Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,331)

Search Parameters:
Keywords = flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8158 KB  
Article
High-Value Utilization of Amaranth Residue and Waste LDPE by Co-Pyrolysis
by Julia Karaeva, Svetlana Timofeeva, Svetlana Islamova, Marina Slobozhaninova, Ekaterina Oleynikova and Olga Sidorkina
Molecules 2025, 30(17), 3471; https://doi.org/10.3390/molecules30173471 - 23 Aug 2025
Viewed by 65
Abstract
Amaranth is important for the agro-industrial complex. However, when extracting flour and oil from seeds, a lot of waste remains. Waste recycling by co-pyrolysis aims at obtaining new products with high added value. This study examined a combination of A. cruentus (AC) residues [...] Read more.
Amaranth is important for the agro-industrial complex. However, when extracting flour and oil from seeds, a lot of waste remains. Waste recycling by co-pyrolysis aims at obtaining new products with high added value. This study examined a combination of A. cruentus (AC) residues and low-density polyethylene (LDPE) waste. The addition of polymer was aimed at obtaining hydrocarbon-rich pyrolysis liquid and biochar. Pyrolysis was performed on an experimental setup, along with thermogravimetry–Fourier infrared spectroscopy–gas chromatography mass spectrometry (TG-FTIR-GC MS), to examine the thermochemical conversion. Experiments were carried out using a thermogravimetric analyzer at heating rates of 5, 10, and 20 °C/min. The average activation energy values for the pyrolysis of the AC/LDPE blend by the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) techniques were 301.39 kJ/mol and 287.69 kJ/mol, respectively. A visual examination of the correlations of the kinetic parameters of AC/LDPE was carried out using the Kriging method. The pyrolysis liquid from AC contains 38.14% hydrocarbons, with the main part being aliphatic hydrocarbons. During the pyrolysis of the AC/LDPE mixture, hydrocarbons were found in the resinous and waxy organic fractions of the pyrolysis liquid. The composition and properties of AC and AC/LDPE biochar are similar, and they can both be applied to agriculture. Full article
Show Figures

Figure 1

21 pages, 747 KB  
Article
Qualitative and Antioxidant Evaluation of High-Moisture Plant-Based Meat Analogs Obtained by Extrusion
by Viorica Bulgaru, Ilkay Sensoy, Natalia Netreba, Angela Gurev, Ulunay Altanlar, Sergiu Paiu, Veronica Dragancea, Rodica Sturza and Aliona Ghendov-Mosanu
Foods 2025, 14(17), 2939; https://doi.org/10.3390/foods14172939 - 23 Aug 2025
Viewed by 105
Abstract
This study investigated meat analogs produced by high-moisture extrusion from mixtures of pea protein isolate and soryz flour, and chickpea flour and hazelnut meal in a 1:1 ratio, at two distinct heating temperature profiles: 40-60-80-100 °C and 60-80-100-120 °C. Physicochemical indicators, texture and [...] Read more.
This study investigated meat analogs produced by high-moisture extrusion from mixtures of pea protein isolate and soryz flour, and chickpea flour and hazelnut meal in a 1:1 ratio, at two distinct heating temperature profiles: 40-60-80-100 °C and 60-80-100-120 °C. Physicochemical indicators, texture and chromatic parameters, protein digestibility, and antioxidant activity of the meat analogs were assessed, and antioxidant activity of the product in terms of simulating gastrointestinal digestibility in vitro was performed. The results obtained for the analyzed meat analog indicators were greatly influenced by the type of plant-based raw material used and the heating temperature profiles. A higher temperature regime leads to a slight decrease in the content of nutritive compounds in the final products. All meat analog samples showed good water and oil holding capacity. A decrease in hardness was observed for the mixtures compared to pea protein isolate, which can be attributed to protein content. The digestibility of the processed meat analog proteins ranged between 86.84% and 69.37%. PCA was applied to illustrate the relationships between physicochemical characteristics, protein digestibility, antioxidant activity, texture profile analysis, and CIELab color parameters in high-moisture meat analogs. Full article
Show Figures

