Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (830)

Search Parameters:
Keywords = fluence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2075 KB  
Article
Determination of Tritium Transfer Parameters in Lithium Ceramics Li2TiO3 During Reactor Irradiation Based on a Complex Model
by Timur Zholdybayev, Timur Kulsartov, Zhanna Zaurbekova, Yevgen Chikhray, Asset Shaimerdenov, Magzhan Aitkulov, Saulet Askerbekov, Inesh Kenzhina, Assyl Akhanov and Alexandr Yelishenkov
Materials 2025, 18(17), 4117; https://doi.org/10.3390/ma18174117 - 2 Sep 2025
Abstract
This paper presents the results of determining the parameters of tritium transfer processes in lithium ceramics Li2TiO3 under reactor irradiation conditions. Analysis of sections with a short-term decrease in reactor power allowed numerical determination of the Arrhenius parameters of tritium [...] Read more.
This paper presents the results of determining the parameters of tritium transfer processes in lithium ceramics Li2TiO3 under reactor irradiation conditions. Analysis of sections with a short-term decrease in reactor power allowed numerical determination of the Arrhenius parameters of tritium diffusion (pre-exponential factor and activation energy) based on comparison with in situ experimental data. The obtained values of activation energy (70.2–74.7 kJ/mol) and pre-exponential factor (0.9–2.1 × 10−8m2/s) demonstrate growth with increasing fluence, which is explained by the accumulation of radiation defects in ceramics. A linear dependence was established between D0 and Ea, corresponding to the Mayer–Noldel rule. Unlike previously conducted studies based on a phenomenological approach to assessing only the activation energy of diffusion, in this study, a complex model that takes into account temperature gradients, tritium generation, its diffusion, and release from the surface was used. The applicability of such an integrated approach to the analysis of in situ reactor experiments with lithium ceramics was confirmed, and allowed us to estimate changes in the tritium transfer parameters in lithium ceramics Li2TiO3 depending on the irradiation time. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

13 pages, 3314 KB  
Article
Numerical Simulation of Temperature Distribution in CCD Detector Irradiated by Nanosecond Pulsed Laser
by Hao Chang, Weijing Zhou, Zhilong Jian, Yingjie Ma, Xiaoyuan Quan and Zikang Wang
Aerospace 2025, 12(9), 791; https://doi.org/10.3390/aerospace12090791 - 1 Sep 2025
Abstract
A finite element simulation was conducted to analyze the thermal damage caused by a 532nm nanosecond pulsed laser on a CCD detector. A three-dimensional model was developed to study the temperature field variations within the detector. The simulation was centered on the laser-induced [...] Read more.
A finite element simulation was conducted to analyze the thermal damage caused by a 532nm nanosecond pulsed laser on a CCD detector. A three-dimensional model was developed to study the temperature field variations within the detector. The simulation was centered on the laser-induced temporal progression of thermal damage in the CCD. Results showed that higher laser fluence led to increased heat accumulation, resulting in the expansion of the thermal damage area. Different thermal damage patterns were observed in the light sensor region and the light-shielded region. In the light sensor region, the melting of the silicon substrate expanded more in the transverse direction compared to the longitudinal direction with increasing laser fluence, while damage in the light-shielded region extended from the edges towards the center as laser fluence increased. These distinct damage patterns were attributed to different energy deposition patterns and structural differences between the light sensor region and the light-shielded region. Full article
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Q-Switched Nd:YAG Laser Treatment of Nocardia sp. Black Biofilm: Complete Biodeterioration Reversal in Limestone Heritage Conservation
by Shimaa Ibrahim, Rageh K. Hussein, Hesham Abdulla, Ghada Omar, Sharif Abu Alrub, Paola Grenni and Dina M. Atwa
Int. J. Mol. Sci. 2025, 26(16), 8064; https://doi.org/10.3390/ijms26168064 - 20 Aug 2025
Viewed by 844
Abstract
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from [...] Read more.
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from deteriorated limestone from the Bastet tomb in Tell Basta, Zagazig City, Egypt, using a Q-switched 1064 nm Nd:YAG laser. Experimental limestone specimens were systematically inoculated with Nocardia sp. under controlled laboratory conditions to simulate biodeterioration processes. Comprehensive testing revealed that a laser fluence of 0.03 J/cm2 with a 5 ns pulse duration, applied under wet conditions with 500 pulses, achieved the complete elimination of the biological black film without damaging the underlying stone substrate. The cleaning efficacy was evaluated through an integrated analytical framework combining stereomicroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and laser-induced plasma spectroscopy (LIPS). These analyses demonstrated a remarkable transformation from a compromised mineralogical composition dominated by gypsum (62%) and anhydrite (13%) to a restored state of 98% calcite, confirming the laser treatment’s effectiveness in reversing biodeterioration processes. SEM micrographs revealed the complete elimination of mycelial networks that had penetrated to depths between 984 μm and 1.66 mm, while LIPS analysis confirmed the restoration of elemental signatures to near-control levels. The successful application of LIPS for real-time monitoring during cleaning provides a valuable tool for preventing overcleaning, addressing a significant concern in laser conservation interventions. This research establishes evidence-based protocols for the non-invasive removal of Nocardia-induced black biofilms from limestone artifacts, offering conservation professionals a precise, effective, and environmentally sustainable alternative to traditional chemical treatments for preserving irreplaceable cultural heritage. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

