Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = flexible solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3531 KB  
Review
Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
by Rashid Dallaev
Polymers 2025, 17(17), 2346; https://doi.org/10.3390/polym17172346 - 29 Aug 2025
Viewed by 382
Abstract
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive [...] Read more.
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Graphical abstract

20 pages, 6960 KB  
Article
Silicon-Based Solar Brick for Textile Ceramic Technology
by P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Viewed by 352
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of [...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation. Full article
Show Figures

Figure 1

15 pages, 1099 KB  
Article
Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
by Ibtisam S. Almalki, Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, Bader Alharthi, Abdulaziz Aljuwayr, Faisal S. Alghannam, Anas A. Almuqhim, Huda Alkhaldi, Fawziah Alhajri, Nouf K. AL-Saleem, Masfer Alkahtani, Anwar Q. Alanazi and Masaud Almalki
Nanomaterials 2025, 15(14), 1078; https://doi.org/10.3390/nano15141078 - 11 Jul 2025
Viewed by 838
Abstract
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium [...] Read more.
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium iodide (PEAI) surface passivation layer is introduced on the perovskite to form a two-dimensional capping layer, and its impact on device performance and stability is systematically studied. The champion PEAI-passivated flexible device achieves a power conversion efficiency (PCE) of ~16–17%, compared to ~14% for the control device without PEAI. The improvement is primarily due to an increased open-circuit voltage and fill factor, reflecting effective surface defect passivation and improved charge carrier dynamics. Importantly, mechanical bending tests demonstrate robust flexibility: the PEAI-passivated cells retain ~85–90% of their initial efficiency after 700 bending cycles (radius ~5 mm), significantly higher than the ~70% retention of unpassivated cells. This work showcases that integrating a PEAI surface treatment with optimized electron (SnO2) and hole (spiro-OMeTAD) transport layers (ETL and HTL) can simultaneously enhance the efficiency and mechanical durability of FPSCs. These findings pave the way for more reliable and high-performance flexible solar cells for wearable and portable energy applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

30 pages, 3682 KB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 1083
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

33 pages, 7442 KB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Viewed by 753
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

26 pages, 2010 KB  
Review
Development of High-Efficiency and High-Stability Perovskite Solar Cells with Space Environmental Resistance
by Donghwan Yun, Youngchae Cho, Hyeseon Shin and Gi-Hwan Kim
Energies 2025, 18(13), 3378; https://doi.org/10.3390/en18133378 - 27 Jun 2025
Viewed by 1432
Abstract
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation [...] Read more.
The rapid growth of the private space industry has intensified the demand for lightweight, efficient, and cost-effective photovoltaic technologies. Metal halide perovskite solar cells (PSCs) offer high power conversion efficiency (PCE), mechanical flexibility, and low-temperature solution processability, making them strong candidates for next-generation space power systems. However, exposure to extreme thermal cycling, high-energy radiation, vacuum, and ultraviolet light in space leads to severe degradation. This study addresses these challenges by introducing three key design strategies: self-healing perovskite compositions that recover from radiation-induced damage, gradient buffer layers that mitigate mechanical stress caused by thermal expansion mismatch, and advanced encapsulation that serves as a multifunctional barrier against space environmental stressors. These approaches enhance device resilience and operational stability in space. The design strategies discussed in this review are expected to support long-term power generation for low-cost satellites, high-altitude platforms, and deep-space missions. Additionally, insights gained from this research are applicable to terrestrial environments with high radiation or temperature extremes. Perovskite solar cells represent a transformative solution for space photovoltaics, offering a pathway toward scalable, flexible, and radiation-tolerant energy systems. Full article
(This article belongs to the Special Issue New Advances in Material, Performance and Design of Solar Cells)
Show Figures

Figure 1

35 pages, 9419 KB  
Article
Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
by Ruijuan Shi, Xin Yan, Zuhao Fan and Naiwei Tu
Sustainability 2025, 17(13), 5709; https://doi.org/10.3390/su17135709 - 20 Jun 2025
Viewed by 504
Abstract
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal [...] Read more.
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. Full article
Show Figures

