molecules-logo

Journal Browser

Journal Browser

Valorization of Biomass and Waste: Transforming Renewable Resources into High-Value Chemicals and Fuels

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1426

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD 57007, USA
Interests: biomass valorization; hydrothermal liquefaction; renewable fuels; biobinder; asphalt binder; slow release fertilizer

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue of Molecules titled "Valorization of Biomass and Waste: Transforming Renewable Resources into High-Value Chemicals and Fuels". This Issue aims to gather cutting-edge research and reviews that advance the sustainable transformation of biomass and waste into high-value products.

With growing global concerns over environmental sustainability, resource scarcity, and climate change, the efficient utilization of renewable resources and waste materials has become a key priority. This Special Issue seeks to highlight innovative strategies and technologies that enable the conversion of bio-based feedstocks and waste streams into valuable chemicals, fuels, and functional materials, supporting the transition to a circular and bio-based economy.

Dr. Cheng Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermochemical, biochemical, and hybrid conversion processes
  • noncatalytic, catalytic, and biocatalytic valorization pathways
  • platform chemicals and bio-based polymers from biomass
  • biofuels production (biodiesel, bioethanol, biogas, etc.)
  • upcycling of agricultural, industrial, and municipal waste
  • process optimization and scale-up
  • novel materials derived from renewable or waste sources

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 8158 KB  
Article
High-Value Utilization of Amaranth Residue and Waste LDPE by Co-Pyrolysis
by Julia Karaeva, Svetlana Timofeeva, Svetlana Islamova, Marina Slobozhaninova, Ekaterina Oleynikova and Olga Sidorkina
Molecules 2025, 30(17), 3471; https://doi.org/10.3390/molecules30173471 - 23 Aug 2025
Viewed by 543
Abstract
Amaranth is important for the agro-industrial complex. However, when extracting flour and oil from seeds, a lot of waste remains. Waste recycling by co-pyrolysis aims at obtaining new products with high added value. This study examined a combination of A. cruentus (AC) residues [...] Read more.
Amaranth is important for the agro-industrial complex. However, when extracting flour and oil from seeds, a lot of waste remains. Waste recycling by co-pyrolysis aims at obtaining new products with high added value. This study examined a combination of A. cruentus (AC) residues and low-density polyethylene (LDPE) waste. The addition of polymer was aimed at obtaining hydrocarbon-rich pyrolysis liquid and biochar. Pyrolysis was performed on an experimental setup, along with thermogravimetry–Fourier infrared spectroscopy–gas chromatography mass spectrometry (TG-FTIR-GC MS), to examine the thermochemical conversion. Experiments were carried out using a thermogravimetric analyzer at heating rates of 5, 10, and 20 °C/min. The average activation energy values for the pyrolysis of the AC/LDPE blend by the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) techniques were 301.39 kJ/mol and 287.69 kJ/mol, respectively. A visual examination of the correlations of the kinetic parameters of AC/LDPE was carried out using the Kriging method. The pyrolysis liquid from AC contains 38.14% hydrocarbons, with the main part being aliphatic hydrocarbons. During the pyrolysis of the AC/LDPE mixture, hydrocarbons were found in the resinous and waxy organic fractions of the pyrolysis liquid. The composition and properties of AC and AC/LDPE biochar are similar, and they can both be applied to agriculture. Full article
Show Figures

Figure 1

Review

Jump to: Research

41 pages, 2216 KB  
Review
Perspectives on the Catalytic Processes for the Deep Valorization of Carbohydrates into Fuels and Chemicals
by Aigul T. Zamanbekova, Alima K. Zharmagambetova, Assemgul S. Auyezkhanova, Eldar T. Talgatov, Aigul I. Jumekeyeva, Sandugash N. Akhmetova and Alima M. Kenzheyeva
Molecules 2025, 30(17), 3498; https://doi.org/10.3390/molecules30173498 - 26 Aug 2025
Viewed by 597
Abstract
The global depletion of fossil resources, combined with accelerating climate change and environmental concerns, is driving intensive research into alternative, sustainable sources of energy and raw materials. Particular attention is being paid to lignocellulosic biomass as the most abundant and renewable organic resource. [...] Read more.
The global depletion of fossil resources, combined with accelerating climate change and environmental concerns, is driving intensive research into alternative, sustainable sources of energy and raw materials. Particular attention is being paid to lignocellulosic biomass as the most abundant and renewable organic resource. The catalytic conversion of biomass-derived carbohydrates into high-value-added products (fuels and chemicals) aligns with the principles of sustainable development and offers a viable alternative to petroleum-based feedstocks. This review provides a product-oriented perspective on the deep valorization of carbohydrates, focusing on catalytic strategies that enable the production of renewable fuels and chemicals. It highlights two key stages in the valorization of lignocellulosic biomass: (1) the acid-catalyzed conversion of carbohydrates into platform molecules (furfural, 5-hydroxymethylfurfural, and levulinic acid); and (2) the selective hydrogenation and hydrogenolysis of these intermediates to obtain target end products. These target products fall into two major categories: (i) biofuels and fuel additives; and (ii) green chemicals, such as solvents, pharmaceuticals, agrochemicals, cosmetics, and intermediates for the synthesis of biobased polymeric materials, including polyesters, resins, and polyurethanes. Particular emphasis is placed on recent advances in the development of heterogeneous catalysts. Solid acid catalysts used in the synthesis of platform molecules are discussed, along with ruthenium-based catalysts employed in the subsequent hydrogenation and hydrogenolysis steps. Recent efforts toward integrating both catalytic stages into a single one-pot processes using bifunctional metal–acid catalysts and dual catalytic systems based on ruthenium are also reviewed, as they represent a promising route to simplify biomass valorization schemes and improve product selectivity toward fuels and chemicals. Full article
Show Figures

Figure 1

Back to TopTop