Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,928)

Search Parameters:
Keywords = flight dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6312 KB  
Article
A Novel Telescopic Aerial Manipulator for Installing and Grasping the Insulator Inspection Robot on Power Lines: Design, Control, and Experiment
by Peng Yang, Hao Wang, Xiuwei Huang, Jiawei Gu, Tao Deng and Zonghui Yuan
Drones 2025, 9(11), 741; https://doi.org/10.3390/drones9110741 (registering DOI) - 24 Oct 2025
Viewed by 91
Abstract
Insulators on power lines require regular maintenance by operators in high-altitude hazardous environments, and the emergence of aerial manipulators provides an efficient and safe support for this scenario. In this study, a lightweight telescopic aerial manipulator system is developed, which can realize the [...] Read more.
Insulators on power lines require regular maintenance by operators in high-altitude hazardous environments, and the emergence of aerial manipulators provides an efficient and safe support for this scenario. In this study, a lightweight telescopic aerial manipulator system is developed, which can realize the installation and retrieval of insulator inspection robots on power lines. The aerial manipulator has three degrees of freedom, including two telescopic scissor mechanisms and one pitch rotation mechanism. Multiple types of cameras and sensors are specifically configured in the structure, and the total mass of the structure is 2.2 kg. Next, the kinematic model, dynamic model, and instantaneous contact force model of the designed aerial manipulator are derived. Then, the hybrid position/force control strategy of the aerial manipulator and the visual detection and estimation algorithm are designed to complete the operation or complete the task. Finally, the lifting external load test, grasp and installation operation test, as well as outdoor flight operation test are carried out. The test results not only quantitatively evaluate the effectiveness of the structural design and control design of the system but also verify that the aerial manipulator can complete the accurate automatic grasp and installation operation of the 3.6 kg target device in outdoor flight. Full article
Show Figures

Figure 1

21 pages, 1876 KB  
Article
Adaptive Minimum Error Entropy Cubature Kalman Filter in UAV-Integrated Navigation Systems
by Xuhang Liu, Hongli Zhao, Yicheng Liu, Suxing Ling, Xinhanyang Chen, Chenyu Yang and Pei Cao
Drones 2025, 9(11), 740; https://doi.org/10.3390/drones9110740 (registering DOI) - 24 Oct 2025
Viewed by 79
Abstract
Small unmanned aerial vehicles are now commonly equipped with integrated navigation systems to obtain high-precision navigation parameters. However, affected by the dual impacts of multipath effects and dynamic environmental changes, their state estimation process is vulnerable to interference from measurement outliers, which in [...] Read more.
Small unmanned aerial vehicles are now commonly equipped with integrated navigation systems to obtain high-precision navigation parameters. However, affected by the dual impacts of multipath effects and dynamic environmental changes, their state estimation process is vulnerable to interference from measurement outliers, which in turn leads to the degradation of navigation accuracy and poses a threat to flight safety. To address this issue, this research presents an adaptive minimum error entropy cubature Kalman filter. Firstly, the cubature Kalman filter is introduced to solve the problem of model nonlinear errors; secondly, the cubature Kalman filter based on minimum error entropy is derived to effectively curb the interference that measurement outliers impose on filtering results; finally, a kernel bandwidth adjustment factor is designed, and the kernel bandwidth is estimated adaptively to further improve navigation accuracy. Through numerical simulation experiments, the robustness of the proposed method with respect to measurement outliers is validated; further flight experiment results show that compared with existing related filters, this proposed filter can achieve more accurate navigation and positioning. Full article
Show Figures

