Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = flood susceptibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5323 KB  
Article
Mapping Flood-Prone Areas Using GIS and Morphometric Analysis in the Mantaro Watershed, Peru: Approach to Susceptibility Assessment and Management
by Del Piero R. Arana-Ruedas, Edwin Pino-Vargas, Sandra del Águila-Ríos and German Huayna
Sustainability 2025, 17(17), 7809; https://doi.org/10.3390/su17177809 - 29 Aug 2025
Viewed by 203
Abstract
Floods represent one of the most significant climate-related hazards, particularly in regions with complex topographies and variable precipitation patterns. This study assesses flood-prone areas within the Mantaro watershed, Peru, using Geographic Information Systems (GISs) and morphometric analysis. The methodology integrates digital elevation models [...] Read more.
Floods represent one of the most significant climate-related hazards, particularly in regions with complex topographies and variable precipitation patterns. This study assesses flood-prone areas within the Mantaro watershed, Peru, using Geographic Information Systems (GISs) and morphometric analysis. The methodology integrates digital elevation models (DEMs) with hydrological parameters, applying weighted sum analysis to classify 18 sub-watersheds into different flood priority levels. Morphometric parameters, including basin relief, drainage density, and slope, were analyzed to establish correlations between watershed morphology and flood susceptibility. The results indicate that approximately 74.38% of the watershed exhibits high to very high flood risk, with the most vulnerable sub-watersheds characterized by steep slopes, high drainage densities, and compact morphometric configurations. The correlation matrix confirms that watershed topography significantly influences surface runoff behavior, underscoring the necessity of incorporating geospatial analysis into flood risk assessment frameworks. The classification of sub-watersheds into priority levels provides a scientific basis for optimizing resource allocation in flood mitigation strategies. This study highlights the importance of integrating advanced geospatial technologies, such as GISs and remote sensing, into hydrological risk assessments. The findings emphasize the need for proactive watershed management, including the use of real-time monitoring and digital tools for climate adaptation. Future research should explore the influence of land-use changes and climate variability on flood dynamics to enhance predictive modeling. These insights contribute to evidence-based decision-making for disaster risk reduction, reinforcing resilience in climate-sensitive regions. Full article
Show Figures

Figure 1

17 pages, 6335 KB  
Article
Machine Learning-Based Flood Risk Assessment in Urban Watershed: Mapping Flood Susceptibility in Charlotte, North Carolina
by Sujan Shrestha, Dewasis Dahal, Nishan Bhattarai, Sunil Regmi, Roshan Sewa and Ajay Kalra
Geographies 2025, 5(3), 43; https://doi.org/10.3390/geographies5030043 - 18 Aug 2025
Viewed by 743
Abstract
Flood impacts are intensifying due to the increasing frequency and severity of factors such as severe weather events, climate change, and unplanned urbanization. This study focuses on Briar Creek in Charlotte, North Carolina, an area historically affected by flooding. Three machine learning algorithms [...] Read more.
Flood impacts are intensifying due to the increasing frequency and severity of factors such as severe weather events, climate change, and unplanned urbanization. This study focuses on Briar Creek in Charlotte, North Carolina, an area historically affected by flooding. Three machine learning algorithms —bagging (random forest), extreme gradient boosting (XGBoost), and logistic regression—were used to develop a flood susceptibility model that incorporates topographical, hydrological, and meteorological variables. Key predictors included slope, aspect, curvature, flow velocity, flow concentration, discharge, and 8 years of rainfall data. A flood inventory of 750 data points was compiled from historic flood records. The dataset was divided into training (70%) and testing (30%) subsets, and model performance was evaluated using accuracy metrics, confusion matrices, and classification reports. The results indicate that logistic regression outperformed both XGBoost and bagging in terms of predictive accuracy. According to the logistic regression model, the study area was classified into five flood risk zones: 5.55% as very high risk, 8.66% as high risk, 12.04% as moderate risk, 21.56% as low risk, and 52.20% as very low risk. The resulting flood susceptibility map constitutes a valuable tool for emergency preparedness and infrastructure planning in high-risk zones. Full article
Show Figures