10 pages, 381 KB  
Communication
Multiwave Locked System Laser Treatment Reduces the Bacterial Load in the Gingival Sulcus of Dogs After Plaque Removal
by Ivana Pallante, Paolo Squarzoni, Elisa Mazzotta, Nicola Pozzato and Monica Monici
Vet. Sci. 2025, 12(8), 767; https://doi.org/10.3390/vetsci12080767 - 16 Aug 2025
Viewed by 389
Abstract
Periodontal disease is a prevalent condition in companion animals. It is crucial to prevent the plaque and bacteria on tooth surfaces to avoid gingivitis and the more harmful periodontitis. The aim of the present study was to assess the impact of MLS laser [...] Read more.
Periodontal disease is a prevalent condition in companion animals. It is crucial to prevent the plaque and bacteria on tooth surfaces to avoid gingivitis and the more harmful periodontitis. The aim of the present study was to assess the impact of MLS laser treatment on the bacterial load by analyzing the gingival swabs of a total of 16 owned dogs with no history of dental disease that were selected from a cohort of patients admitted for plaque removal and dental hygiene procedures. Following each dental hygiene session, each dog received a single MLS laser therapy treatment (808–905 nm diode laser, frequency 36 Hz, and fluence 0.16 J/cm2). Swabs were collected from the two upper premolars before and after the laser treatment. These were submitted for mesophilic bacteria counts, and microbiological analysis was conducted on 10 positive cultures to evaluate the changes in the oral bacterial microbiota. MLS laser therapy statistically significantly reduced the mesophilic bacteria count by 1 log, with higher pre-laser treatment counts (n = 0.44; 5.77 ± 0.21 95%CI) in comparison to post-laser treatment counts (n = 0.73; 4.80 ± 0.346 95%CI). The MLS laser therapy was found to reduce the bacterial load in 80% of the subjects (p < 0.05). No significant differences pre- and post-laser treatment were observed in the bacteria species isolated from the microbiological cultures. MLS laser therapy appears to be a useful, non-invasive method for reducing the bacterial load in the treatment and prophylaxis of periodontal disease in dogs. Full article
Show Figures

Figure 1

12 pages, 2763 KB  
Article
Damage Characteristics of Silicon Solar Cells Induced by Nanosecond Pulsed Laser
by Hao Chang, Weijing Zhou, Yingjie Ma, Zhilong Jian, Xiaoyuan Quan and Chenyu Xiao
Photonics 2025, 12(8), 804; https://doi.org/10.3390/photonics12080804 - 11 Aug 2025
Viewed by 309
Abstract
The damage characteristics of monocrystalline silicon solar cells irradiated by a nanosecond pulsed laser were investigated in a vacuum environment. An 8 ns pulsed laser was used with a 1064 nm wavelength, a 2.0 J maximum pulse energy, and a millimeter-scale ablation spot [...] Read more.
The damage characteristics of monocrystalline silicon solar cells irradiated by a nanosecond pulsed laser were investigated in a vacuum environment. An 8 ns pulsed laser was used with a 1064 nm wavelength, a 2.0 J maximum pulse energy, and a millimeter-scale ablation spot diameter. The cells were irradiated by a laser with varying fluences, irradiation positions, and pulse numbers. The damage mechanism was discussed in combination with the degradation of electrical properties, the morphology of surface damage, and electroluminescence images. A single pulse mainly caused surface heating and deformation, while multi-pulse irradiation led to the formation of melting ablation craters. More severe performance degradation was caused by irradiation at the grid line site due to fracture of the grid line electrodes. Moreover, monocrystalline silicon cells showed excellent damage resistance to fixed-position irradiations at non-gridded line areas. This work reveals, for the first time in vacuum, that grid-line fracture dominates performance degradation—enabling targeted hardening for space solar cells. Full article
Show Figures