Figure 1

21 pages, 669 KB  
Article
An Elevation-Aware Large-Scale Channel Model for UAV Air-to-Ground Links
by Naier Xia, Yang Liu and Yu Yu
Mathematics 2025, 13(21), 3377; https://doi.org/10.3390/math13213377 - 23 Oct 2025
Viewed by 169
Abstract
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of [...] Read more.
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of three key metrics: path loss (PL), shadow fading, and the Ricean K-factor. A dynamic path-loss model incorporating the look-down angle is proposed, an exponential decay model for the shadow-fading standard deviation is constructed, and a model for the angle-dependent variation of the Ricean K-factor is established based on line-of-sight probability. Simulations were conducted in two urban-geometry scenarios using WinProp to evaluate the combined effects of flight altitude and elevation angle. The results indicate that path loss decreases and subsequently stabilizes with increasing elevation angle, the shadow-fading standard deviation decreases significantly, and the Ricean K-factor increases with angle and saturates at high angles, in agreement with theoretical predictions. These models are more adaptable to UAV mobility scenarios than traditional fixed exponential models and provide a useful basis for UAV link planning and system optimization in urban environments. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

19 pages, 15285 KB  
Article
Towards Safer UAV Operations in Urban Air Mobility: 3D Automated Modelling for CFD-Based Microweather Systems
by Enrique Aldao, Gonzalo Veiga-Piñeiro, Pablo Domínguez-Estévez, Elena Martín, Fernando Veiga-López, Gabriel Fontenla-Carrera and Higinio González-Jorge
Drones 2025, 9(11), 730; https://doi.org/10.3390/drones9110730 (registering DOI) - 22 Oct 2025
Viewed by 151
Abstract
Turbulence and wind gusts pose significant risks to the safety and efficiency of UAVs (uncrewed aerial vehicles) in urban environments. In these settings, wind dynamics are strongly influenced by interactions with buildings and terrain, giving rise to small-scale phenomena such as vortex shedding [...] Read more.
Turbulence and wind gusts pose significant risks to the safety and efficiency of UAVs (uncrewed aerial vehicles) in urban environments. In these settings, wind dynamics are strongly influenced by interactions with buildings and terrain, giving rise to small-scale phenomena such as vortex shedding and gusts. These wind speed oscillations generate unsteady forces that can destabilise UAV flight, particularly for small vehicles. Additionally, predicting their formation requires high-resolution Computational Fluid Dynamics (CFD) models, as current weather forecasting tools lack the resolution to capture these phenomena. However, such models require 3D representations of study areas with high geometric consistency and detail, which are not available for most cities. To address this issue, this work introduces an automated methodology for urban CFD mesh generation using open-source data. The proposed method generates error-free meshes compatible with OpenFOAM and includes tools for geometry modification, enhancing solver convergence and enabling adjustments to mesh complexity based on computational resources. Using this approach, CFD simulations are conducted for the city of Ourense, followed by an analysis of their impact on UAV operations and the integration of the system into a trajectory optimisation framework. The CFD model is also validated using experimental anemometer measurements. Full article
Show Figures

Figure 1

25 pages, 5280 KB  
Article
Obstacle Avoidance Path Planning for Unmanned Aerial Vehicle in Workshops Based on Parameter-Optimized Artificial Potential Field A* Algorithm
by Xiaoling Meng, Zhikang Zhang, Xijing Zhu, Jing Zhao, Xiao Wu, Xiaoqiang Zhang and Jing Yang
Machines 2025, 13(10), 967; https://doi.org/10.3390/machines13100967 - 20 Oct 2025
Viewed by 271
Abstract
As the intelligent transformation of manufacturing accelerates, Unmanned Aerial Vehicles are increasingly being deployed for workshop operations, making efficient obstacle avoidance path planning a critical requirement. This paper introduces a parameter-optimized path planning method for the Unmanned Aerial Vehicle, termed the Artificial Potential [...] Read more.
As the intelligent transformation of manufacturing accelerates, Unmanned Aerial Vehicles are increasingly being deployed for workshop operations, making efficient obstacle avoidance path planning a critical requirement. This paper introduces a parameter-optimized path planning method for the Unmanned Aerial Vehicle, termed the Artificial Potential Field A* algorithm, which enhances the standard A* approach through the integration of an artificial potential field and a variable step size strategy. The variable step size mechanism allows dynamic adjustment of the search step size, while potential field values from the artificial potential field are embedded into the cost function to improve planning accuracy. Key parameters of the hybrid algorithm are subsequently optimized using response surface methodology, with a regression model built to analyze parameter interactions and determine the optimal configuration. Simulation results across multiple performance indicators confirm that the proposed Artificial Potential Field A* algorithm delivers superior outcomes in path length, attitude angle variation, and flight altitude stability. This approach provides an effective solution for enhancing Unmanned Aerial Vehicle operational efficiency in production workshops. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

