Due to scheduled maintenance work on our database systems, there may be short service disruptions on this website between 10:00 and 11:00 CEST on June 14th.
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,831)

Search Parameters:
Keywords = flow principle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2291 KiB  
Article
Experimental Results in a Variable-Pitch Wells Rotor
by Fabio Licheri, Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu and Mario Carta
Int. J. Turbomach. Propuls. Power 2025, 10(2), 10; https://doi.org/10.3390/ijtpp10020010 - 11 Jun 2025
Abstract
Systems based on the oscillating water column (OWC) principle are often equipped with Wells turbines as power take-offs (PTOs) to convert sea-wave energy. The self-rectifying nature of the Wells turbine represents a strength for such applications, while its limited operating range, due to [...] Read more.
Systems based on the oscillating water column (OWC) principle are often equipped with Wells turbines as power take-offs (PTOs) to convert sea-wave energy. The self-rectifying nature of the Wells turbine represents a strength for such applications, while its limited operating range, due to stall, is one of the most relevant limitations. A possible improvement lies in varying the blade stagger angle during operation as this can delay stall by reducing the incidence angle. Although the performance of variable-pitch Wells turbines has been studied in the past, their local aerodynamic performance has never been investigated before. This study addresses this important task by experimentally reconstructing the flow field along the blade height of a Wells turbine prototype, coupled to an OWC simulator, for three values of the stagger angle. The aerodynamic behavior of the Wells rotor is characterized at its inlet and outlet, showing how the interaction between adjacent blades changes due to the stagger angle. The rotor performance is evaluated and compared, providing useful information that is of general validity for similar rows of symmetric blade profiles when pitched at different stagger angles. Full article
Show Figures

Figure 1

20 pages, 6267 KiB  
Article
Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe
by Yiguang Yang, Lianyong Zhang, Chenlong Wang, Lijun Chen, Hao Xu and Shihao Song
Sensors 2025, 25(12), 3657; https://doi.org/10.3390/s25123657 - 11 Jun 2025
Viewed by 47
Abstract
Pulverized coal mass concentration in the primary air pipe is one of the essential parameters for promoting furnace combustion efficiency. However, attaining accurate, real-time, and online detection for pulverized coal mass concentration remains challenging due to factors such as large pipe diameter and [...] Read more.
Pulverized coal mass concentration in the primary air pipe is one of the essential parameters for promoting furnace combustion efficiency. However, attaining accurate, real-time, and online detection for pulverized coal mass concentration remains challenging due to factors such as large pipe diameter and high flow rate. This study introduces a quasi-open microwave resonant cavity sensor. The principle and model were analyzed using the perturbation method, and the design and optimization were conducted with the simulation. A prototype and its test system were constructed, and the test results demonstrated good agreement between the simulations and experiments. The simulation revealed that the resonant frequency decreased monotonically from 861 to 644 MHz as mass concentration increased within 20%~80%, resulting in a change of about 3.62 MHz/1% under static mixture. The resonant frequency showed a drop from 21 MHz to 9 MHz with an increase in mass concentration under pulverized coal flow. Prediction models were developed and validated, showing the absolute values of the relative errors to be within 4% under operational scenarios. Additionally, the impact of the sensor on pulverized coal flow was evaluated, and it was found that the sensor structure had minimal impact on the flow in terms of velocity and the distribution of continuous flow. Finally, the long-term stability was assessed by examining the wear of the antennas and barriers. With inner barriers experiencing up to 2/3d wear, the resonant frequency drift ratio remained below 1.5%, corresponding to a mass concentration deviation of less than 3.2%. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 9089 KiB  
Article
Hydrological Effects of the Planned Power Project and Protection of the Natura 2000 Areas: A Case Study of the Adamów Power Plant
by Tomasz Kałuża, Ireneusz Laks, Jolanta Kanclerz, Ewelina Janicka-Kubiak, Mateusz Hämmerling and Stanisław Zaborowski
Energies 2025, 18(12), 3079; https://doi.org/10.3390/en18123079 - 11 Jun 2025
Viewed by 53
Abstract
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role [...] Read more.
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role in protecting bird habitats and biodiversity, and any changes in water management can affect their condition. This paper presents a detailed hydrological analysis of the Warta River and Jeziorsko Reservoir for 2018–2022, with a focus on low-flow periods. The Peak Over Threshold (POT) method and Q70% threshold were used to identify the frequency, length, and seasonality of low-flow periods in three water gauge profiles: Uniejów, Koło, and Sławsk. The longest recorded low-flow episode lasted 167 days. The permissible water intake for the investment (up to 0.8 m3∙s–1) is in accordance with the applicable permits and is used mainly for cooling purposes. Calculations indicate that under maximum intake conditions, the water level reduction in the Jeziorsko Reservoir would be between 1.7 and 2.0 mm∙day–1, depending on the current level of filling. Such changes do not disrupt the natural functions of the reservoir under typical conditions, although during prolonged droughts, they can pose a threat to protected areas. An analysis of the impact of periodic water overflow into the Kiełbaska Duża River indicates its negligible effect on water levels in the reservoir and flows in the Warta River. The results underscore the need for the integrated management of water and power resources, considering the increasing variability in hydrological conditions. Ensuring a balance between industrial needs and environmental protection is key to minimizing the potential impact of investments and implementing sustainable development principles. Full article
Show Figures

