Yan Zhang, Yijian Rao and Zhenbo Yuan
Catalysts 2025, 15(7), 673; https://doi.org/10.3390/catal15070673 - 10 Jul 2025
Viewed by 1169
Abstract
Spirocyclic architectures, which feature two rings sharing a single atom, are common in natural products and exhibit beneficial biological and material properties. Due to the significance of these architectures, biocatalytic dearomative spirocyclization has recently emerged as a powerful approach for constructing three-dimensional spirocyclic [...] Read more.
Spirocyclic architectures, which feature two rings sharing a single atom, are common in natural products and exhibit beneficial biological and material properties. Due to the significance of these architectures, biocatalytic dearomative spirocyclization has recently emerged as a powerful approach for constructing three-dimensional spirocyclic frameworks under mild, sustainable conditions and with exquisite stereocontrol. This review surveys the latest advances in biocatalyzed spirocyclization of all-carbon arenes (phenols and benzenes), aza-aromatics (indoles and pyrroles), and oxa-aromatics (furans). We highlight cytochrome P450s, flavin-dependent monooxygenases, multicopper oxidases, and novel metalloenzyme platforms that effect regio- and stereoselective oxidative coupling, epoxidation/semi-pinacol rearrangement, and radical-mediated cyclization to produce diverse spirocycles. Mechanistic insights gleaned from structural, computational, and isotope-labeling studies are discussed where necessary to help the readers further understand the reported reactions. Collectively, these examples demonstrate the transformative potential of biocatalysis to streamline access to spirocyclic scaffolds that are challenging to prepare through traditional methods, underscoring biocatalysis as a transformative tool for synthesizing pharmaceutically relevant spiroscaffolds while adhering to green chemistry paradigms to ultimately contribute to a cleaner and more sustainable future. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

35 pages, 3044 KB  
Review
Tools for Enhancing Extracellular Electron Transfer in Bioelectrochemical Systems: A Review
by Kaline Araújo Soares, Jhoni Anderson Schembek Silva, Xin Wang, André Valente Bueno and Fernanda Leite Lobo
Fermentation 2025, 11(7), 381; https://doi.org/10.3390/fermentation11070381 - 30 Jun 2025
Cited by 1 | Viewed by 1994
Abstract
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and [...] Read more.
Microbial Electrochemistry Technology (MET) leverages the unique process of extracellular electron transfer (EET) between electroactive bacteria (EAB) and electrodes to enable various applications, such as electricity generation, bioremediation, and wastewater treatment. This review highlights significant advancements in EET mechanisms, emphasizing both outward and inward electron transfer pathways mediated by diverse electroactive microorganisms. Notably, the role of electron shuttles, genetic modifications, and innovative electrode materials are discussed as strategies to enhance EET efficiency. Recent studies illustrate the importance of redox-active molecules, such as flavins and metal nanoparticles, in facilitating electron transfer, while genetic engineering has proven effective in optimizing microbial physiology to boost EET rates. The review also examines the impact of electrode materials on microbial attachment and performance, showcasing new composites and nanostructures that enhance power output in microbial fuel cells. By synthesizing the recent findings and proposing emerging research directions, this work provides an overview of EET enhancement strategies, aiming to inform future technological innovations in bioelectrochemical systems (BESs). Full article
(This article belongs to the Special Issue Microbial Fuel Cell Advances)
Show Figures

Figure 1

21 pages, 5646 KB  
Article
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
by Lorenzo Agostino Cadinu, Keyue Sun, Chunbao Jiao, Rebecca Panconesi, Sangeeta Satish, Fatma Selin Yildirim, Omer Faruk Karakaya, Chase J. Wehrle, Geofia Shaina Crasta, Fernanda Walsh Fernandes, Nasim Eshraghi, Koki Takase, Hiroshi Horie, Pier Carlo Ricci, Davide Bagnoli, Mauricio Flores Carvalho, Andrea Schlegel and Massimo Barbaro
Sensors 2025, 25(13), 4031; https://doi.org/10.3390/s25134031 - 28 Jun 2025
Cited by 1 | Viewed by 843
Abstract
Ex situ machine perfusion has emerged as a pivotal technique for organ preservation and pre-transplant viability assessment, where the real-time monitoring of mitochondrial biomarkers—flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH)—could significantly mitigate ischemia-reperfusion injury risks. This study develops a non-invasive optical method [...] Read more.
Ex situ machine perfusion has emerged as a pivotal technique for organ preservation and pre-transplant viability assessment, where the real-time monitoring of mitochondrial biomarkers—flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH)—could significantly mitigate ischemia-reperfusion injury risks. This study develops a non-invasive optical method combining fluorescence and UV-visible spectrophotometry to quantify FMN and NADH in hypothermic oxygenated perfusion media. Calibration curves revealed linear responses for both biomarkers in absorption and fluorescence (FMN: λex = 445 nm, λem = 530–540 nm; NADH: λex = 340 nm, λem = 465 nm) at concentrations < 100 μg mL−1. However, NADH exhibited nonlinear fluorescence above 100 μg mL−1, requiring shifted excitation to 365 nm for reliable detection. Spectroscopic analysis further demonstrated how perfusion solution composition alters FMN/NADH fluorescence properties, with consistent reproducibility across media. The method’s robustness was validated through comparative studies in clinically relevant solutions, proposing a strategy for precise biomarker quantification without invasive sampling. These findings establish a foundation for real-time, optical biosensor development to enhance organ perfusion monitoring. By bridging spectroscopic principles with clinical needs, this work advances translational sensor technologies for transplant medicine, offering a template for future device integration. Full article
Show Figures