Figure 1

17 pages, 806 KB  
Article
An FIA-MS Method for Rapid Coffee Adulteration Detection: A Comparative Study with a Non-Targeted LC-MS Approach
by Nerea Núñez, Javier Saurina and Oscar Núñez
Foods 2025, 14(17), 2931; https://doi.org/10.3390/foods14172931 - 22 Aug 2025
Viewed by 113
Abstract
Coffee adulteration is a growing concern in the food industry due to economic and quality implications. This study evaluates a rapid, non-targeted fingerprinting method based on flow injection analysis–mass spectrometry (FIA-MS) for detecting common coffee adulterants. A total of 119 samples were analyzed, [...] Read more.
Coffee adulteration is a growing concern in the food industry due to economic and quality implications. This study evaluates a rapid, non-targeted fingerprinting method based on flow injection analysis–mass spectrometry (FIA-MS) for detecting common coffee adulterants. A total of 119 samples were analyzed, including 43 coffee samples and 76 samples of common coffee adulterants (16 chicory, 10 barley, and 50 flour samples). FIA-MS combined with chemometric analysis allowed for the classification of pure and adulterated coffee samples with over 95% accuracy. Compared to LC-MS, the FIA-MS method showed a similar performance while offering significantly faster analysis and lower solvent consumption, making it a practical and sustainable option for high-throughput screening. For PLS regression studies, calibration and prediction errors were consistently below 0.91% and 11.7%, respectively. Furthermore, the methodology was compared with a non-targeted LC-MS approach, showing an excellent performance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 1683 KB  
Article
Epicatechin-Enriched Cacao Subproducts Improve Cognition in Older Subjects: Proof of Concept
by Nayelli Nájera, Levy Munguía, Miguel Ortiz, Francisco Villarreal, Yuridia Martínez-Meza, Amalia Gómez-Cotero and Guillermo Ceballos
J. Mind Med. Sci. 2025, 12(2), 41; https://doi.org/10.3390/jmms12020041 - 22 Aug 2025
Viewed by 140
Abstract
Cognitive decline among older people is a growing concern worldwide since it impacts quality of life and independence. Recently, we reported that an epicatechin-enriched product improves cardiometabolic status, physical performance/mobility, and quality of life (QoL) in over-60-year-old subjects. Here, we explored the effects [...] Read more.
Cognitive decline among older people is a growing concern worldwide since it impacts quality of life and independence. Recently, we reported that an epicatechin-enriched product improves cardiometabolic status, physical performance/mobility, and quality of life (QoL) in over-60-year-old subjects. Here, we explored the effects of an (−)-epicatechin-enriched cacao supplement on the cognitive conditions of older and sedentary individuals residing in a community center. Twelve persons with the inclusion criteria were included in this proof-of-concept study. We evaluated reasoning, memory, attention, coordination, and perception using CogniFit software, version 4.6.18. Patients received a mixture of cacao flour and 15 mg of free (−)-epicatechin twice daily for 3 months. The main results from the trial suggested a positive and significant improvement in perception, coordination, reasoning, attention, and memory. Full article
Show Figures

Figure 1

18 pages, 9714 KB  
Article
Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends
by Yuxing Wang, Yu Guo, Zhiting Zhu, Yan Ding, Yuchan Yang, Dongxu Wang, Zhanming Li, Yuanxin Guo and Xiaoman Chen
Foods 2025, 14(16), 2920; https://doi.org/10.3390/foods14162920 - 21 Aug 2025
Viewed by 172
Abstract
This study aimed to investigate the effect of high-amylose corn starch (HACS) addition on the physicochemical properties and in vitro digestibility of an ultrasound-treated waxy rice flour (UWRF)–HACS blend system. As the proportion of HACS increased, the amylose content in the blends significantly [...] Read more.
This study aimed to investigate the effect of high-amylose corn starch (HACS) addition on the physicochemical properties and in vitro digestibility of an ultrasound-treated waxy rice flour (UWRF)–HACS blend system. As the proportion of HACS increased, the amylose content in the blends significantly increased (p < 0.05), while their water solubility index (WSI) and swelling power (SP) significantly decreased (p < 0.05). Additionally, the average particle size of the blends increased, and the surface of starch granules became smoother. Compared to UWRF, the blends did not generate new functional groups, but increased the starch’s relative crystallinity and short-range ordered structure. Rheological results indicated that the HACS-UWRF blends were mainly elastic and exhibited a typical weak gel system. In vitro digestibility results showed that the addition of HACS significantly increased the resistant starch (RS) content in the rice cakes (p < 0.05), while substantially reducing the hydrolysis index (HI) and estimated glycemic index (eGI) (p < 0.05). This study revealed the processing characteristics and gelatinization behavior changes in the HACS-UWRF blends. It provides a theoretical basis for the development of specialized flour for slow-glycemic rice cakes. Full article
Show Figures