Figure 1

32 pages, 1088 KB  
Review
Life Cycle Assessment of Organic Solar Cells: Structure, Analytical Framework, and Future Product Concepts
by Kyriaki Kiskira, Konstantinos Kalkanis, Fernando Coelho, Sofia Plakantonaki, Christian D’onofrio, Constantinos S. Psomopoulos, Georgios Priniotakis and George C. Ioannidis
Electronics 2025, 14(12), 2426; https://doi.org/10.3390/electronics14122426 - 13 Jun 2025
Cited by 1 | Viewed by 638
Abstract
Organic photovoltaic (OPV) technology, namely, organic solar cells (OSCs), have garnered attention as a sustainable and adaptable substitute for traditional silicon-based solar panels. Their lightweight construction, adaptability with various substrates, and capacity for low-energy production techniques make them formidable contenders for sustainable energy [...] Read more.
Organic photovoltaic (OPV) technology, namely, organic solar cells (OSCs), have garnered attention as a sustainable and adaptable substitute for traditional silicon-based solar panels. Their lightweight construction, adaptability with various substrates, and capacity for low-energy production techniques make them formidable contenders for sustainable energy applications. Nonetheless, due to the swift advancement of OPV technology, there is increasing apprehension that existing life cycle assessment (LCA) studies may inadequately reflect their environmental consequences. This review aggregates and assesses LCA research to ascertain the extent to which existing studies accurately represent the genuine sustainability of OPVs. This paper conducts a comprehensive analysis of materials, manufacturing processes, device architecture, and end-of-life pathways, identifying methodological deficiencies, emphasizing critical environmental performance metrics, and examining how conceptual product design can improve environmental results. The results highlight the necessity for standardized, transparent LCA frameworks adapted to the changing OPV landscape. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

16 pages, 2018 KB  
Article
Toward Sustainable Solar Energy: Predicting Recombination Losses in Perovskite Solar Cells with Deep Learning
by Syed Raza Abbas, Bilal Ahmad Mir, Jihyoung Ryu and Seung Won Lee
Sustainability 2025, 17(12), 5287; https://doi.org/10.3390/su17125287 - 7 Jun 2025
Cited by 1 | Viewed by 922
Abstract
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk [...] Read more.
Perovskite solar cells (PSCs) are emerging as leading candidates for sustainable energy generation due to their high power conversion efficiencies and low fabrication costs. However, their performance remains constrained by non-radiative recombination losses primarily at grain boundaries, interfaces, and within the perovskite bulk that are difficult to characterize under realistic operating conditions. Traditional methods such as photoluminescence offer valuable insights but are complex, time-consuming, and often lack scalability. In this study, we present a novel Long Short-Term Memory (LSTM)-based deep learning framework for dynamically predicting dominant recombination losses in PSCs. Trained on light intensity-dependent current–voltage (J–V) characteristics, the proposed model captures temporal behavior in device performance and accurately distinguishes between grain boundary, interfacial, and band-to-band recombination mechanisms. Unlike static ML approaches, our model leverages sequential data to provide deeper diagnostic capability and improved generalization across varying conditions. This enables faster, more accurate identification of efficiency limiting factors, guiding both material selection and device optimization. While silicon technologies have long dominated the photovoltaic landscape, their high-temperature processing and rigidity pose limitations. In contrast, PSCs—especially when combined with intelligent diagnostic tools like our framework—offer enhanced flexibility, tunability, and scalability. By automating recombination analysis and enhancing predictive accuracy, our framework contributes to the accelerated development of high-efficiency PSCs, supporting the global transition to clean, affordable, and sustainable energy solutions. Full article
Show Figures