Figure 1

19 pages, 2333 KB  
Article
Recombinant Expression and Characterization of a Novel Type I Baeyer–Villiger Monooxygenase from a Streptomyces Strain Isolated from the Rhizosphere of the Atacama Desert Lupinus oreophilus
by Carolina González, Sebastián Rodríguez, José Pablo Reyes-Godoy, Valeria Razmilic and Irene Martínez
Int. J. Mol. Sci. 2025, 26(13), 5940; https://doi.org/10.3390/ijms26135940 - 20 Jun 2025
Viewed by 599
Abstract
The Atacama Desert is emerging as an unexpected source of microbial life and, thus, a source of bioactive compounds and novel enzymes. Baeyer–Villiger monooxygenases (BVMOs), a subclass of flavin-dependent monooxygenases (FPMOs), have gained attention as promising biocatalysts for the biosynthesis of industrially relevant [...] Read more.
The Atacama Desert is emerging as an unexpected source of microbial life and, thus, a source of bioactive compounds and novel enzymes. Baeyer–Villiger monooxygenases (BVMOs), a subclass of flavin-dependent monooxygenases (FPMOs), have gained attention as promising biocatalysts for the biosynthesis of industrially relevant molecules for a wide range of applications, such as pharmaceuticals and polymers, among others. BVMOs catalyze the oxidation of ketones and cyclic ketones to esters and lactones, respectively, by using molecular oxygen and NAD(P)H. BVMOs may also catalyze heteroatoms oxidation including sulfoxidations and N-oxidations. This work aims to search for novel BVMOs in the genomes of new bacterial strains isolated from the Atacama Desert. Bioinformatic analysis led to the identification of 10 putative BVMOs, where the monooxygenase named MO-G35A was selected. Genome context showed, downstream of the MO-G35A, a gene encoding for an enzyme from the short-chain dehydrogenase/reductase family, suggesting a closer redox loop between both enzymes. MO-G35A was successfully expressed in three Escherichia coli expression systems, where higher yields were achieved using the E. coli Shuffle T7 as host, suggesting that correct disulfide bond formation is necessary for correct folding. Enzyme characterization showed that it operates optimally at 35–38 °C, exhibiting a Km of 0.06 mM and a kcat of 0.15 s−1 for bicyclo [3.2.0] hept-2-en-6-one (BHC). Furthermore, the study revealed high stability in the presence of organic solvents, making it suitable for applications in various industrial processes, especially when the substrates have poor solubility in aqueous solutions. These results highlight the robustness and adaptability of enzymes in extreme environments, making them valuable candidates for biotechnological applications. Full article
Show Figures

Figure 1

29 pages, 3900 KB  
Article
Efficacy and Safety of Visible and Near-Infrared Photobiomodulation Therapy on Astenospermic Human Sperm: Wavelength-Dependent Regulation of Nitric Oxide Levels and Mitochondrial Energetics
by Matilde Balbi, Rachele Lai, Sara Stigliani, Claudia Massarotti, Matteo Bozzo, Paola Scaruffi, Silvia Ravera and Andrea Amaroli
Biology 2025, 14(5), 491; https://doi.org/10.3390/biology14050491 - 1 May 2025
Cited by 1 | Viewed by 3799
Abstract
Male infertility is a growing global concern, with asthenozoospermia being an important contributing factor. Mitochondrial dysfunction and changes in the metabolism of nitric oxide (NO) are key determinants of reduced sperm motility. This study investigates the effects of photobiomodulation (PBM) with visible and [...] Read more.
Male infertility is a growing global concern, with asthenozoospermia being an important contributing factor. Mitochondrial dysfunction and changes in the metabolism of nitric oxide (NO) are key determinants of reduced sperm motility. This study investigates the effects of photobiomodulation (PBM) with visible and near-infrared (NIR) laser light on sperm of asthenozoospermic patients, focusing on mitochondrial energetic status, oxidative stress, and NO dynamics. Semen samples were irradiated at 450 nm, 635 nm, 810 nm, 940 nm, and 1064 nm at different power levels (0.25, 0.50, 1.00, and 2.00 W) for 60 s on a spot area of 1 cm2. ATP and AMP levels, oxidative stress markers, and NO concentrations were assessed at 10 and 60 min after irradiation, with the ATP/AMP ratio calculated as an index of cellular energy balance. The results show that the PBM modulates the energetic status of spermatozoa in a way dependent on wavelength and dose. Irradiation at 810 nm produced the most marked improvement in energetic status, whereas 635 nm exposure led to a significant decrease in cellular energy levels. NO levels showed a biphasic response, correlated with the visible range and with energy metabolism at 810 nm. Irradiation with 635 nm induced higher NO production with respect to the other wavelengths. Our findings suggest that PBM mainly involves mitochondrial photoreceptors and potentially the heme and flavin groups of nitric oxide synthases, facilitating electron transitions, enhancing the effectiveness of oxidative phosphorylation, and optimizing enzymatic activity. At longer wavelengths (940 nm and 1064 nm), interactions with water and lipids may introduce additional variables that affect membrane fluidity and mitochondrial function differently from shorter wavelengths. Full article
Show Figures

Graphical abstract

Back to TopTop