31 pages, 5821 KB  
Article
Trajectory Tracking Control Method via Simulation for Quadrotor UAVs Based on Hierarchical Decision Dual-Threshold Adaptive Switching
by Fei Peng, Qiang Gao, Hongqiang Lu, Zhonghong Bu, Bobo Jia, Ganchao Liu and Zhong Tao
Appl. Sci. 2025, 15(20), 11217; https://doi.org/10.3390/app152011217 - 20 Oct 2025
Viewed by 234
Abstract
In complex 3D maneuvering tasks (e.g., post-disaster rescue, urban operations, and infrastructure inspection), the trajectories that quadrotors need to track are often complex—containing both gentle flight phases and highly maneuverable trajectory segments. Under such trajectory tracking tasks with the composite characteristics of “gentle-high [...] Read more.
In complex 3D maneuvering tasks (e.g., post-disaster rescue, urban operations, and infrastructure inspection), the trajectories that quadrotors need to track are often complex—containing both gentle flight phases and highly maneuverable trajectory segments. Under such trajectory tracking tasks with the composite characteristics of “gentle-high maneuvering”, quadrotors face challenges of limited onboard computing resources and short endurance, requiring a balance between trajectory tracking accuracy, computational efficiency, and energy consumption. To address this problem, this paper proposes a lightweight trajectory tracking control method based on hierarchical decision-making and dual-threshold adaptive switching. Inspired by the biological “prediction–reflection” mechanism, this method designs a dual-threshold collaborative early warning switching architecture of “prediction layer–confirmation layer”: The prediction layer dynamically assesses potential risks based on trajectory curvature and jerk, while the confirmation layer confirms in real time the stability risks through an attitude-angular velocity composite index. Only when both exceed the thresholds, it switches from low-energy-consuming Euler angle control to high-precision geometric control. Simulation experiments show that in four typical trajectories (straight-line rapid turn, high-speed S-shaped, anti-interference composite, and narrow space figure-eight), compared with pure geometric control, this method reduces position error by 19.5%, decreases energy consumption by 45.9%, and shortens CPU time by 28%. This study not only optimizes device performance by improving trajectory tracking accuracy while reducing onboard computational load, but also reduces energy consumption to extend UAV endurance, and simultaneously enhances anti-disturbance capability, thereby improving its operational capability to respond to emergencies in complex environments. Overall, this study provides a feasible solution for the efficient and safe flight of resource-constrained onboard platforms in multi-scenario complex environments in the future and has broad application and expansion potential. Full article
Show Figures