Figure 1

11 pages, 1484 KB  
Communication
High-Performance Vacuum-Free Processed Organic Solar Cells with Gallium-Based Liquid Metal Top Electrodes
by Rui Hu, Di Xie, Yi Jin, Xiaojie Ren, Xiang Huang, Yitong Ji, Xiaotong Liu, Xueyuan Yang and Wenchao Huang
Materials 2025, 18(12), 2675; https://doi.org/10.3390/ma18122675 - 6 Jun 2025
Viewed by 839
Abstract
Conventional fabrication of high-efficiency organic solar cells (OSCs) predominantly relies on vacuum-evaporated metal top electrodes such as Ag and Al, which hinder large-scale industrial production. Gallium-based liquid metals (GaLMs), particularly the eutectic gallium–indium alloy (EGaIn), represent promising candidates to conventional vacuum-evaporated metal top [...] Read more.
Conventional fabrication of high-efficiency organic solar cells (OSCs) predominantly relies on vacuum-evaporated metal top electrodes such as Ag and Al, which hinder large-scale industrial production. Gallium-based liquid metals (GaLMs), particularly the eutectic gallium–indium alloy (EGaIn), represent promising candidates to conventional vacuum-evaporated metal top electrodes due to their excellent printability and high electrical conductivity. In this study, we fabricated vacuum-free OSCs based on GaLM electrodes (Ga, EGaIn, and Galinstan) and analyzed the device performances. Rigid devices with EGaIn electrodes achieved a champion power conversion efficiency (PCE) of 15.6%. Remarkably, all-solution-processed ultrathin flexible devices employing silver nanowire (AgNW) bottom electrodes in combination with EGaIn top electrodes achieved a PCE of 13.8% while maintaining 83.4% of their initial performance after 100 compression–tension cycles (at 30% strain). This work highlights the potential of GaLMs as cost-effective, scalable, and high-performance top electrodes for next-generation flexible photovoltaic devices, paving the way for their industrial adoption. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 1978 KB  
Article
Two-Layer Optimal Capacity Configuration of the Electricity–Hydrogen Coupled Distributed Power Generation System
by Min Liu, Qiliang Wu, Leiqi Zhang, Songyu Hou, Kuan Zhang and Bo Zhao
Processes 2025, 13(6), 1738; https://doi.org/10.3390/pr13061738 - 1 Jun 2025
Viewed by 462
Abstract
With the expansion of the scale of high-proportion wind and solar power grid connections, the problems of abandoned wind and solar power and insufficient peak shaving have become increasingly prominent. The electric–hydrogen coupling system has greater potential in flexible regulation, providing a new [...] Read more.
With the expansion of the scale of high-proportion wind and solar power grid connections, the problems of abandoned wind and solar power and insufficient peak shaving have become increasingly prominent. The electric–hydrogen coupling system has greater potential in flexible regulation, providing a new technological approach for the consumption of new energy. This paper proposes a two-layer optimization model for an electricity–hydrogen coupled distributed power generation system. The model is based on the collaborative regulation of flexible loads by electrolytic cells and fuel cells. Through the collaborative optimization of capacity configuration and operation scheduling, it breaks through the strong dependence of traditional systems on the distribution network and enhances the autonomous consumption capacity of new energy. The upper-level optimization model aims to minimize the total life-cycle cost of the system, and the lower-level optimization model aims to minimize the system’s operating cost. The capacity configuration of each module before and after the integration of flexible loads is compared. The simulation results show that the integration of flexible loads can not only effectively reduce the level of wind and solar power consumption in distributed power generation systems, but also play a role in load peak shaving and valley filling. At the same time, it can effectively reduce the system’s peak electricity purchase and sale cost and reduce the system’s dependence on the distribution network. Based on this, with the premise of meeting the load demand, the capacity configuration results of each module were compared when connecting electrolytic cells of different capacities. The results show that the simulated area has the best economic benefits when connected to a 4 MW electrolytic cell. This optimization model can increase the high wind and solar power consumption rate by 23%, reduce the peak purchase and sale cost of electricity by 40%, and achieve an economic benefit coefficient of up to 0.097. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

35 pages, 8296 KB  
Review
Bridging Additive Manufacturing and Electronics Printing in the Age of AI
by Jihua Chen, Yue Yuan, Qianshu Wang, Hanyu Wang and Rigoberto C. Advincula
Nanomaterials 2025, 15(11), 843; https://doi.org/10.3390/nano15110843 - 31 May 2025
Cited by 2 | Viewed by 1913
Abstract
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet [...] Read more.
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet printing, ultrasonic nozzle, roll-to-roll coating. The rise of additive manufacturing provides even more opportunities to print electronics in automated and customizable ways. In this work, we will review the current technologies of printing electronics (including printed batteries, supercapacitors, fuel cells, and sensors), especially with 3D printing. In this age of ongoing AI revolution, the application of AI algorithms is discussed in terms of combining them with 3D printing and electronics printing for a future with automated optimization, sustainable design, and customizable and scalable manufacturing. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