Figure 1

15 pages, 3484 KiB  
Article
Construction of a Mathematical Model of the Irregular Plantar and Complex Morphology of Mallard Foot and the Bionic Design of a High-Traction Wheel Grouser
by Jinrui Hu, Dianlei Han, Changwei Li, Hairui Liu, Lizhi Ren and Hao Pang
Biomimetics 2025, 10(6), 390; https://doi.org/10.3390/biomimetics10060390 - 11 Jun 2025
Viewed by 59
Abstract
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes [...] Read more.
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes and webbing on the anti-subsidence function during its locomotion on wet and soft substrates and to apply this to the bionic design of high-traction wheel grousers. A handheld three-dimensional laser scanner was used to scan the main locomotion postures of a mallard foot during ground contact, and the Geomagic Studio software was utilized to repair the scanned model. As a result, the main three-dimensional geometric models of a mallard foot during the process of touching the ground were obtained. The plantar morphology of a mallard foot was divided into three typical parts: the plantar irregular edge curve, the lateral webbing surface, and the medial webbing surface. The main morphological feature curves/surfaces were extracted through computer-aided design software for the fitting and construction of a mathematical model to obtain the fitting equations of the three typical parts, and the mathematical model construction of the plantar irregular morphology of the mallard foot was completed. In order to verify the sand-fixing and flow-limiting characteristics of this morphological feature, based on the discrete element method (DEM), the numerical simulation of the interaction between the plantar surface of the mallard foot and sand particles was carried out. The simulation results show that during the process of the mallard foot penetration into the loose medium, the lateral and medial webbing surfaces cause the particles under the foot to mainly move downward, effectively preventing the particles from spreading around and significantly enhancing the solidification effect of the particles under the sole. Based on the principle and technology of engineering bionics, the plantar morphology and movement attitude characteristics of the mallard were extracted, and the characteristics of concave middle and edge bulge were applied to the wheel grouser design of paddy field wheels. Two types of bionic wheel grousers with different curved surfaces were designed and compared with the traditional wheel grousers of the paddy field wheel. Through pressure-bearing simulation and experiments, the resistance of different wheel grousers during the process of penetrating into sand particles was compared, and the macro–micro behaviors of particle disturbance during the pressure-bearing process were analyzed. The results show that a bionic wheel grouser with unique curved surfaces can well encapsulate sand particles at the bottom of the wheel grouser, and it also has a greater penetration resistance, which plays a crucial role in improving the traction performance of the paddy field wheel and reducing the disturbance to the surrounding sand particles. This paper realizes the transformation from the biological model to the mathematical model of the plantar morphology of the mallard foot and applies it to the bionic design of the wheel grousers of the paddy field wheels, providing a new solution for improving the traction performance of mobile mechanisms on soft ground. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

9 pages, 769 KiB  
Proceeding Paper
Developing a Virtual Laboratory Framework Based on the Lean Approach in Engineering Education: A Response to Industry 4.0 Skills
by Khadija Talbi, Zineb Ait Haddouchane, Soumia Bakkali and Souad Ajana
Eng. Proc. 2025, 97(1), 13; https://doi.org/10.3390/engproc2025097013 - 6 Jun 2025
Viewed by 44
Abstract
The rapid advancement of digital technologies, referred to as Industry 4.0, has profoundly transformed the manufacturing landscape, necessitating a reevaluation of engineering education. Future engineers must possess diverse skills and competencies to effectively navigate this new era of intelligent, interconnected, and data-driven production [...] Read more.
The rapid advancement of digital technologies, referred to as Industry 4.0, has profoundly transformed the manufacturing landscape, necessitating a reevaluation of engineering education. Future engineers must possess diverse skills and competencies to effectively navigate this new era of intelligent, interconnected, and data-driven production systems. In response to this challenge, this research paper introduces a framework for a virtual laboratory in mechanical and industrial engineering that creates a laboratory in virtual reality (VR) by integrating Lean Manufacturing principles to optimize flow shop processes, thereby preparing engineering students for the demands of Industry 4.0. This approach prepares students to navigate the challenges of modern manufacturing, bridging the gap between theoretical knowledge and its practical application. This paper will discuss the concept of the virtual laboratory for mechanical and industrial engineering education in the Moroccan context based on lean principles. Full article
Show Figures

Figure 1

13 pages, 2360 KiB  
Article
New Bayesian Estimation Method Based on Symmetric Projection Space and Particle Flow Velocity
by Juan Tan, Zijun Wu and Lijuan Chen
Symmetry 2025, 17(6), 899; https://doi.org/10.3390/sym17060899 - 6 Jun 2025
Viewed by 192
Abstract
Aiming at the state estimation problem of nonlinear systems (NLSs), the traditional typical nonlinear filtering methods (e.g., Particle Filter, PF) have large errors in system state, resulting in low accuracy and high computational speed. To perfect the imperfections, a new Bayesian estimation method [...] Read more.
Aiming at the state estimation problem of nonlinear systems (NLSs), the traditional typical nonlinear filtering methods (e.g., Particle Filter, PF) have large errors in system state, resulting in low accuracy and high computational speed. To perfect the imperfections, a new Bayesian estimation method based on particle flow velocity (PFV-BEM) is proposed in this paper. Firstly, a symmetrical projection space based on the state information is selected, the basis function is determined by a set of Fourier series with symmetric properties, the state update is carried out according to the projection principle to calculate the prior information of the state, and select its particle points. Secondly, the particle flow velocity is defined, which describes the evolution process of random samples from the prior distribution to the posterior distribution. The posterior information of the state is calculated by solving the parameters related to the particle flow velocity. Finally, the estimated mean and standard deviation of the state are solved. Simulation experiments are carried out based on two instances of one-dimensional general nonlinear examples and multi-target motion tracking, The newly proposed algorithm is compared with the Particle Filter (PF), and the simulation results clearly indicate the feasibility of this novel Bayesian estimation algorithm. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 4124 KiB  
Review
Thermal-Hydrologic-Mechanical Processes and Effects on Heat Transfer in Enhanced/Engineered Geothermal Systems
by Yu-Shu Wu and Philip H. Winterfeld
Energies 2025, 18(12), 3017; https://doi.org/10.3390/en18123017 - 6 Jun 2025
Viewed by 268
Abstract
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the [...] Read more.
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the world. In comparison, hydrothermal reservoir resources, the ‘low-hanging fruit’ of geothermal energy, are very limited in amount or availability, while EGSs are extensive and have great potential to supply the entire world with the needed energy almost permanently. The EGS, in essence, is an engineered subsurface heat mining concept, where water or another suitable heat exchange fluid is injected into hot formations to extract heat from the hot dry rock (HDR). Specifically, the EGS relies on the principle that injected water, or another working fluid, penetrates deep into reservoirs through fractures or high-permeability channels to absorb large quantities of thermal energy by contact with the host hot rock. Finally, the heated fluid is produced through production wells for electricity generation or other usages. Heat mining from fractured EGS reservoirs is subject to complex interactions within the reservoir rock, involving high-temperature heat exchange, multi-phase flow, rock deformation, and chemical reactions under thermal-hydrological-mechanical (THM) processes or thermal-hydrological-mechanical-chemical (THMC) interactions. In this paper, we will present a THM model and reservoir simulator and its application for simulation of hydrothermal geothermal systems and EGS reservoirs as well as a methodology of coupling thermal, hydrological, and mechanical processes. A numerical approach, based on discretizing the thermo-poro-elastic Navier equation using an integral finite difference method, is discussed. This method provides a rigorous, accurate, and efficient fully coupled methodology for the three (THM) strongly interacted processes. Several programs based on this methodology are demonstrated in the simulation cases of geothermal reservoirs, including fracture aperture enhancement, thermal stress impact, and tracer transport in a field-scale reservoir. Results are displayed to show geomechanics’ impact on fluid and heat flow in geothermal reservoirs. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

17 pages, 1851 KiB  
Article
Fire Characteristics and Water Mist Cooling Measures in the Coal Transportation Process of a Heavy-Haul Railway Tunnel in Shanxi Province
by Wenjin He, Maohai Fu, Lv Xiong and Shiqi Zheng
Processes 2025, 13(6), 1789; https://doi.org/10.3390/pr13061789 - 5 Jun 2025
Viewed by 249
Abstract
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The [...] Read more.
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The research employs theoretical derivations and numerical simulations to achieve its objectives. It was discovered that, during a fire in a heavy-haul railway tunnel, the temperature inside the tunnel can exceed 500 °C. Furthermore, depending on the nature of the goods transported by the train and under specific wind speed conditions, the fire source has the potential to spread to other carriages, resulting in a multi-source fire. Using the numerical simulation software Pyrosim 2022, various wind speed conditions were simulated. The results revealed that at lower wind speeds, the smoke demonstrates a reverse flow phenomenon. Concurrently, when the adjacent carriage on the leeward side of the fire is ignited, the high-temperature reverse flow smoke, along with the thermal radiation from the flames, ignites combustible materials in the adjacent carriage on the windward side of the burning carriage. Through theoretical derivation and numerical simulation, the critical wind speed for the working conditions was determined to be 2.14 m/s. It was found that while a higher wind speed can lead to a decrease in temperature, it also increases the flame deflection angle. When the wind speed exceeds 2.4 m/s, although the temperature significantly drops in a short period, the proximity of combustible materials on the leeward side of the carriage becomes a concern. At this wind speed, the flame deflection angle causes heat radiation on the leeward side, specifically between 0.5 m and 3 m, to ignite the combustible materials on the carriage surface, resulting in fire spread and multiple fire incidents. The relationship between wind speed and the angle of deflection from the fire source was determined using relevant physics principles. Additionally, the relationship between wind speed and the trajectory of water mist spraying was established. It was proposed to optimize the position of the water mist based on its deviation, and the results indicated that under critical wind speed conditions, when the water mist spraying is offset approximately 5 m towards the upwind side of the fire source, it can act more directly on the surface of the fire source. Numerical simulation results show a significant reduction in the maximum temperature and effective control of fire spread. Under critical wind speed conditions, the localized average temperature of the fire decreased by approximately 140 °C when spraying was applied, compared to the conditions without spraying, and the peak temperature decreased by about 190 °C. This modification scheme can effectively suppress the threat of fire to personnel evacuation under simulated working conditions, reflecting effective control over fires. Additionally, it provides theoretical support for the study of fire patterns in tunnels and emergency response measures. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

32 pages, 2378 KiB  
Review
Pyrolysis Process, Reactors, Products, and Applications: A Review
by Prakhar Talwar, Mariana Alzate Agudelo and Sonil Nanda
Energies 2025, 18(11), 2979; https://doi.org/10.3390/en18112979 - 5 Jun 2025
Viewed by 353
Abstract
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse [...] Read more.
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse biomass feedstocks, including agricultural biomass, forestry waste, and other carbonaceous wastes, into valuable biofuels such as bio-oil, biochar, and producer gas. The article reviews the benefits of pyrolysis as an effective and scalable technique for biofuel production from waste biomass. The review describes the different types of pyrolysis processes, such as slow, intermediate, fast, and catalytic, focusing on the effects of process parameters like temperature, heating rate, and residence time on biofuel yields and properties. The review also highlights the configurations and operating principles of different reactors used for pyrolysis, such as fixed bed, fluidized bed, entrained flow, plasma system, and microwaves. The review examines the factors affecting reactor performance, including energy consumption and feedstock attributes while highlighting the necessity of optimizing these systems to improve sustainability and economic feasibility in pyrolysis processes. The diverse value-added applications of biochar, bio-oil, and producer gas obtained from biomass pyrolysis are also discussed. Full article
(This article belongs to the Collection Bio-Energy Reviews)
Show Figures

Figure 1

33 pages, 1737 KiB  
Article
Interactive Map of Stakeholders’ Journey in Construction: Focus on Waste Management and Circular Economy
by Maurício de Oliveira Gondak, Guilherme Francisco do Prado, Cleiton Hluszko, Jovani Taveira de Souza and Antonio Carlos de Francisco
Sustainability 2025, 17(11), 5195; https://doi.org/10.3390/su17115195 - 5 Jun 2025
Viewed by 361
Abstract
The transition toward sustainability in the construction industry requires integrated tools that align with circular economy principles. This study introduces the Interactive Stakeholder Journey Map in Construction (ISJMC), an innovative visual and systemic tool that supports waste management and circularity throughout the life [...] Read more.
The transition toward sustainability in the construction industry requires integrated tools that align with circular economy principles. This study introduces the Interactive Stakeholder Journey Map in Construction (ISJMC), an innovative visual and systemic tool that supports waste management and circularity throughout the life cycle of construction assets. Although the sector is economically significant, it remains one of the main contributors to environmental degradation due to high resource consumption and low waste recovery rates. Developed according to EN 15643-3:2012, a European standard that provides a framework for assessing the social sustainability of construction works, focusing on aspects such as accessibility, health, and comfort and grounded in the Design Thinking methodology, ISJMC enables mapping stakeholder interactions, touchpoints, and responsibilities across all life cycle stages, including initiative, design, procurement, construction, use, and end of life. A systematic literature review and collaborative workshops guided the tool’s development and validation. The application in a real case involving a medium-sized Brazilian construction company helped identify significant pain points and opportunities for implementing circular practices. The results demonstrate that ISJMC (i) facilitates a systemic and visual understanding of material and information flows, (ii) promotes transparent mapping of resource value to support better decision-making, and (iii) encourages the identification of circularity opportunities while fostering collaboration among stakeholders. The tool revealed critical challenges related to waste generation and management. It supported co-creating sustainable strategies, including improved material selection, lean construction practices, and stronger supplier engagement. By translating complex standards into accessible visual formats, ISJMC contributes to the academic field, supports practical applications, and offers a foundation for expanding circular approaches in construction projects. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

49 pages, 5500 KiB  
Review
Heat Transfer Enhancement in Heat Exchangers by Longitudinal Vortex Generators: A Review of Numerical and Experimental Approaches
by Yidie Luo, Gongli Li, Nick S. Bennett, Zhen Luo, Adnan Munir and Mohammad S. Islam
Energies 2025, 18(11), 2896; https://doi.org/10.3390/en18112896 - 31 May 2025
Viewed by 512
Abstract
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal [...] Read more.
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal performance enhancement of HE through LVGs is missing in the literature. Therefore, this study aims to provide a critical review of both numerical simulations and experimental studies focusing on the enhancement of heat transfer through LVGs to further enhance the knowledge of the field. It begins with elucidating the fundamental principles behind LVGs and delineating their role in manipulating flow patterns to augment heat transfer. This is followed by an exploration of the various numerical methods employed in the field, including computational fluid dynamics techniques such as Reynolds-Averaged Navier–Stokes (RANS) models, Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). Various experimental methods are then summarised, including differential pressure measuring instruments, temperature measurements, velocity measurements, heat transfer coefficient measurements, and flow visualisation techniques. The effectiveness of these methods in capturing the complex fluid dynamics and thermal characteristics induced by LVGs is critically assessed. The review covers a wide range of LVG configurations, including their geometry, placements, and orientations, and their effects on the thermal performance of heat exchangers. Different from previous reviews that mainly focus on classical configurations and historical studies, this review also emphasizes recent developments in computational fluid dynamics and progress in interdisciplinary fields such as innovative materials, additive manufacturing, surface finishing, and machine learning. By bridging the gap between fluid dynamics, thermal enhancement, and emerging manufacturing technologies, this paper provides a forward-looking, comprehensive analysis that is valuable for both academic and industrial innovations. Full article
Show Figures

Figure 1

25 pages, 3540 KiB  
Article
A Low-Carbon Economic Scheduling Strategy for Multi-Microgrids with Communication Mechanism-Enabled Multi-Agent Deep Reinforcement Learning
by Lei Nie, Bo Long, Meiying Yu, Dawei Zhang, Xiaolei Yang and Shi Jing
Electronics 2025, 14(11), 2251; https://doi.org/10.3390/electronics14112251 - 31 May 2025
Viewed by 232
Abstract
To facilitate power system decarbonization, optimizing clean energy integration has emerged as a critical pathway for establishing sustainable power infrastructure. This study addresses the multi-timescale operational challenges inherent in power networks with high renewable penetration, proposing a novel stochastic dynamic programming framework that [...] Read more.
To facilitate power system decarbonization, optimizing clean energy integration has emerged as a critical pathway for establishing sustainable power infrastructure. This study addresses the multi-timescale operational challenges inherent in power networks with high renewable penetration, proposing a novel stochastic dynamic programming framework that synergizes intraday microgrid dispatch with a multi-phase carbon cost calculation mechanism. A probabilistic carbon flux quantification model is developed, incorporating source–load carbon flow tracing and nonconvex carbon pricing dynamics to enhance environmental–economic co-optimization constraints. The spatiotemporally coupled multi-microgrid (MMG) coordination paradigm is reformulated as a continuous state-action Markov game process governed by stochastic differential Stackelberg game principles. A communication mechanism-enabled multi-agent twin-delayed deep deterministic policy gradient (CMMA-TD3) algorithm is implemented to achieve Pareto-optimal solutions through cyber–physical collaboration. Results of the measurements in the MMG containing three microgrids show that the proposed approach reduces operation costs by 61.59% and carbon emissions by 27.95% compared to the least effective benchmark solution. Full article
Show Figures

Figure 1

16 pages, 4266 KiB  
Article
Leak Identification and Positioning Strategies for Downhole Tubing in Gas Wells
by Yun-Peng Yang, Guo-Hua Luan, Lian-Fang Zhang, Ming-Yong Niu, Guang-Gui Zou, Xu-Liang Zhang, Jin-You Wang, Jing-Feng Yang and Mo-Song Li
Processes 2025, 13(6), 1708; https://doi.org/10.3390/pr13061708 - 29 May 2025
Viewed by 381
Abstract
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing [...] Read more.
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing annulus. This allows non-invasive wellhead detection, avoiding costly tubing retrieval or production shutdowns. However, field data show that multiphase flow noise, overlapping reflected waves, and coupled multi-leakage points in the wellbore frequently introduce multi-peak interference in acoustic autocorrelation curves. Such interference severely compromises the accuracy of time parameter extraction. To resolve this issue, our study experimentally analyzes how leakage pressure differential, aperture size, depth, and multiplicity affect the autocorrelation coefficients of acoustic signals generated by leaks. It compares the effects of different noise reduction parameters on leakage localization accuracy and proposes a characteristic time selection principle for autocorrelation curves, providing a new solution for precise leakage localization under complex downhole conditions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 2008 KiB  
Article
Graph-Theoretic Detection of Anomalies in Supply Chains: A PoR-Based Approach Using Laplacian Flow and Sheaf Theory
by Hsiao-Chun Han and Der-Chen Huang
Mathematics 2025, 13(11), 1795; https://doi.org/10.3390/math13111795 - 28 May 2025
Viewed by 263
Abstract
Based on Graph Balancing Theory, this study proposes an anomaly detection algorithm, the Supply Chain Proof of Relation (PoR), applied to enterprise procurement networks formalized as weighted directed graphs. A mathematical framework is constructed by integrating Laplacian flow conservation and the Sheaf topological [...] Read more.
Based on Graph Balancing Theory, this study proposes an anomaly detection algorithm, the Supply Chain Proof of Relation (PoR), applied to enterprise procurement networks formalized as weighted directed graphs. A mathematical framework is constructed by integrating Laplacian flow conservation and the Sheaf topological coherence principle to identify anomalous nodes whose local characteristics deviate significantly from the global features of the supply network. PoR was empirically implemented on a dataset comprising 856 Taiwanese enterprises, successfully detecting 56 entities exhibiting abnormal behavior. Anomaly intensity was visualized through trend plots, revealing nodes with rapidly increasing deviations. To validate the effectiveness of this detection, the study further analyzed the correlation between internal and external performance metrics. The results demonstrate that anomalous nodes exhibit near-zero correlations, in contrast to the significant correlations observed in normal nodes—indicating a disruption of information consistency. This research establishes a graph-theoretic framework for anomaly detection, presents a mathematical model independent of training data, and highlights the linkage between structural deviations and informational distortions. By incorporating Sheaf Theory, the study enhances the analytical depth of topological consistency. Moreover, this work demonstrates the observability of flow conservation violations within a highly complex, non-physical system such as the supply chain. It completes a logical integration of Sheaf Coherence, Graph Balancing, and High-Dimensional Anomaly Projection, and achieves a cross-mapping between Graph Structural Deviations and Statistical Inconsistencies in weighted directed graphs. This contribution advances the field of graph topology-based statistical anomaly detection, opening new avenues for the methodological integration between physical systems and economic networks. Full article
(This article belongs to the Special Issue Graph Theory: Advanced Algorithms and Applications, 2nd Edition)
Show Figures

Figure 1

26 pages, 1879 KiB  
Review
Enhanced Micromixing Using Surface Acoustic Wave Devices: Fundamentals, Designs, and Applications
by Jin-Chen Hsu
Micromachines 2025, 16(6), 619; https://doi.org/10.3390/mi16060619 - 25 May 2025
Viewed by 368
Abstract
Microfluidics-based mixing methods have attracted increasing attention due to their great potential in bio-related and material science fields. The combination of acoustics and microfluidics, called acoustofluidics, has been shown to be a promising tool for precise manipulation of microfluids and micro-objects. In general, [...] Read more.
Microfluidics-based mixing methods have attracted increasing attention due to their great potential in bio-related and material science fields. The combination of acoustics and microfluidics, called acoustofluidics, has been shown to be a promising tool for precise manipulation of microfluids and micro-objects. In general, achieving robust mixing performance in an efficient and simple manner is crucial for microfluidics-based on-chip devices. When surface acoustic waves (SAWs) are introduced into microfluidic devices, the acoustic field can drive highly controllable acoustic streaming flows through acoustofluidic interactions with micro-solid structures, which have the advantages of label-free operation, flexible control, contactless force, fast-response kinetics, and good biocompatibility. Therefore, the design and application of various SAW micromixers have been demonstrated. Herein, we present a comprehensive overview of the latest research and development of SAW-based micromixers. Specifically, we discuss the design principles and underlying physics of SAW-based acoustic micromixing, summarize the distinct types of existing SAW micromixers, and highlight established applications of SAW micromixing technology in chemical synthesis, nanoparticle fabrication, cell culture, biochemical analysis, and cell lysis. Finally, we present current challenges and some perspectives to motivate further research in this area. The purpose of this work is to provide an in-depth understanding of SAW micromixers and inspire readers who are interested in making some innovations in this research field. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Graphical abstract

Back to TopTop