Figure 1

15 pages, 4099 KB  
Article
Pulsed Laser Annealing of Deposited Amorphous Carbon Films
by Arianna D. Rivera, Eitan Hershkovitz, Panagiotis Panoutsopoulos, Manny X. de Jesus Lopez, Bradley Simpson, Honggyu Kim, Rajaram Narayanan, Jesse Johnson and Kevin S. Jones
C 2025, 11(3), 60; https://doi.org/10.3390/c11030060 - 8 Aug 2025
Viewed by 479
Abstract
Pulsed laser annealing (PLA) was performed on a 0.3 μm thick hydrogenated amorphous carbon (a-C:H) film deposited on silicon substrate by plasma-enhanced chemical vapor deposition (PECVD). The 532 nm, 32 ns PLA ranged in fluence from 0.2 to 0.94 J cm−2. [...] Read more.
Pulsed laser annealing (PLA) was performed on a 0.3 μm thick hydrogenated amorphous carbon (a-C:H) film deposited on silicon substrate by plasma-enhanced chemical vapor deposition (PECVD). The 532 nm, 32 ns PLA ranged in fluence from 0.2 to 0.94 J cm−2. There were no visible signs of film delamination over the entire fluence range for a single pulse. As the fluence increased, graphitization of the amorphous film bulk was observed. However, at the near surface of the film, there was a concomitant increase in sp3 content. The sp3 bonding observed is the result of the formation of a thin diamond-like layer on the surface of the carbon film. Along with increasing laser fluence, the film swelled by 75% up to 0.6 J cm−2. In addition, carbon fiber formation was observed at 0.6 J cm−2, increasing in size and depth up through 0.94 J cm−2. The origin of this transformation may be associated with a rapid outgassing of hydrogen from the amorphous carbon during the PLA step. Additionally, there was a dramatic increase in the visible light absorption of these thin films with increasing laser fluence, despite the films being less than a micron thick. These results suggest that PLA of a-C:H film is a useful method for modifying the surface structure for optical or electrochemical applications without film ablation. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Figure 1

18 pages, 7281 KB  
Article
Functional Characteristics of Conductive Polymer Composites with Built-In Carbon Nanotubes and Metallic Particles
by Alexandr V. Shchegolkov, Aleksei V. Shchegolkov, Ivan D. Parfimovich, Fadey F. Komarov, Lev S. Novikov and Vladimir N. Chernik
J. Compos. Sci. 2025, 9(8), 429; https://doi.org/10.3390/jcs9080429 - 8 Aug 2025
Viewed by 489
Abstract
A series of studies was conducted on the functional and structural characteristics of polymer composite materials (PCMs) based on silicone polymers modified with multi-walled carbon nanotubes (MWCNTs) and metallic particles (CuAl or Al). The influence of the structural parameters of carbon and metallic [...] Read more.
A series of studies was conducted on the functional and structural characteristics of polymer composite materials (PCMs) based on silicone polymers modified with multi-walled carbon nanotubes (MWCNTs) and metallic particles (CuAl or Al). The influence of the structural parameters of carbon and metallic inclusions in the polymer matrix on the electrophysical and thermophysical properties of the composites was demonstrated. Various conduction mechanisms dominating in the inverse temperature ranges of 50 K–1–13 K–1, 13 K–1–6 K–1, and 6 K–1–2 K–1 were identified. The operational modes of the polymer composites as active materials for thermoregulating coatings were established. The highest temperature of 32.9 °C in operating mode and the shortest warm-up time of 180 s were observed in the composite modified with 4 wt.% CNTs and 10 wt.% bronze particles at a supply voltage of 10 V. The characteristics of the composites under atomic oxygen (AO) exposure with a fluence of 3 × 1021 atoms/cm2 was evaluated, confirming their functionality, particularly for potential space applications. The composites demonstrated nearly complete retention of their functional characteristics. The aim of this study was to develop electrically conductive functional composites based on silicone polymers containing MWCNTs and metallic particles inclusions for creating electric heating elements with tailored functional characteristics. Full article
Show Figures