20 pages, 5246 KB  
Article
Structural Analysis of a Modular High-Concentration PV System Operating at ~1200 Suns
by Taher Maatallah, Mussad Alzahrani, William Cameron, Katie Shanks, Souheil El Alimi, Tapas K. Mallick and Sajid Ali
Machines 2025, 13(6), 468; https://doi.org/10.3390/machines13060468 - 28 May 2025
Viewed by 479
Abstract
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions [...] Read more.
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions and ensuring full system integration. The system incorporates a modular mechanical architecture, allowing flexible integration and interchangeability of optical components for experimental configurations. The architecture offers a high degree of mechanical flexibility, providing each optical stage with multiple linear and angular adjustment capabilities to support precision alignment. To ensure tracking precision, the system was coupled with a three-dimensional sun tracker capable of withstanding torques up to 60 Nm and supporting a combined payload of 80 kg, including counterbalance. The integration necessitated implementation of a counterbalance mechanism along with comprehensive static load analysis to ensure alignment stability and mechanical resilience. A reinforced triangular support structure, fabricated from stainless steel, was validated through simulation to maintain deformation below 0.1 mm under stress levels reaching 5 MN/m2, confirming its mechanical robustness and reliability. Windage analysis confirmed that the tracker could safely operate at 15 m/s wind speed for tilt angles of 35° (counter-clockwise) and −5° (clockwise), while operation at a 80° (counter-clockwise) tilt is safe up to 12 m/s, ensuring compliance with local environmental conditions. Overall, the validated system demonstrates structural resilience and modularity, supporting experimental deployment and future scalability. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

14 pages, 2277 KB  
Article
Investigation of Annealing Temperature Effect of Tin Oxide on the Efficiency of Planar Structure Perovskite Solar Cells
by Ahmed Hayali and Maan M. Alkaisi
Nanomaterials 2025, 15(11), 807; https://doi.org/10.3390/nano15110807 - 28 May 2025
Viewed by 732
Abstract
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible [...] Read more.
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible and low-cost materials suitable for photovoltaic applications. The ETL is necessary for the extraction of electrons and charge separation from the perovskite active layer. Herein, we present a study of the effect of annealing temperature on SnO2 used as an ETL. The annealing temperature of the SnO2 has a considerable effect on the morphology, crystallinity, grain size, and surface topography of the SnO2 layer. The surface properties of the ETL influence the structural properties of the perovskite films. In this study, the annealing temperature of the SnO2, deposited using spin coating, was changed from 90 °C to 150 °C. The SnO2 films annealed at 120 °C resulted in reduced surface defects, improved electron extraction, and produced a significant increase in the grain size of the perovskite active layers. The increase in grain size led to improved efficiency of the PSCs. Devices annealed at 120 °C yielded PSCs with an average efficiency of 15% for a 0.36 cm2 active area, while devices treated at 90 °C and 150 °C produced an average efficiency of 12%. The PSCs fabricated at low temperatures provide an effective technique for low-cost manufacturing, especially on flexible and polymer-based substrates. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Graphical abstract

68 pages, 9522 KB  
Review
Gel Electrolytes in the Development of Textile-Based Power Sources
by Ana Isabel Ribeiro, Cátia Alves, Marta Fernandes, José Abreu, Fábio Pedroso de Lima, Jorge Padrão and Andrea Zille
Gels 2025, 11(6), 392; https://doi.org/10.3390/gels11060392 - 27 May 2025
Viewed by 892
Abstract
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar [...] Read more.
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar cells. Traditional liquid electrolytes pose challenges in the development of textile-based electronics due to their potential for leakage, flammability, and limited flexibility. On the other hand, gel electrolytes offer solutions to these issues, making them suitable choices for these applications. There are several advantages to using gel electrolytes in textile-based electronics, namely higher safety, leak resistance, mechanical flexibility, improved interface compatibility, higher energy density, customizable properties, scalability, and easy integration into manufacturing processes. However, it is also essential to consider some challenges associated with these gels, such as lower conductivity and long-term stability. This review highlights the application of gel electrolytes to textile materials in various forms (e.g., fibers, yarns, woven, knit, and non-woven), along with the strategies for their integration and their resulting properties. While challenges remain in optimizing key parameters, the integration of gel electrolytes into textiles holds immense potential to enhance conductivity, flexibility, and energy storage, paving the way for advanced electronic textiles. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

Back to TopTop