Graphical abstract

33 pages, 14615 KB  
Article
Spray Drying of Double-Layer Emulsion Stabilised with an Orange Residue: Effect of Process Parameters and Collection Position
by Mónica Umaña, Esperanza Dalmau, Carmen Rosselló, Valeria Eim and Susana Simal
Foods 2025, 14(16), 2919; https://doi.org/10.3390/foods14162919 - 21 Aug 2025
Viewed by 124
Abstract
This study investigated the impact of spray-drying conditions, specifically inlet air temperature (Tin: 131–159 °C) and feed rate (FR: 4.9–8.4 g/min), on the microencapsulation of oil in a double-layer emulsion stabilised with orange residue flour (ORF) and soy protein. Powders were analysed separately [...] Read more.
This study investigated the impact of spray-drying conditions, specifically inlet air temperature (Tin: 131–159 °C) and feed rate (FR: 4.9–8.4 g/min), on the microencapsulation of oil in a double-layer emulsion stabilised with orange residue flour (ORF) and soy protein. Powders were analysed separately from the drying chamber and the collector, focusing on yield, encapsulation efficiency, moisture, water activity (aw), oil oxidation, colour, and particle size. Chamber powders were more sensitive to Tin, where higher temperatures (155–159 °C) improved yield (up to 47% dry matter (dm)) but also increased oxidation (up to 134% above initial oil). Excessively high FR (8.4 g/min) reduced yield and raised aw (up to 0.39). Collector powders showed more stable yields (average 30 ± 2% dm) but lower encapsulation efficiency (80–86% for chamber vs. 70–77% for collector). Response surface methodology satisfactorily modelled key parameters (R2 up to 0.9). Optimisation showed that chamber performance was maximised at 146 °C and 4.9 g/min (predicted yield and aw of 41% and 0.25, respectively), while collector quality improved with slightly higher Tin (150 °C, predicted aw of 0.32). Separately analysing chamber and collector fractions provided novel insights into spray-drying dynamics. These findings highlight ORF as a promising wall material. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Graphical abstract