Figure 1

26 pages, 2950 KB  
Article
Decoupling-Free Attitude Control of UAV Considering High-Frequency Disturbances: A Modified Linear Active Disturbance Rejection Method
by Changjin Dong, Yan Huo, Nanmu Hui, Xiaowei Han, Binbin Tu, Zehao Wang and Jiaying Zhang
Actuators 2025, 14(10), 504; https://doi.org/10.3390/act14100504 - 18 Oct 2025
Viewed by 232
Abstract
With the rapid development of unmanned aerial vehicle (UAV) technology, quadrotor UAVs have demonstrated extensive application potential in various fields. However, due to parameter uncertainties and strong coupling, the flight attitude of quadrotors is prone to external disturbances, posing challenges for achieving precise [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) technology, quadrotor UAVs have demonstrated extensive application potential in various fields. However, due to parameter uncertainties and strong coupling, the flight attitude of quadrotors is prone to external disturbances, posing challenges for achieving precise control and stable flight. In this paper, we address the tracking control problem under unknown command rate variations by proposing a Modified Linear Active Disturbance Rejection Control (LADRC) strategy, aiming to enhance flight stability and anti-disturbance capability in complex environments. First, based on the attitude dynamics model of quadrotors, an LADRC technique is adopted to realize three-channel decoupling-free control. By integrating a parameter estimator, the proposed method can compensate unknown disturbances in real time, thereby improving the system’s anti-disturbance ability and dynamic response performance. Second, to further enhance system robustness, a linear extended state observer (LESO) is designed to accurately estimate the tracking error rate and total disturbances. Additionally, a Levant differentiator is introduced to replace the traditional differentiation component for optimizing the response speed of command rate. Finally, a modified LADRC controller incorporating error rate estimation is constructed. Simulation results validate that the proposed scheme maintains good tracking accuracy under high-frequency disturbances, providing an effective solution for stable UAV flight in complex scenarios. Compared with traditional control methods, the modified LADRC strategy exhibits significant advantages in tracking performance, anti-disturbance capability, and dynamic response. This research not only offers a novel perspective and solution for quadrotor control problems but also holds important implications for improving UAV performance and reliability in practical applications. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

21 pages, 2522 KB  
Article
A Reinforcement Learning-Based Adaptive Grey Wolf Optimizer for Simultaneous Arrival in Manned/Unmanned Aerial Vehicle Dynamic Cooperative Trajectory Planning
by Wei Jia, Lei Lv, Ruizhi Duan, Tianye Sun and Wei Sun
Drones 2025, 9(10), 723; https://doi.org/10.3390/drones9100723 - 17 Oct 2025
Viewed by 598
Abstract
Addressing the challenge of high-precision time-coordinated path planning for manned and unmanned aerial vehicle (UAV) clusters operating in complex dynamic environments during missions like high-level autonomous coordination, this paper proposes a reinforcement learning-based Adaptive Grey Wolf Optimizer (RL-GWO) method. We formulate a comprehensive [...] Read more.
Addressing the challenge of high-precision time-coordinated path planning for manned and unmanned aerial vehicle (UAV) clusters operating in complex dynamic environments during missions like high-level autonomous coordination, this paper proposes a reinforcement learning-based Adaptive Grey Wolf Optimizer (RL-GWO) method. We formulate a comprehensive multi-objective cost function integrating total flight distance, mission time, time synchronization error, and collision penalties. To solve this model, we design multiple improved GWO strategies and employ a Q-Learning framework for adaptive strategy selection. The RL-GWO algorithm is embedded within a dual-layer “global planning + dynamic replanning” framework. Simulation results demonstrate excellent convergence and robustness, achieving second-level time synchronization accuracy while satisfying complex constraints. In dynamic scenarios, the method rapidly generates safe evasion paths while maintaining cluster coordination, validating its practical value for heterogeneous UAV operations. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs: 3rd Edition)
Show Figures

