Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Case Study
2.3. Flood Impact Assessment on Iowa Railroads
2.3.1. State-Wide Analysis
2.3.2. County-Based Analysis
3. Results and Discussion
3.1. State-Wide Analysis Results
3.2. County-Based Analysis Results
3.3. Discussion and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, J.E.; Brown, C.L.; Conlon, K.; Herring, S.; Kunkel, K.E.; Lawrimore, J.; Luber, G.; Schreck, C.; Smith, A.; Uejio, C. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. Assoc. 2018, 68, 265–287. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, X. Reprint of: Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Saf. Sci. 2017, 97, 112–119. [Google Scholar] [CrossRef]
- UNDRR. Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations Office for Disaster Risk Reduction. 2015. Available online: https://sustainabledevelopment.un.org/frameworks/ (accessed on 1 May 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. (Sustainable Development Goal 9.1). 2015. Available online: https://sdgs.un.org/ (accessed on 1 May 2025).
- Federal Railroad Administration (FRA). Rail Resiliency (Bulletin, July 2024). U.S. Department of Transportation. Available online: https://railroads.dot.gov/ (accessed on 1 May 2025).
- United Nations. Message on the International Day for Disaster Risk Reduction (Oct 13, 2019)—Secretary-General A. Guterres. 2019. Available online: https://press.un.org/ (accessed on 1 May 2025).
- Alabbad, Y.; Yildirim, E.; Demir, I. A web-based analytical urban flood damage and loss estimation framework. Environ. Model. Softw. 2023, 163, 105670. [Google Scholar] [CrossRef]
- Reisinger, A.; Howden, M.; Vera, C.; Garschagen, M.; Hurlbert, M.; Kreibiehl, S.; Mach, K.J.; Mintenbeck, K.; O’Neill, B.; Ranasinghe, R. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2020; Volume 15, p. 130. [Google Scholar]
- AAR—Association of American Railroads. The Economic Impact of a Railroad Shutdown. September 2022. Available online: https://fm.cnbc.com/applications/cnbc.com/resources/editorialfiles/2022/09/08/AAR-Rail-Shutdown-Report-September-2022.pdf (accessed on 1 May 2023).
- Chinowsky, P.; Helman, J.; Gulati, S.; Neumann, J.; Martinich, J. Impacts of climate change on operation of the US rail network. Transp. Policy 2019, 75, 183–191. [Google Scholar] [CrossRef]
- Iowa DOT. Iowa State Rail Plan. 2021. Available online: https://web.archive.org/web/20240223103034/https://iowadot.gov/iowainmotion/railplan/2017/IowaSRP2022.pdf (accessed on 1 June 2023).
- Koks, E.E.; Rozenberg, J.; Zorn, C.; Tariverdi, M.; Vousdoukas, M.; Fraser, S.A.; Hall, J.W.; Hallegatte, S. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 2019, 10, 2677. [Google Scholar] [CrossRef]
- Limao, N.; Venables, A.J. Infrastructure, geographical disadvantage, transport costs, and trade. World Bank Econ. Rev. 2001, 15, 451–479. [Google Scholar] [CrossRef]
- Kellermann, P.; Schöbel, A.; Kundela, G.; Thieken, A.H. Estimating flood damage to railway infrastructure–the case study of the March River flood in 2006 at the Austrian Northern Railway. Nat. Hazards Earth Syst. Sci. 2015, 15, 2485–2496. [Google Scholar] [CrossRef]
- AAR—Association of American Railroads. Freight Rail & First Responders: Working Together Towards a Common Goal. 27 July 2023. Available online: https://www.aar.org/issue/first-responders/ (accessed on 20 May 2023).
- Kellermann, P.; Schönberger, C.; Thieken, A.H. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL). Nat. Hazards Earth Syst. Sci. 2016, 16, 2357–2371. [Google Scholar] [CrossRef]
- Gonzva, M.; Barroca, B.; Gautier, P.E. A modelling of disruptions cascade effect within a rail transport system facing a flood hazard. In 48th Esreda Seminar on Critical Infrastructures Preparedness: Status of Data for Resilience Modelling, Simulation and Analysis; ESReDA: Wroclaw, Poland, 2015; Volume 6, pp. 53–59. Available online: https://hal.science/hal-01430921/ (accessed on 1 June 2023).
- Hamarat, M.; Papaelias, M.; Kaewunruen, S. Train-track interactions over vulnerable railway turnout systems exposed to flooding conditions. Eng. Fail. Anal. 2021, 127, 105459. [Google Scholar] [CrossRef]
- Changnon, S.A. Impacts of the 2008 Floods on Railroads in Illinois and Adjacent States. Trans. Ill. State Acad. Sci. 2009, 102, 181–190. Available online: http://ilacadofsci.com/wp-content/uploads/2013/03/102-17MS2819-print.pdf (accessed on 1 June 2023).
- Bubeck, P.; Dillenardt, L.; Alfieri, L.; Feyen, L.; Thieken, A.H.; Kellermann, P. Global warming to increase flood risk on European railways. Clim. Change 2019, 155, 19–36. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA), (2023a). Disaster Declarations for States and Counties. 2024. Available online: https://www.fema.gov/disaster/declarations (accessed on 1 July 2023).
- Cikmaz, B.A.; Yildirim, E.; Demir, I. Flood susceptibility mapping using fuzzy analytical hierarchy process for Cedar Rapids, Iowa. Int. J. River Basin Manag. 2023, 23, 1–13. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA). Grant Assistance to States. 2023. Available online: https://www.fema.gov/emergency-managers/risk-management/dam-safety/grants (accessed on 1 July 2023).
- Eash, D.A.; Koppensteiner, B.A. Floods of 12 July 1972, 19 March 1979, and 15 June 1991, in the Turkey River Basin, Northeast Iowa. US Department of the Interior, US Geological Survey. 1996. Available online: https://pubs.usgs.gov/of/1996/0560/report.pdf (accessed on 1 May 2023).
- Zogg, J. The Top Five Iowa Floods; National Weather Service WFO: Des Moines, IA, USA, 2014. [Google Scholar]
- Flanagan, P.X.; Mahmood, R.; Umphlett, N.A.; Haacker, E.; Ray, C.; Sorensen, W.; Shulski, M.; Stiles, C.J.; Pearson, D.; Fajman, P. A hydrometeorological assessment of the historic 2019 flood of Nebraska, Iowa, and South Dakota. Bull. Am. Meteorol. Soc. 2020, 101, E817–E829. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Flooded Railroad Track near Plainfield, Iowa [Photograph]. U.S. Geological Survey. 2008. Available online: https://www.flickr.com/photos/usgeologicalsurvey/2594358334 (accessed on 1 May 2025).
- Hong, L.; Ouyang, M.; Peeta, S.; He, X.; Yan, Y. Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliab. Eng. Syst. Saf. 2015, 137, 58–68. [Google Scholar] [CrossRef]
- Sresakoolchai, J.; Hamarat, M.; Kaewunruen, S. Automated machine learning recognition to diagnose flood resilience of railway switches and crossings. Sci. Rep. 2023, 13, 2106. [Google Scholar] [CrossRef]
- Abdelkarim, A.; Al-Alola, S.S.; Alogayell, H.M.; Mohamed, S.A.; Alkadi, I.I.; Ismail, I.Y. Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-shamal train pathway in Al-Qurayyat region, kingdom of Saudi Arabia. Water 2020, 12, 1702. [Google Scholar] [CrossRef]
- Varra, G.; Della Morte, R.; Tartaglia, M.; Fiduccia, A.; Zammuto, A.; Agostino, I.; Booth, C.A.; Quinn, N.; Lamond, J.E.; Cozzolino, L. Flood susceptibility assessment for improving the resilience capacity of railway infrastructure networks. Water 2024, 16, 2592. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Zhang, J.; Lang, Q.; Chen, Y.; Wan, Z.; Liu, H. Geographic-information-system-based risk assessment of flooding in Changchun urban rail transit system. Remote Sens. 2023, 15, 3533. [Google Scholar] [CrossRef]