Figure 1

24 pages, 19609 KB  
Article
An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth
by Thuan Thanh Le, Tuong Quang Vo and Jongho Kim
Mathematics 2025, 13(16), 2617; https://doi.org/10.3390/math13162617 - 15 Aug 2025
Viewed by 454
Abstract
This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression [...] Read more.
This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression targets through a shared feature extraction structure, enhancing consistency and generalization. Among six tested architectures, the Le5SD_CBAM model—integrating a Convolutional Block Attention Module (CBAM)—achieved the best performance, with 83% accuracy, an Area Under the ROC Curve (AUC) of 0.91 for flood susceptibility classification, and a mean absolute error (MAE) of 0.12 m and root mean squared error (RMSE) of 0.18 m for depth estimation. The model’s spatial predictions aligned well with hydrological principles and past flood records, accurately identifying low-lying flood-prone zones and capturing localized inundation patterns influenced by infrastructure and micro-topography. Importantly, it detected spatial mismatches between susceptibility and depth, demonstrating the benefit of joint modeling. Variable importance analysis highlighted elevation as the dominant predictor, while distances to roads, rivers, and drainage systems were also key contributors. In contrast, secondary terrain attributes had limited influence, indicating that urban infrastructure has significantly altered natural flood flow dynamics. Although the model lacks dynamic forcings such as rainfall and upstream inflows, it remains a valuable tool for flood risk mapping in data-scarce settings. The bivariate-output framework improves computational efficiency and internal coherence compared to separate single-task models, supporting its integration into urban flood management and planning systems. Full article
Show Figures

Figure 1

21 pages, 3549 KB  
Article
Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa
by Yazeed Alabbad, Atiye Beyza Cikmaz, Enes Yildirim and Ibrahim Demir
Appl. Sci. 2025, 15(16), 8992; https://doi.org/10.3390/app15168992 - 14 Aug 2025
Viewed by 370
Abstract
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and [...] Read more.
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and reliability of essential services during such disasters. In the United States, the railway network is vital for the distribution of goods and services. This research specifically targets the railway network in Iowa, a state where the impact of flooding on railways has not been extensively studied. We employ comprehensive GIS analysis to assess the vulnerability of the railway network, bridges, rail crossings, and facilities under 100- and 500-year flood scenarios at the state level. Additionally, we conducted a detailed investigation into the most flood-affected counties, focusing on the susceptibility of railway bridges. Our state-wide analysis reveals that, in a 100-year flood scenario, up to 9% of railroads, 8% of rail crossings, 58% of bridges, and 6% of facilities are impacted. In a 500-year flood scenario, these figures increase to 16%, 14%, 61%, and 13%, respectively. Furthermore, our secondary analysis using flood depth maps indicates that approximately half of the railway bridges in the flood zones of the studied counties could become non-functional in both flood scenarios. These findings are crucial for developing effective disaster risk management plans and strategies, ensuring adequate preparedness for the impacts of flooding on railway infrastructure. Full article
Show Figures

Figure 1

24 pages, 4158 KB  
Article
Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia
by Navakanesh M. Batmanathan, Joy Jacqueline Pereira, Afroz Ahmad Shah, Nurfashareena Muhamad and Lim Choun Sian
J. Mar. Sci. Eng. 2025, 13(8), 1539; https://doi.org/10.3390/jmse13081539 - 11 Aug 2025
Viewed by 683
Abstract
This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land [...] Read more.
This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land management. Land subsidence and coastal floods affect a major proportion of the population in the ICZM, with subsidence being significant contributing factors, but information on the extent of susceptible areas, monitoring, and wide-area coverage is limited. Land subsidence distribution is demarcated using Interferometric Synthetic Aperture Radar (InSAR) time-series data (2015–2022), and integrated with coastal flood susceptibility derived from Analytic Hierarchy Process (AHP)-based weights to model impacts on land cover. Results indicate maximum subsidence rates of 46 mm/year (descending orbit) and 61 mm/year (ascending orbit); reflecting a gradual increase in subsidence trends with an average rate of 13 mm/year. In the worst-case scenario, within the ICZM area of 2262 km2, nearly 12% of the total built-up land cover with the highest population density is exposed to land subsidence, while exposure to coastal floods is relatively larger, covering nearly 34% of the built-up area. Almost 27% of the built-up area is exposed to the combined effects of both land subsidence and coastal floods, under present sea level conditions, with increasing risks of coastal floods over 2040, 2050 and 2100, due to both combinations. This research prioritizes areas for further study and provides a scientific foundation for resilience strategies aimed at ensuring sustainable coastal development within the ICZM. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 11564 KB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Viewed by 1053
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

21 pages, 5063 KB  
Article
Flood Susceptibility Assessment Based on the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS): A Case Study of the Broader Area of Megala Kalyvia, Thessaly, Greece
by Nikolaos Alafostergios, Niki Evelpidou and Evangelos Spyrou
Information 2025, 16(8), 671; https://doi.org/10.3390/info16080671 - 6 Aug 2025
Viewed by 369
Abstract
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused [...] Read more.
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused significant flooding and many damages and fatalities. The southeastern areas of Trikala were among the many areas of Thessaly that suffered the effects of these rainfalls. In this research, a flood susceptibility assessment (FSA) of the broader area surrounding the settlement of Megala Kalyvia is carried out through the analytical hierarchy process (AHP) as a multicriteria analysis method, using Geographic Information Systems (GIS). The purpose of this study is to evaluate the prolonged flood susceptibility indicated within the area due to the past floods of 2018, 2020, and 2023. To determine the flood-prone areas, seven factors were used to determine the influence of flood susceptibility, namely distance from rivers and channels, drainage density, distance from confluences of rivers or channels, distance from intersections between channels and roads, land use–land cover, slope, and elevation. The flood susceptibility was classified as very high and high across most parts of the study area. Finally, a comparison was made between the modeled flood susceptibility and the maximum extent of past flood events, focusing on that of 2023. The results confirmed the effectiveness of the flood susceptibility assessment map and highlighted the need to adapt to the changing climate patterns observed in September 2023. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Figure 1

23 pages, 2129 KB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 810
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

25 pages, 6316 KB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 1341
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

21 pages, 1716 KB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Viewed by 382
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

24 pages, 3066 KB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 755
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

33 pages, 39261 KB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 666
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

31 pages, 5716 KB  
Article
Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia
by Maram Hamed AlRifai, Abdulla Al Kafy and Hamad Ahmed Altuwaijri
Water 2025, 17(14), 2108; https://doi.org/10.3390/w17142108 - 15 Jul 2025
Viewed by 720
Abstract
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced [...] Read more.
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced Geospatial Artificial Intelligence (GeoAI) algorithms to enhance flood susceptibility modeling. Using digital elevation models (DEMs) and geographic information systems (GISs), we extracted 23 morphometric parameters across 67 sub-basins and applied XGBoost, Random Forest, and Gradient Boosting (GB) models to predict both continuous flood susceptibility indices and binary flood occurrences. The machine learning models utilize morphometric parameters as input features to capture complex non-linear interactions, including threshold-dependent relationships where the stream frequency impact intensifies above 3.0 streams/km2, and the compound effects between the drainage density and relief ratio. The analysis revealed that the basin covers an area of 188.18 km2 with a perimeter of 101.71 km and contains 610 streams across six orders. The basin exhibits an elongated shape with a form factor of 0.17 and circularity ratio of 0.23, indicating natural flood-moderating characteristics. GB emerged as the best-performing model, achieving an RMSE of 6.50 and an R2 value of 0.9212. Model validation through multi-source approaches, including field verification at 35 locations, achieved 78% spatial correspondence with documented flood events and 94% accuracy for very high susceptibility areas. SHAP analysis identified the stream frequency, overland flow length, and drainage texture as the most influential predictors of flood susceptibility. K-Means clustering uncovered three morphometrically distinct zones, with Cluster 1 exhibiting the highest flood risk potential. Spatial analysis revealed 67% of existing infrastructure was located within high-risk zones, with 23 km of major roads and eight critical facilities positioned in flood-prone areas. The spatial distribution of GBM-predicted flood susceptibility identified high-risk zones predominantly in the central and southern parts of the basin, covering 12.3% (23.1 km2) of the total area. This integrated approach provides quantitative evidence for informed watershed management decisions and demonstrates the effectiveness of combining traditional morphometric analysis with advanced machine learning techniques for enhanced flood risk assessment in arid regions. Full article
Show Figures