Figure 1

39 pages, 7020 KB  
Article
Improved Multi-Faceted Sine Cosine Algorithm for Optimization and Electricity Load Forecasting
by Stephen O. Oladipo, Udochukwu B. Akuru and Abraham O. Amole
Computers 2025, 14(10), 444; https://doi.org/10.3390/computers14100444 - 17 Oct 2025
Viewed by 227
Abstract
The sine cosine algorithm (SCA) is a population-based stochastic optimization method that updates the position of each search agent using the oscillating properties of the sine and cosine functions to balance exploration and exploitation. While flexible and widely applied, the SCA often suffers [...] Read more.
The sine cosine algorithm (SCA) is a population-based stochastic optimization method that updates the position of each search agent using the oscillating properties of the sine and cosine functions to balance exploration and exploitation. While flexible and widely applied, the SCA often suffers from premature convergence and getting trapped in local optima due to weak exploration–exploitation balance. To overcome these issues, this study proposes a multi-faceted SCA (MFSCA) incorporating several improvements. The initial population is generated using dynamic opposition (DO) to increase diversity and global search capability. Chaotic logistic maps generate random coefficients to enhance exploration, while an elite-learning strategy allows agents to learn from multiple top-performing solutions. Adaptive parameters, including inertia weight, jumping rate, and local search strength, are applied to guide the search more effectively. In addition, Lévy flights and adaptive Gaussian local search with elitist selection strengthen exploration and exploitation, while reinitialization of stagnating agents maintains diversity. The developed MFSCA was tested against 23 benchmark optimization functions and assessed using the Wilcoxon rank-sum and Friedman rank tests. Results showed that MFSCA outperformed the original SCA and other variants. To further validate its applicability, this study developed a fuzzy c-means MFSCA-based adaptive neuro-fuzzy inference system to forecast energy consumption in student residences, using student apartments at a university in South Africa as a case study. The MFSCA-ANFIS achieved superior performance with respect to RMSE (1.9374), MAD (1.5483), MAE (1.5457), CVRMSE (42.8463), and SD (1.9373). These results highlight MFSCA’s effectiveness as a robust optimizer for both general optimization tasks and energy management applications. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Figure 1

15 pages, 6164 KB  
Article
Quaternary Correlation Prediction Compensation for Heading Commands in Virtual Autopilot
by Yutong Zhou and Shan Fu
Aerospace 2025, 12(10), 936; https://doi.org/10.3390/aerospace12100936 - 17 Oct 2025
Viewed by 243
Abstract
Virtual commands serve as the essential framework for establishing interaction between the virtual pilot and the MCP in autopilot scenarios. Conventional proportional-integral-derivative (PID) controllers are insufficient to ensure accurate flight trajectories due to system hysteresis. To overcome this limitation, a quaternary correlation prediction [...] Read more.
Virtual commands serve as the essential framework for establishing interaction between the virtual pilot and the MCP in autopilot scenarios. Conventional proportional-integral-derivative (PID) controllers are insufficient to ensure accurate flight trajectories due to system hysteresis. To overcome this limitation, a quaternary correlation prediction compensation PID (QCPC-PID) approach is introduced for computing virtual heading commands in autopilot tasks. The method integrates multi-feature statistics, entropy-based predictive compensation, and quaternary correlations. First, flight trajectory error statistics are dynamically calculated using signed error distances to assess deviation levels. Second, a predictive structure based on information entropy is applied to enhance PID compensation. Third, quaternary correlation dependence is established to generate virtual heading commands. The findings confirm the effectiveness of the method in improving flight convergence. The incorporation of predictive structures and quaternary correlations is critical for achieving predictive compensation during PID tuning, thereby reducing flight trajectory deviations. The quaternary correlation prediction compensation method ensures superior performance of PID control in modeling heading adjustment behavior under autopilot conditions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 3203 KB  
Article
Probabilistic 4D Trajectory Prediction for UAVs Based on Brownian Bridge Motion
by Pengda Zhu, Minghua Hu, Zexi Dong and Jianan Yin
Appl. Sci. 2025, 15(20), 11105; https://doi.org/10.3390/app152011105 - 16 Oct 2025
Viewed by 164
Abstract
Unmanned aerial vehicle (UAV) flight trajectories in complex environments are often affected by multiple uncertainties, making accurate prediction challenging. To address this issue, this study proposes a probabilistic four-dimensional (4D) trajectory prediction model based on Brownian bridge motion. The UAV’s flight from mission [...] Read more.
Unmanned aerial vehicle (UAV) flight trajectories in complex environments are often affected by multiple uncertainties, making accurate prediction challenging. To address this issue, this study proposes a probabilistic four-dimensional (4D) trajectory prediction model based on Brownian bridge motion. The UAV’s flight from mission start to endpoint is modeled as a Brownian bridge stochastic process with endpoint constraints, where the mean function sequence is constructed from path planning results and UAV performance parameters. To incorporate operational feasibility, the concept of the spatiotemporal reachable domain from time geography is introduced to dynamically constrain reachable positions, while a truncated Brownian bridge distribution is used to model probabilistic positions in three-dimensional space. A simulation platform in a realistic 3D geographical environment is developed to validate the model. Case studies show that the proposed method achieves dynamic probabilistic trajectory prediction under mission constraints with strong adaptability and practicality. The results provide theoretical support and technical reference for trajectory planning, conflict detection, and flight risk assessment in the pre-tactical phase. Full article
Show Figures

Figure 1

26 pages, 2425 KB  
Article
The Operational Safety Evaluation of UAVs Based on Improved Support Vector Machines
by Yulin Zhou and Shuguang Liu
Aerospace 2025, 12(10), 932; https://doi.org/10.3390/aerospace12100932 - 16 Oct 2025
Viewed by 213
Abstract
In response to the challenge of dynamic adaptability in operational safety assessment for UAVs operating in complex operational environments, this study proposes a novel operational safety assessment method based on an Improved Support Vector Machine. An operational safety assessment index system encompassing four [...] Read more.
In response to the challenge of dynamic adaptability in operational safety assessment for UAVs operating in complex operational environments, this study proposes a novel operational safety assessment method based on an Improved Support Vector Machine. An operational safety assessment index system encompassing four dimensions—operator, UAV platform, flight environment, flight mission—is constructed to provide a comprehensive foundation for evaluation. The method introduces a dynamic weighted information entropy mechanism based on a sliding window, overcoming the static features and delayed response of traditional SVM methods. Additionally, it integrates Gaussian and polynomial kernel functions to significantly enhance the generalization capability and classification accuracy of the SVM model in complex operational environments. Experimental results show that the proposed model demonstrates superior performance on test samples, effectively improving the accuracy of operational safety assessment for the Reconnaissance–Strike UAV in complex operational environments, and offering a novel methodology for UAV safety assessment. Full article
(This article belongs to the Special Issue Airworthiness, Safety and Reliability of Aircraft)
Show Figures

Figure 1

39 pages, 9477 KB  
Article
Simulation Application of Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm in Multi-UAV 3D Path Planning
by Xiaojun Zheng, Rundong Liu and Xiaoyang Liu
Computers 2025, 14(10), 439; https://doi.org/10.3390/computers14100439 - 15 Oct 2025
Viewed by 319
Abstract
Multi-UAV three-dimensional (3D) path planning is formulated as a high-dimensional multi-constraint optimization problem involving costs such as path length, flight altitude, avoidance cost, and smoothness. To address this challenge, we propose an Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm (ASHSBOA), an enhanced variant [...] Read more.
Multi-UAV three-dimensional (3D) path planning is formulated as a high-dimensional multi-constraint optimization problem involving costs such as path length, flight altitude, avoidance cost, and smoothness. To address this challenge, we propose an Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm (ASHSBOA), an enhanced variant of the Secretary Bird Optimization Algorithm (SBOA). ASHSBOA integrates a weighted multi-direction dynamic learning strategy, an adaptive strategy-selection mechanism, and a hybrid elite-guided boundary-repair scheme to enhance the ability to identify local optima and balance exploration and exploitation. The algorithm is tested on benchmark suites CEC-2017 and CEC-2022 against nine classic or state-of-the-art optimizers. Non-parametric tests show that ASHSBOA consistently achieves superior performance and ranks first among competitors. Finally, we applied ASHSBOA to a multi-UAV 3D path planning model. In Scenario 1, the path cost planned by ASHSBOA decreased by 124.9 compared to the second-ranked QHSBOA. In the more complex Scenario 2, this figure reached 1137.9. Simulation results demonstrate that ASHSBOA produces lower-cost flight paths and more stable convergence behavior compared to comparative methods. These results validate the robustness and practicality of ASHSBOA in UAV path planning. Full article
Show Figures

Graphical abstract

18 pages, 9141 KB  
Article
Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations
by Khan Muhammad Arslan, Liangyu Zhao and Kuiju Xue
Drones 2025, 9(10), 712; https://doi.org/10.3390/drones9100712 - 15 Oct 2025
Viewed by 352
Abstract
With the rapid proliferation of drone applications, multi-UAV formation flights are becoming increasingly prevalent. While most existing studies focus on the aerodynamics of a single drone, aerodynamic interactions within UAV formations—particularly in close-proximity hovering configurations—remain inadequately understood. This study employs computational fluid dynamics [...] Read more.
With the rapid proliferation of drone applications, multi-UAV formation flights are becoming increasingly prevalent. While most existing studies focus on the aerodynamics of a single drone, aerodynamic interactions within UAV formations—particularly in close-proximity hovering configurations—remain inadequately understood. This study employs computational fluid dynamics simulations to investigate the aerodynamic interactions between two hovering quadcopters at vertical distances of 1 m and 0.5 m, operating under different RPMs. The results indicate that, when the two quadrotors are spaced 1 m apart, increasing RPM enhances the downward airflow from the upper quadcopter, which benefits the lower quadcopter. When the vertical spacing is reduced to 0.5 m, the aerodynamic interaction between the UAVs becomes more pronounced. This configuration can be advantageous if the drones remain perfectly aligned at lower RPMs. However, at higher RPMs, especially above 5000, the intensified vortices disturb the lower UAV, causing destabilization. Additionally, the reduced spacing amplifies the downwash effect, increasing the risk of collisions and loss of control. This work highlights the importance of managing the spacing and RPMs of drone pairs to optimize performance and ensure stability in multiple drone formations. Full article
Show Figures

Figure 1

19 pages, 1196 KB  
Article
Fixed-Time Formation Control for MAV/UAVs with Switching Threshold Event-Triggered Strategy
by Xueyan Han, Maolong Lv, Di Shen, Yuyuan Shi, Boyang Zhang and Peng Yu
Drones 2025, 9(10), 710; https://doi.org/10.3390/drones9100710 - 14 Oct 2025
Viewed by 194
Abstract
The cooperative flight of manned and unmanned aerial vehicles (MAV/UAVs) has recently become a focus in the research of civilian and humanitarian fields, in which formation control is crucial. This paper takes the improvement of convergence performance and resource conservation as the entry [...] Read more.
The cooperative flight of manned and unmanned aerial vehicles (MAV/UAVs) has recently become a focus in the research of civilian and humanitarian fields, in which formation control is crucial. This paper takes the improvement of convergence performance and resource conservation as the entry point to study control problems of cooperative formation configuration of MAV/UAVs. Following the backstepping recursive design procedures, an event-triggered fixed-time formation control strategy for MAV/UAVs operating under modeling uncertainties and external disturbances is presented. Moreover, a novel switching threshold event-triggered mechanism is introduced, which dynamically adjusts control signal updates based on system states. Compared with periodic sampling control (Controller 1), fixed threshold strategies (Controller 2) and relative threshold strategies (Controller 3), this mechanism enhances resource efficiency and prevents Zeno behavior. On the basis of Lyapunov stability theory, the closed-loop system is shown to be stable in the sense of the fixed-time concept. Numerical simulations are carried out in Simulink to validate the effectiveness of the theoretical findings. The results show that compared with the three comparison methods, the proposed control method saves 86%, 34%, and 43% of control transmission burden respectively, which significantly reduces the number of triggered events. Full article
Show Figures

Figure 1

Back to TopTop