- Samela, C.; Carisi, F.; Domeneghetti, A.; Petruccelli, N.; Castellarin, A.; Iacobini, F.; Rinaldi, A.; Zammuto, A.; Brath, A. A methodological framework for flood hazard assessment for land transport infrastructures. Int. J. Disaster Risk Reduct. 2023, 85, 103491. [Google Scholar] [CrossRef]
- Pant, R.; Hall, J.W.; Blainey, S.P. Vulnerability assessment framework for interdependent critical infrastructures: Case-study for Great Britain’s rail network. Eur. J. Transp. Infrastruct. Res. 2016, 16, 174–194. [Google Scholar] [CrossRef]
- Adams, K.; Heidarzadeh, M. A multi-hazard risk model with cascading failure pathways for the Dawlish (UK) railway using historical and contemporary data. Int. J. Disaster Risk Reduct. 2021, 56, 102082. [Google Scholar] [CrossRef]
- Varra, G.; IİnAn, Ç.A.; Della Morte, R.; Tartaglia, M.; Fiduccia, A.; Zammuto, A.; Agostino, I.; Cozzolino, L. Assessment of direct rainfall and flood-induced damage to land transport infrastructure using two-dimensional HEC-RAS 6.6 rain-on-grid simulations. Nat. Hazards 2025, 1–31. [Google Scholar] [CrossRef]
- Tanir, T.; Yildirim, E.; Ferreira, C.M.; Demir, I. Social vulnerability and climate risk assessment for agricultural communities in the United States. Sci. Total Environ. 2024, 908, 168346. [Google Scholar] [CrossRef] [PubMed]
- Iowa DOT. Iowa’s Railroad Profiles. 2023. Available online: https://web.archive.org/web/20250326212638/https://iowadot.gov/iowarail/ (accessed on 1 June 2023).
- Alabbad, Y.; Demir, I. Comprehensive flood vulnerability analysis in urban communities: Iowa case study. Int. J. Disaster Risk Reduct. 2022, 74, 102955. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA). FEMA Eases Floodplain Requirements for Federally Funded Projects, Reducing Burden on American Communities. 2025. Available online: https://www.fema.gov/press-release/20250325/fema-eases-floodplain-requirements-federally-funded-projects-reducing-burden (accessed on 1 July 2023).
- Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.J. Inundation mapping initiatives of the Iowa Flood Center: Statewide coverage and detailed urban flooding analysis. Water 2012, 4, 85–106. [Google Scholar] [CrossRef]
- Demir, I.; Krajewski, W.F. Towards an integrated flood information system: Centralized data access, analysis, and visualization. Environ. Model. Softw. 2013, 50, 77–84. [Google Scholar] [CrossRef]
- Li, Z.; Demir, I. A comprehensive web-based system for flood inundation map generation and comparative analysis based on height above nearest drainage. Sci. Total Environ. 2022, 828, 154420. [Google Scholar] [CrossRef]
- Iowa DOT: GEARS Spatial Data Dictionary. Iowa Department of Transportation—Open Data. 5 October 2020. Available online: https://data.iowadot.gov/pages/metadata-gears-spatial#FeatureClassRailroadCrossings (accessed on 1 May 2023).
- Homeland Infrastructure Foundation-Level Data (HIFLD). Railroad Bridges. 2023. Available online: https://hifld-geoplatform.opendata.arcgis.com/datasets/ (accessed on 1 May 2023).
- Iowa Geodata. Iowa Geospatial Data. 2020. Available online: https://geodata.iowa.gov/ (accessed on 1 May 2023).
- GeoTREE. Iowa Lidar Mapping Project. 2007. Available online: http://www.geotree.uni.edu/lidar/ (accessed on 1 May 2023).
- United States Geological Survey (USGS). Highest and Lowest Elevations. 2023. Available online: https://www.usgs.gov/educational-resources/highest-and-lowest-elevations (accessed on 10 August 2023).