15 pages, 7721 KB  
Article
Nutrient Profile, Energy Digestibility in Pigs, and In Vitro Degradation Characteristics of Wheat Flour Milling Co-Products
by Rajesh Jha, Prajwal R. Regmi, Li F. Wang, Andrew Pharazyn and Ruurd T. Zijlstra
Animals 2025, 15(16), 2460; https://doi.org/10.3390/ani15162460 - 21 Aug 2025
Viewed by 173
Abstract
Using wheat flour milling (WFM) co-products in pig diets may reduce feed cost. Still, energy digestibility is lower for WFM co-products than for feed grains. Inadequate information exists about their fermentation characteristics and the relationship between digestible energy (DE) value and chemical characteristics [...] Read more.
Using wheat flour milling (WFM) co-products in pig diets may reduce feed cost. Still, energy digestibility is lower for WFM co-products than for feed grains. Inadequate information exists about their fermentation characteristics and the relationship between digestible energy (DE) value and chemical characteristics or in vitro energy digestibility. The objectives were to (1) determine the chemical characteristics, in vitro and in vivo DE values, and energy digestibility of WFM co-products in growing pigs; (2) determine their in vitro microbial fermentation characteristics, and (3) establish relationships between in vivo DE value of WFM co-products and their chemical composition, fermentation characteristics, or in vitro digestibility values. Across Canada, 94 WFM co-products were sampled and characterized for their chemical composition and in vitro dry matter (DM) and energy digestibility using pepsin, pancreatin, and a multi-enzyme complex containing arabinase, β-glucanase, hemicellulase, xylanase, and cellulase. The in vivo energy, DM digestibility and DE value of 9 WFM co-products (2 shorts, 5 millrun, 1 middling, and 1 bran) were determined using a corn-based diet and 40 growing pigs in two periods to obtain 8 observations per diet. After in vitro digestion, the 9 WFM co-product samples were subjected to microbial fermentation using fresh fecal inoculum in a cumulative gas-production technique. The WFM co-products had a high content of crude fiber (up to 7.9% in shorts, 9.9% in millrun, 7.1% in middlings, and 12.0% in bran) and crude protein (CP; up to 27.8% in shorts, 20.0% in millrun, 22.1% in middlings, 15.9% in bran). The DE values ranged from 2.84 to 3.74 Mcal/kg DM among WFM co-products. Among chemical characteristics, neutral detergent fiber was the best predictor (R2 = 0.81) for in vivo DE value, followed by crude fiber (R2 = 0.78), and acid detergent fiber (R2 = 0.72). The in vitro DE values predicted (R2 = 0.80) in vivo DE values of 9 WFM co-products. Based on principal component analysis, total gas and short-chain fatty acid production varied among WFM co-products and was associated with the CP content of WFM co-products. In conclusion, WFM co-products contain high crude protein and have a high DE value for growing pigs but vary substantially in nutritional value. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

29 pages, 3441 KB  
Article
The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products
by Diana Fluerasu (Bălțatu), Christine Neagu, Sylvestre Dossa, Monica Negrea, Călin Jianu, Adina Berbecea, Daniela Stoin, Dacian Lalescu, Diana Brezovan, Liliana Cseh, Mariana Suba, Cătălin Ianasi and Ersilia Alexa
Foods 2025, 14(16), 2911; https://doi.org/10.3390/foods14162911 - 21 Aug 2025
Viewed by 205
Abstract
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat [...] Read more.
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat flour and whey powder in proportions of 5% (WhWF5), 10% (WhWF10), and 15% (WhWF15). These composite flours were then used to produce bread. The nutritional properties (proximate composition, macro and microelement content) and bioactive compounds (total polyphenols and antioxidant activity) were assessed for both the composite flours and the resulting breads. In addition, the rheological behavior of the dough was evaluated using the Mixolab system, while the microstructural characteristics and physical properties of the composite flours were analyzed using Small/Wide Angle X-ray Scattering (SAXS/WAXS) and Fourier Transform Infrared Spectroscopy (FTIR). Sensory evaluation of the breads was also performed. The results demonstrated a positive effect of the whey powder addition on the nutritional profile of both composite flours and bakery products, particularly through increased protein levels (25.24–37.77% in fortified flours vs. 11.26% in control; 16.64–18.89% in fortified breads vs. 14.12% in control) and enhanced mineral content (11.27–80.45% higher compared to white wheat bread), alongside a reduction in carbohydrate content. Bread fortified with 15% whey powder showed higher monolement with increases of 27.80% for K, 7.01% for Mg, and 28.67% for Ca compared to control bread without whey. The analysis of the Mixolab charts confirmed the progressive influence of whey powder on dough rheology. While water absorption remains high, other functional parameters, such as gluten quality, kneading capacity, and starch viscosity, were negatively affected. Nonetheless, the nutritional advantages and reduced retrogradation tendency may offset these drawbacks in the context of developing functional bakery products. Formulations containing 5–10% whey powder appear to offer an optimal balance between technological performance, nutritional quality, and sensory acceptance. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