Figure 1

17 pages, 1801 KB  
Article
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 - 3 Aug 2025
Viewed by 794
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, [...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

23 pages, 5771 KB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 - 1 Aug 2025
Viewed by 473
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 4156 KB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 444
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

15 pages, 5148 KB  
Article
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 - 31 Jul 2025
Viewed by 236
Abstract
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of [...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance. Full article
Show Figures

Figure 1

18 pages, 1917 KB  
Article
Influence of Energetic Xe132 Ion Irradiation on Optical, Luminescent and Structural Properties of Ce-Doped Y3Al5O12 Single Crystals
by Ruslan Assylbayev, Gulnur Tursumbayeva, Guldar Baubekova, Zhakyp T. Karipbayev, Aleksei Krasnikov, Evgeni Shablonin, Gulnara M. Aralbayeva, Yevheniia Smortsova, Abdirash Akilbekov, Anatoli I. Popov and Aleksandr Lushchik
Crystals 2025, 15(8), 683; https://doi.org/10.3390/cryst15080683 - 27 Jul 2025
Viewed by 1137
Abstract
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are [...] Read more.
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are employed to analyze radiation-induced changes. Irradiation leads to the formation of Frenkel (F, F+) and antisite defects and attenuates Ce3+ emission (via enhanced nonradiative processes and Ce3+ → Ce4+ recharging). A redistribution between the fast and slow components of the Ce3+-emission is considered. Excitation spectra show the suppression of exciton-related emission bands, as well as a shift of the excitation onset due to increased lattice disorder. XRD data confirm partial amorphization and a high level of local lattice disordering, both increasing with irradiation fluence. These findings provide insight into radiation-induced processes in YAG:Ce, which are relevant for its application in radiation–hard scintillation detectors. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

37 pages, 5856 KB  
Article
Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models
by Anesu Nyabadza and Dermot Brabazon
Crystals 2025, 15(7), 662; https://doi.org/10.3390/cryst15070662 - 20 Jul 2025
Viewed by 1654
Abstract
Achieving targeted nanoparticle (NP) size and concentration combinations in Pulsed Laser Ablation in Liquid (PLAL) remains a challenge due to the highly nonlinear relationships between laser processing parameters and NP properties. Despite the promise of PLAL as a surfactant-free, scalable synthesis method, its [...] Read more.
Achieving targeted nanoparticle (NP) size and concentration combinations in Pulsed Laser Ablation in Liquid (PLAL) remains a challenge due to the highly nonlinear relationships between laser processing parameters and NP properties. Despite the promise of PLAL as a surfactant-free, scalable synthesis method, its industrial adoption is hindered by empirical trial-and-error approaches and the lack of predictive tools. The current literature offers limited application of machine learning (ML), particularly recommender systems, in PLAL optimization and automation. This study addresses this gap by introducing a ML-based recommender system trained on a 3 × 3 design of experiments with three replicates covering variables, such as fluence (1.83–1.91 J/cm2), ablation time (5–25 min), and laser scan speed (3000–3500 mm/s), in producing magnesium nanoparticles from powders. Multiple ML models were evaluated, including K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Random Forest, and Decision trees. The DT model achieved the best performance for predicting the NP size with a mean percentage error (MPE) of 10%. The XGBoost model was optimal for predicting the NP concentration attaining a competitive MPE of 2%. KNN and Cosine similarity recommender systems were developed based on a database generated by the ML predictions. This intelligent, data-driven framework demonstrates the potential of ML-guided PLAL for scalable, precise NP fabrication in industrial applications. Full article
Show Figures

Graphical abstract

23 pages, 3721 KB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 282
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

16 pages, 10306 KB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 579
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

Back to TopTop