- Mount, J.; Alabbad, Y.; Demir, I. Towards an integrated and realtime wayfinding framework for flood events. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, Chicago, IL, USA, 5–8 November 2019; pp. 33–36. [Google Scholar] [CrossRef]
- Pipinato, A. 20-Railway bridges. In Innovative Bridge Design Handbook: Construction, Rehabilitation and Maintenance; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- De Moel, H.; Aerts, J.C.J.H. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Nat. Hazards 2011, 58, 407–425. [Google Scholar] [CrossRef]
- Gerl, T.; Kreibich, H.; Franco, G.; Marechal, D.; Schröter, K. A review of flood loss models as basis for harmonization and benchmarking. PLoS ONE 2016, 11, e0159791. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.; Huizinga, H.J.; Vrouwenvelder, A.C.W.M.; Barendregt, A. Standard Method 2004 Damage and Casualties Caused by Flooding (Report no. DWW-2006-009). Rijkswaterstaat, The Netherlands. 2004. Available online: https://open.rijkswaterstaat.nl/@187575/standard-method-2004-damage-and/ (accessed on 1 June 2023).
- Wagenaar, D.J.; de Bruijn, K.M.; Bouwer, L.M.; de Moel, H. Uncertainty in flood damage estimates and its potential effect on investment decisions. Nat. Hazards Earth Syst. Sci. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Martello, M.V.; Whittle, A.J.; Lyons-Galante, H.R. Depth-damage curves for rail rapid transit infrastructure. J. Flood Risk Manag. 2023, 16, e12856. [Google Scholar] [CrossRef]
- Silverman, A.I.; Brain, T.; Branco, B.; sai venkat Challagonda, P.; Choi, P.; Fischman, R.; Graziano, K.; Hénaff, E.; Mydlarz, C.; Rothman, P.; et al. Making waves: Uses of real-time, hyperlocal flood sensor data for emergency management, resiliency planning, and flood impact mitigation. Water Res. 2022, 220, 118648. [Google Scholar] [CrossRef] [PubMed]
Flood Scenario | Railroad Length (km) | # of Railroad Crossings | # of Rail Bridges | # of Rail Facilities |
---|---|---|---|---|
Baseline | 11,927 | 5503 | 2652 | 384 |
100-year flood | 1040 | 437 | 1551 | 23 |
500-year flood | 1952 | 793 | 1622 | 51 |
County | Crossover | Main | Siding | Spur | Turnout | Yard | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | 100 | 500 | All | |
Pottawattamie | 0.6 | 0.6 | 68.7 | 108.0 | 9.3 | 10.4 | 28.2 | 33.7 | 1.4 | 1.5 | 101.4 | 144.5 | 209.6 | 298.7 | 445.0 |
Linn | - | 0.8 | 24.3 | 56.3 | 1.1 | 2.3 | 12.1 | 23.4 | 0.6 | 1.4 | 34.1 | 83.3 | 72.5 | 167.5 | 335.6 |
Harrison | - | - | 63.4 | 98.3 | 0.9 | 1.9 | - | - | 1.9 | 5.2 | 5.9 | 10.8 | 72.4 | 116.6 | 231.7 |
Scott | - | - | 23.1 | 42.6 | 2.4 | 8.2 | 1.6 | 2.2 | - | - | 25.5 | 30.2 | 52.6 | 83.1 | 177.3 |
Lee | - | - | 16.9 | 35.6 | - | - | 0.5 | 1.2 | - | - | 29.8 | 39.6 | 47.6 | 76.9 | 196.7 |
Polk | - | - | 28.8 | 40.6 | 1.7 | 2.8 | 10.3 | 12.8 | 0.7 | 1.1 | 13.8 | 13.8 | 55.6 | 71.4 | 309.3 |
Plymouth | - | - | 39.4 | 64.5 | 2.7 | 3.7 | - | - | - | - | - | - | 42.2 | 68.8 | 166.8 |
Allamakee | - | - | 10.5 | 62.1 | - | 2.8 | - | - | - | - | - | - | 10.5 | 65.3 | 71.8 |
Clinton | - | - | 20.2 | 41.5 | 1.9 | 4.0 | - | 3.3 | - | - | 2.0 | 14.0 | 24.3 | 62.8 | 238.0 |
Dubuque | - | - | 9.1 | 34.2 | 0.6 | 1.3 | - | 7.4 | - | - | - | 19.0 | 10.0 | 62.0 | 145.2 |
Woodbury | - | - | 1.5 | 16.7 | - | 0.7 | - | 13.2 | - | 1.0 | - | 28.8 | 1.8 | 60.8 | 193.0 |
Mills | - | - | 40.2 | 45.1 | 3.0 | 3.1 | - | - | 4.1 | 4.1 | 3.3 | 3.3 | 50.9 | 55.9 | 122.4 |
Fremont | - | - | 37.8 | 38.1 | 8.2 | 8.2 | 3.6 | 3.7 | 1.2 | 1.2 | - | - | 51.0 | 51.3 | 57.1 |
Clayton | - | - | 7.9 | 35.8 | 1.3 | 3.0 | 0.8 | 0.8 | 0.8 | 0.8 | 0.5 | 5.0 | 11.3 | 45.4 | 108.2 |
Muscatine | - | - | 9.8 | 21.8 | 3.1 | 4.9 | 2.6 | 8.0 | - | - | - | 4.4 | 15.5 | 39.1 | 156.1 |
Railroad Types | 100-Year | Percentage | 500-Year | Percentage | Total Length |
---|---|---|---|---|---|
Main | 658.9 | 4.97% | 1289.0 | 9.73% | 13,247.5 |
Yard | 245.2 | 19.35% | 431.2 | 34.04% | 1266.9 |
Siding | 50.4 | 6.57% | 82.4 | 10.75% | 766.7 |
Spur | 72.8 | 10.90% | 127.7 | 19.12% | 667.8 |
Turnout | 11.7 | 14.64% | 19.3 | 24.14% | 79.9 |
Crossover | 1.3 | 9.90% | 2.4 | 18.24% | 13.2 |
Warehouse | Federal Grain | State Grain | Transload Facility | |||||
---|---|---|---|---|---|---|---|---|
100 yr | 500 yr | 100 yr | 500 yr | 100 yr | 500 yr | 100 yr | 500 yr | |
Inundated | 0 (-%) | 4 (29%) | 13 (6%) | 24 (12%) | 5 (4%) | 11 (9%) | 5 (11%) | 12 (26%) |
Total | 14 | 206 | 118 | 46 |
100-yr Flood Scenario | 500-yr Flood Scenario | |||||
---|---|---|---|---|---|---|
County | <20 cm | 20–140 cm | >140 cm | <20 cm | 20–140 cm | >140 cm |
Pottawattamie | 66.5 | 135.0 | 8.1 | 6.9 | 175.2 | 118.2 |
Linn | 18.7 | 47.3 | 6.5 | 22.2 | 108.2 | 37.1 |
Harrison | 16.3 | 53.5 | 2.5 | 12.7 | 86.8 | 16.0 |
# of Bridges in Floodplain | # of Inundated Bridges | ||||
---|---|---|---|---|---|
County Name | # of Bridges | 100 yr | 500 yr | 100 yr | 500 yr |
Pottawattamie | 97 | 59 (61%) | 64 (66%) | 29 (30%) | 37 (38%) |
Linn | 72 | 18 (25%) | 36 (50%) | 0 (0%) | 12 (17%) |
Harrison | 82 | 56 (68%) | 63 (77%) | 27 (33%) | 39 (48%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabbad, Y.; Cikmaz, A.B.; Yildirim, E.; Demir, I. Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa. Appl. Sci. 2025, 15, 8992. https://doi.org/10.3390/app15168992
Alabbad Y, Cikmaz AB, Yildirim E, Demir I. Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa. Applied Sciences. 2025; 15(16):8992. https://doi.org/10.3390/app15168992
Chicago/Turabian StyleAlabbad, Yazeed, Atiye Beyza Cikmaz, Enes Yildirim, and Ibrahim Demir. 2025. "Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa" Applied Sciences 15, no. 16: 8992. https://doi.org/10.3390/app15168992
APA StyleAlabbad, Y., Cikmaz, A. B., Yildirim, E., & Demir, I. (2025). Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa. Applied Sciences, 15(16), 8992. https://doi.org/10.3390/app15168992