14 pages, 1191 KB  
Article
Biodegradation of Zearalenone by a Novel Bacillus Strain X13 Isolated from Volcanic Rock Soil Using the Mycotoxin as the Sole Carbon Source
by Di Meng, Kaizhong Xu, Jinbin Liu and Xiangru Liao
Microorganisms 2025, 13(8), 1954; https://doi.org/10.3390/microorganisms13081954 - 21 Aug 2025
Viewed by 164
Abstract
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability [...] Read more.
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability to utilize ZEN as the sole carbon source for growth and metabolism. Under optimized conditions (37 °C, pH 8.0, and 5% inoculum in M9 minimal medium), strain X13 achieved a ZEN degradation efficiency of 98.57%. LC-MS analysis identified 1-(3,5-dihydroxyphenyl)-6′-hydroxy-1′-undecen-10′-one as the primary degradation product, indicating enzymatic hydrolysis of the lactone ring. Enzymatic assays revealed that the active components were extracellular, proteinaceous, and metal ion-dependent. Furthermore, the strain reduced ZEN content in mold-contaminated corn flour by 74.6%, effectively lowering toxin levels below regulatory limits. These findings suggest that Bacillus sp. X13 is a promising candidate for the bioremediation of ZEN-contaminated agricultural products, with significant potential for application in food and feed detoxification strategies. The robust degradation performance of strain X13 under simulated environmental conditions, combined with its adaptability to agricultural substrates, positions it as a viable solution for large-scale mycotoxin mitigation in the food industry chain, from pre-harvest field management to post-harvest storage processing. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 899 KB  
Communication
Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process
by Nayeli Anayansi Loyo-Trujillo, María Remedios Mendoza-López, Rosa Isela Guzmán-Gerónimo, Rosario Galvan-Martínez, Francisco Erik González-Jiménez, Josué Antonio del Ángel-Zumaya, Audry Peredo-Lovillo and Juan Vicente Méndez-Méndez
Foods 2025, 14(16), 2909; https://doi.org/10.3390/foods14162909 - 21 Aug 2025
Viewed by 330
Abstract
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. [...] Read more.
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. The aim of this work was to evaluate the impact of eco-friendly physical modification of starch from Oxalis tuberosa in a low-fat snack processed by hot air frying. First, native starch (NS) was treated with liquid nitrogen (LNS) and liquid nitrogen/microwaves (LNMS), and the amylose/amylopectin content and functional properties were determined. The snacks were formulated with NS or modified starches, amaranth flour, quinoa flour, corn, onion powder, salt, and water; the ingredients were mixed and placed in an electric pasta maker and cooked by hot air frying. The hardness, hedonic test, colorimetric parameters, acrylamide, proximal composition, and fatty acid profile were analyzed. All starches showed similar values of amylose and amylopectin content. LNMS starch had the lowest water solubility index as compared to NS and LNS. The snacks with the starch modified with liquid nitrogen showed the highest values of hardness as well as the highest score for the texture from a hedonic test. The snacks with modified starches showed a lower browning index than the snack formulated with NS. Acrylamide was not detected in any snacks. The lipid value of the snacks with modified starch was 1.9–2.70 g/100 g of sample, providing ω-9, ω-6, and ω-3 fatty acids. All snacks contained 7.7 g of protein/100 g of sample. These low-fat and plant-based snacks are a healthy option made by environmentally friendly technologies. Full article
Show Figures

Graphical abstract

16 pages, 2047 KB  
Article
Germination-Induced Biofortification: Improving Nutritional Efficacy, Physicochemical Properties, and In Vitro Digestibility of Black Rice Flour
by Lingfeng Zhu, Qiutao Xie, Dandan Qin, Yi He, Hongyan Yuan, Yingchao Mao, Zhaoping Pan, Gaoyang Li and Xinxin Xia
Foods 2025, 14(16), 2912; https://doi.org/10.3390/foods14162912 - 21 Aug 2025
Viewed by 217
Abstract
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results [...] Read more.
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results showed that germination significantly induced α-amylase activation of BRF, from 1.02 U/g to 4.46 U/g, leading to a 3.2-fold increase in reducing sugar content through starch hydrolysis. The content of apparent amylose was down-regulated during germination. The contents of free amino acids and minerals were markedly augmented in BRF. Specially, the GABA content was remarkedly enhanced, from 40.73 mg/kg to 258.35 mg/kg. Compared with BRF, the ratio of rapidly digestible starch (RDS) and resistant starch (RS) of germinated black rice flour (GBRF) increased by 12.04% and 0.43%, respectively, while the ratio of slowly digestible starch (SDS) decreased by 12.47% at 48 h. Scanning electron microscopy (SEM) analysis observed a more porous and loose surface structure in GBRF. X-ray diffraction (XRD) analysis illustrated that the relative crystallinity of GBRF was reduced with the prolonging of germination time. The dissociation of starch granules in GBRF ultimately led to a decrease in characteristic viscosity parameters, including peak, trough, final, and setback viscosity. In conclusion, germination improved the nutritional value and digestive characteristics of BRF, and altered its structure and physicochemical properties, which provides a reference for the development of whole grain-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