Figure 1

25 pages, 11595 KB  
Article
Flood Susceptibility Assessment Using Multi-Tier Feature Selection and Ensemble Boosting Machine Learning Models
by Rajendran Shobha Ajin, Romulus Costache, Alina Bărbulescu, Riccardo Fanti and Samuele Segoni
Water 2025, 17(14), 2041; https://doi.org/10.3390/w17142041 - 8 Jul 2025
Viewed by 801
Abstract
Flood susceptibility modeling (FSM) plays a key role in advancing proactive disaster risk reduction and spatial planning. This research developed FSM for the Buzău River catchment in Romania—a region historically vulnerable to recurrent flood events—using four state-of-the-art ensemble boosting algorithms: AdaBoost, CatBoost, LightGBM, [...] Read more.
Flood susceptibility modeling (FSM) plays a key role in advancing proactive disaster risk reduction and spatial planning. This research developed FSM for the Buzău River catchment in Romania—a region historically vulnerable to recurrent flood events—using four state-of-the-art ensemble boosting algorithms: AdaBoost, CatBoost, LightGBM, and XGBoost. Initially, a comprehensive set of 13 flood conditioning factors was assessed, which was subsequently narrowed down to 9 essential factors through multi-tier feature selection strategies. Analysis of performance via receiver operating characteristic (ROC) andprecision–recall curves showed only marginal differences between the models; however, CatBoost excelled with an area under the ROC curve (AUC) of 0.972 and an average precision (AP) of 0.971, with XGBoost following closely behind. The SHAP (SHapley Additive exPlanations) analysis of the CatBoost model indicated that the Slope, Distance from Rivers, Topographic Wetness Index (TWI), and Land Use/Land Cover (LULC) are the key contributing factors. The novelty of this research is found in its comparative analysis of AdaBoost alongside three gradient boosting algorithms—CatBoost, LightGBM, and XGBoost—while utilizing explainable artificial intelligence (XAI) and a multi-tier feature selection strategy to create FSM that are precise and comprehensible. These strategies deliver robust tools for managing flood risks and reinforce the viability of data-driven modeling in the various catchments of Europe. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

21 pages, 13290 KB  
Article
Watershed Prioritization with Respect to Flood Susceptibility in the Indian Himalayan Region (IHR) Using Geospatial Techniques for Sustainable Water Resource Management
by Ashish Mani, Ruchi Badola, Maya Kumari, Varun Narayan Mishra, Kgabo Humphrey Thamaga, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(13), 2039; https://doi.org/10.3390/w17132039 - 7 Jul 2025
Viewed by 1387
Abstract
The rising demand for freshwater, driven by population growth, economic development, and climate change, necessitates proactive watershed management. This study focuses on prioritizing the watersheds of the Doon Valley in the Indian Himalayan Region (IHR) using geospatial techniques. It involves a detailed morphometric [...] Read more.
The rising demand for freshwater, driven by population growth, economic development, and climate change, necessitates proactive watershed management. This study focuses on prioritizing the watersheds of the Doon Valley in the Indian Himalayan Region (IHR) using geospatial techniques. It involves a detailed morphometric analysis incorporating hydrological and topographical parameters, ranking the watersheds using the compound factor value (CFV), and prioritizing them based on the given CFV. The Doon Valley watersheds exhibit dendritic to parallel drainage patterns and moderate relief. The study identifies the Suswa watershed as the most susceptible, necessitating urgent conservation attempts to mitigate soil erosion and ensure sustainable land use. In contrast, the Song watershed, characterized by steep slopes and high relief, requires targeted management strategies to control rapid runoff and prevent potential flooding. The Asan watershed, with a medium priority classification, also requires intervention to prevent ecological degradation. Prioritization based on the CFV provides a strategic framework for targeted management, offering valuable insights for policymakers and planners. This research supports sustainable watershed management by guiding effective conservation practices and addressing the specific needs of each watershed. Full article
Show Figures

Figure 1

Back to TopTop