12 pages, 1680 KB  
Article
Comparison of Rapid Descriptive Sensory Methods Applied to Consumers in the Evaluation of Muffins
by Reynaldo J. Silva-Paz, Humberto A. Avilés Pérez, Thalia A. Rivera-Ashqui and Carmen R. Apaza-Humerez
Foods 2025, 14(16), 2898; https://doi.org/10.3390/foods14162898 - 21 Aug 2025
Viewed by 160
Abstract
Sensory evaluation is essential to understand consumer perception. This study compared three descriptive methods (Check-All-That-Apply (CATA), Flash Profile, and Pivot Profile) to characterize muffins formulated with alternative flours (purple corn and amaranth) in comparison to a wheat-based control. Six formulations (T0–T5) were evaluated: [...] Read more.
Sensory evaluation is essential to understand consumer perception. This study compared three descriptive methods (Check-All-That-Apply (CATA), Flash Profile, and Pivot Profile) to characterize muffins formulated with alternative flours (purple corn and amaranth) in comparison to a wheat-based control. Six formulations (T0–T5) were evaluated: CATA and Pivot Profile were applied with 100 consumers, while Flash Profile was conducted with 15 panelists. Multivariate statistical analyses were used: correspondence analysis for CATA and Pivot, and Generalized Procrustes Analysis for Flash Profile. All three methods showed high discriminative power: CATA explained 94.36% of the variance, identifying three main groups; Flash Profile explained 63.88%, highlighting differences in texture and aroma; and Pivot Profile explained 81.10%, revealing complex interactions among sensory attributes. Sample T1 (100% purple corn) showed a distinctive sensory profile (bitter and dry), while samples T2 to T5 presented intermediate characteristics. The RV coefficient confirmed significant congruence between the methods. CATA effectively identified relevant sensory differences, Pivot Profile generated descriptors in relation to a control sample, and Flash Profile enabled exploratory analysis. The choice of method depends on the study objective, with each approach offering complementary sensory information. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

18 pages, 1949 KB  
Article
NMR-Based Metabolomic and QMB-Based E-Nose Approaches to Evaluate the Quality and Sensory Features of Pasta Fortified with Alternative Protein Sources
by Marika Chiossi, Diana De Santis, Margherita Modesti, Serena Ferri, Marcello Fidaleo, Francesco Buonocore, Fernando Porcelli and Esther Imperlini
Molecules 2025, 30(16), 3438; https://doi.org/10.3390/molecules30163438 - 20 Aug 2025
Viewed by 576
Abstract
The consumption of animal- and plant-based protein food is increasing as the world population grows. Alternative protein sources that are nutritious, safe and sustainable are needed. There is a growing research interest in integrating wheat-based staple foods, such as pasta, with new ingredients [...] Read more.
The consumption of animal- and plant-based protein food is increasing as the world population grows. Alternative protein sources that are nutritious, safe and sustainable are needed. There is a growing research interest in integrating wheat-based staple foods, such as pasta, with new ingredients that could also provide nutritional and health benefits. Despite their unquestionable nutritional value, new pasta formulations need to be evaluated in terms of technological/sensory quality. In this study, we assessed the quality and flavour of traditional egg pasta fortified with two alternative protein sources: hazelnut flour and cricket powder. It is known that a quality pasta tends to lose fewer solids during cooking. In parallel with classical evaluation of cooking and sensory characteristics, proton nuclear magnetic resonance (1H NMR) spectroscopy of the metabolites released during the cooking process and volatile fingerprint analysis with quartz microbalance (QMB) electronic nose (E-nose) were performed. These approaches showed results complementary to those obtained from classical quality and sensory analyses, thus demonstrating the potential of 1H NMR and E-nose in pasta quality assessment. Overall, the pasta fortification with cricket powder and hazelnut flour affected the matrix mobility by modulating the release of chemical components into the water during cooking and overcooking processes; moreover, it significantly altered the pasta sensory profile in terms of aroma and texture. This finding highlights the complexity of balancing technological improvement with sensory appeal in food product development. Full article
(This article belongs to the Special Issue New Achievements and Challenges in Food Chemistry)
Show Figures

Figure 1

27 pages, 1408 KB  
Article
Physico-Chemical and Sensory Characteristics of Extruded Cereal Composite Flour Porridge Enriched with House Crickets (Acheta domesticus)
by Tom Bbosa, Dorothy Nakimbugwe, Christophe Matthys, Jolien Devaere, Ann De Winne, Deniz Zeynel Gunes and Mik Van Der Borght
Foods 2025, 14(16), 2893; https://doi.org/10.3390/foods14162893 - 20 Aug 2025
Viewed by 235
Abstract
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, [...] Read more.
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, and 25.0% millet were compared to a control formulation with 73.0% maize and 27.0% millet, both extruded at 140 °C. Cricket enrichment slightly reduced lightness L* (59.99 vs. 61.28) and significantly increased aroma intensity (23,450 × 104 AU vs. 18,210 × 104 AU; p < 0.05), attributable to higher extrusion-induced Strecker degradation, Maillard reaction, and lipid oxidation. Rheological analysis revealed that paste made from cricket-enriched flour had lower critical strain (≈0.01%) and softened sooner than the control paste (≈0.03%) without becoming fragile. Both flours displayed stable paste-like behavior at stresses >10 Pa, with elastic moduli under 104 Pa, which is typical for soft pastes. Reduced pasting values relative to native flours are attributable to starch pre-gelatinization during extrusion. Sensory evaluation showed positive hedonic ratings for both porridges, and a choice test indicated no significant consumer preference. Generally, physico-chemical and sensory changes were minimal, supporting the use of house crickets for nutrient enrichment of composite cereal porridges. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

18 pages, 3684 KB  
Article
Enhancement of Mycelial Growth and Antifungal Activity by Combining Fermentation Optimization and Genetic Engineering in Streptomyces pratensis S10
by Lifang Hu, Yan Sun, Ruimin Jia, Xiaomin Dong, Xihui Shen and Yang Wang
Microorganisms 2025, 13(8), 1943; https://doi.org/10.3390/microorganisms13081943 - 20 Aug 2025
Viewed by 181
Abstract
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we [...] Read more.
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we aimed to improve the antifungal activity of S10 by integrating fermentation optimization and genetic engineering. Single-factor experiments revealed that seven parameters, namely corn flour, yeast extract, NaNO3, CaCO3, K2HPO4, KCl, ZnSO4·7H2O, and MnCl2·4H2O, were identified as significant components. A Plackett–Burman design (PDB) indicated that corn flour, yeast extract, and ZnSO4·7H2O were the most critical variables affecting its inhibitory activity and mycelial biomass. The fermentation medium was further determined based on the steepest climbing experiment and a Box–Behnken design (BBD), and the mycelial dry weight of S. pratensis S10 was improved from 2.13 g/L in Gauze’s synthetic No. 1 medium to 8.12 g/L in the optimized medium, closely aligning with the predicted value of 7.98 g/L. Under the optimized medium, the antifungal rate of F. graminearum increased from 67.36 to 82.2%. The spore suspension of strain S10 cultured in the optimized medium substantially improved its biocontrol efficacy against FHB. Moreover, disruption of the key gene tetR led to increased antifungal activity of strain S10 against F. graminearum. Importantly, the antifungal activity of ΔtetR was greatly increased under the optimized fermentation medium. This study suggests that the gene tetR negatively regulates bioactive compound biosynthesis, and the optimized medium provides favorable conditions for the growth of S10. These observations establish an extended basis for the large-scale bioactive metabolite secretion of S. pratensis S10, providing a strong foundation for sustainable FHB management in agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop