Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = fluid model for plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 545 KB  
Review
Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review
by Laura Jane Coleman, John L. Byrne, Stuart Edwards and Rosemary O’Hara
Biologics 2025, 5(3), 27; https://doi.org/10.3390/biologics5030027 - 4 Sep 2025
Abstract
Osteoarthritis (OA) is a multifactorial chronic musculoskeletal disorder characterised by cartilage degradation, synovial inflammation, and subchondral bone remodelling. Conventional diagnostic modalities, including radiographic imaging and symptom-based assessments, primarily detect disease in its later stages, limiting the potential for timely intervention. Inflammatory biomarkers, particularly [...] Read more.
Osteoarthritis (OA) is a multifactorial chronic musculoskeletal disorder characterised by cartilage degradation, synovial inflammation, and subchondral bone remodelling. Conventional diagnostic modalities, including radiographic imaging and symptom-based assessments, primarily detect disease in its later stages, limiting the potential for timely intervention. Inflammatory biomarkers, particularly Interleukin-6 (IL-6), Tumour Necrosis Factor-alpha (TNF-α), and Myeloperoxidase (MPO), have emerged as biologically relevant indicators of disease activity, with potential applications as companion diagnostics in precision medicine. This review examines the diagnostic and prognostic relevance of IL-6, TNF-α, and MPO in OA, focusing on their mechanistic roles in inflammation and joint degeneration, particularly through the activity of fibroblast-like synoviocytes (FLSs). The influence of sample type (serum, plasma, synovial fluid) and analytical performance, including enzyme-linked immunosorbent assay (ELISA), is discussed in the context of biomarker detectability. Advanced statistical and computational methodologies, including rank-based analysis of covariance (ANCOVA), discriminant function analysis (DFA), and Cox proportional hazards modelling, are explored for their capacity to validate biomarker associations, adjust for demographic variability, and stratify patient risk. Further, the utility of synthetic data generation, hierarchical clustering, and dimensionality reduction techniques (e.g., t-distributed stochastic neighbour embedding) in addressing inter-individual variability and enhancing model generalisability is also examined. Collectively, this synthesis supports the integration of biomarker profiling with advanced analytical modelling to improve early OA detection, enable patient-specific classification, and inform the development of targeted therapeutic strategies. Full article
16 pages, 820 KB  
Article
Exploring the Impact of Self-Excited Alfvén Waves on Transonic Winds: Applications in Galactic Outflows
by Bilal Ramzan, Syed Nasrullah Ali Qazi and Chung-Ming Ko
Universe 2025, 11(9), 290; https://doi.org/10.3390/universe11090290 - 26 Aug 2025
Viewed by 277
Abstract
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of [...] Read more.
The impact of cosmic rays is crucial to understand the energetic plasma outflows coming out from the Galactic centers against the strong gravitational potential well. Cosmic rays can interact with thermal plasma via streaming instabilities and produce hydromagnetic waves/fluctuations. During the propagation of cosmic rays it can effectively diffuse and advect through the thermal plasma which results the excitation of Alfvén waves. We are treating thermal plasma, cosmic rays and self-excited Alfvén waves as fluids and our model is referred as multi-fluid model. We investigate steady-state transonic solutions for four-fluid systems (with forward as well as backward propagating self-excited Alfvén waves) with certain boundary conditions at the base of the potential well. As a reference model, a four-fluid model with cosmic-ray diffusion, wave damping and cooling can be studied together and solution topology can be analyzed with different set of boundary conditions available at the base of the gravitational potential well. We compare cases with enhancing the backward propagating self-excited Alfvén waves pressure and examining the shifting of the transonic point near or far away from the base. In conclusion we argue that the variation of the back-ward propagating self-excited Alfvén waves significantly alters the transonic solutions at the base. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

14 pages, 3939 KB  
Article
Evaluation of a Classifier Based on Calprotectin Concentration and Advanced Glycation End-Product Receptor as a Potential Biomarker for Abdominal Aortic Aneurysm
by Willy Hauzer, Paula Hauzer, Tomasz Klimek, Jan Gnus, Wojciech Witkiewicz and Natalia Jędruchniewicz
Int. J. Mol. Sci. 2025, 26(16), 7752; https://doi.org/10.3390/ijms26167752 - 11 Aug 2025
Viewed by 290
Abstract
Calprotectin is a calcium-binding protein involved in inflammatory processes. In the context of abdominal aortic aneurysm (AAA), elevated levels of calprotectin may indicate immune system activation and chronic inflammation, which are among the mechanisms contributing to the development and progression of AAA. The [...] Read more.
Calprotectin is a calcium-binding protein involved in inflammatory processes. In the context of abdominal aortic aneurysm (AAA), elevated levels of calprotectin may indicate immune system activation and chronic inflammation, which are among the mechanisms contributing to the development and progression of AAA. The receptor for advanced glycation end-products (RAGE) is a receptor that binds various ligands, including advanced glycation end-products formed during the glycation of proteins and lipids under oxidative stress conditions. Activation of RAGE is associated with inflammatory processes, oxidative stress, and tissue remodeling, which may contribute to the weakening of the aortic wall and aneurysm formation. The main objective of this study was to evaluate the effectiveness of both biomarkers in distinguishing patients with abdominal aortic aneurysm. A total of 27 patients with diagnosed AAA were included in the study. The control group consisted of 27 patients without AAA. Plasma levels of calprotectin and sRAGE were measured in both groups. Statistical analysis included the Shapiro–Wilk test, Mann–Whitney U test, and the Hosmer-Lemeshow (H-L) test. The likelihood of having AAA was found to be over one hundred times greater in individuals classified into the AAA group based on a decision tree model using calprotectin and sRAGE levels, compared to those classified into the no-AAA group. Calprotectin concentration was identified as a stronger predictor of AAA than sRAGE. The optimal cut-off value for plasma calprotectin was determined as ≥1136 ng/mL, yielding a sensitivity of 81.5% and a specificity of 100.0% for discriminating AAA patients from controls. It may be beneficial in future studies to explore non-invasive approaches, such as measuring calprotectin levels in stool and sRAGE in urine, as a potential screening method for AAA. Monitoring the concentrations of these biomarkers in bodily fluids, as a non-invasive method, could support screening efforts for AAA. Full article
(This article belongs to the Special Issue Role of Calprotectin in Human Health and Disease)
Show Figures

Figure 1

16 pages, 4932 KB  
Article
Modulation Instability and Abundant Exact Solitons to the Fractional Mathematical Physics Model Through Two Distinct Methods
by Abdulaziz Khalid Alsharidi and Ahmet Bekir
Axioms 2025, 14(8), 617; https://doi.org/10.3390/axioms14080617 - 8 Aug 2025
Viewed by 236
Abstract
The paper consists of various types of wave solutions for the truncated M-fractional Bateman–Burgers equation, a significant mathematical physics equation. This model describes the nonlinear waves and solitons in different physical fields such as optical fibers, plasma physics, fluid dynamics, traffic flow, etc. [...] Read more.
The paper consists of various types of wave solutions for the truncated M-fractional Bateman–Burgers equation, a significant mathematical physics equation. This model describes the nonlinear waves and solitons in different physical fields such as optical fibers, plasma physics, fluid dynamics, traffic flow, etc. Through the application of the expa function method and the modified simplest equation method, we are able to obtain exact series of soliton solutions. The results differ from the current solutions of the Bateman–Burgers model because of the fractional derivative. The achieved results could be helpful in various engineering and scientific domains. The Mathematica software is used to assist in obtaining and verifying the exact solutions and to obtain contour plots of the solutions in two and three dimensions. To ensure that the model in question is stable, a stability analysis is also carried out using the modulation instability method. Future research on the system in question and related systems will benefit from the findings. The methods used are simple and effective. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

16 pages, 803 KB  
Article
Temporal Decline in Intravascular Albumin Mass and Its Association with Fluid Balance and Mortality in Sepsis: A Prospective Observational Study
by Christian J. Wiedermann, Arian Zaboli, Fabrizio Lucente, Lucia Filippi, Michael Maggi, Paolo Ferretto, Alessandro Cipriano, Antonio Voza, Lorenzo Ghiadoni and Gianni Turcato
J. Clin. Med. 2025, 14(15), 5255; https://doi.org/10.3390/jcm14155255 - 24 Jul 2025
Viewed by 558
Abstract
Background: Intravascular albumin mass represents the total quantity of albumin circulating within the bloodstream and may serve as a physiologically relevant marker of vascular integrity and fluid distribution in sepsis. While low serum albumin levels are acknowledged as prognostic indicators, dynamic assessments [...] Read more.
Background: Intravascular albumin mass represents the total quantity of albumin circulating within the bloodstream and may serve as a physiologically relevant marker of vascular integrity and fluid distribution in sepsis. While low serum albumin levels are acknowledged as prognostic indicators, dynamic assessments based on albumin mass remain insufficiently explored in patients outside the intensive care unit. Objectives: To describe the temporal changes in intravascular albumin mass in patients with community-acquired sepsis and to examine its relationship with fluid balance and thirty-day mortality. Methods: This prospective observational study encompassed 247 adults diagnosed with community-acquired sepsis who were admitted to a high-dependency hospital ward specializing in acute medical care. The intravascular albumin mass was calculated daily for a duration of up to five days, utilizing plasma albumin concentration and estimated plasma volume derived from anthropometric and hematologic data. Net albumin leakage was defined as the variation in intravascular albumin mass between consecutive days. Fluid administration and urine output were documented to ascertain cumulative fluid balance. Repeated-measures statistical models were employed to evaluate the associations between intravascular albumin mass, fluid balance, and mortality, with adjustments made for age, comorbidity, and clinical severity scores. Results: The intravascular albumin mass exhibited a significant decrease during the initial five days of hospitalization and demonstrated an inverse correlation with the cumulative fluid balance. A greater net leakage of albumin was associated with a positive fluid balance and elevated mortality rates. Furthermore, a reduced intravascular albumin mass independently predicted an increased risk of mortality at thirty days. Conclusions: A reduction in intravascular albumin mass may suggest ineffective fluid retention and the onset of capillary leak syndrome. This parameter holds promise as a clinically valuable, non-invasive indicator for guiding fluid resuscitation in cases of sepsis. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

13 pages, 9670 KB  
Article
Exact Solitary Wave Solutions and Sensitivity Analysis of the Fractional (3+1)D KdV–ZK Equation
by Asif Khan, Fehaid Salem Alshammari, Sadia Yasin and Beenish
Fractal Fract. 2025, 9(7), 476; https://doi.org/10.3390/fractalfract9070476 - 21 Jul 2025
Viewed by 400
Abstract
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a [...] Read more.
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a case study, which describes some intricate phenomena of wave behavior in plasma physics and fluid dynamics. With the implementation of SSEM, we yield new solitary wave solutions and explicitly examine the role of the fractional-order parameter in the dynamics of the solutions. In addition, the sensitivity analysis of the results is conducted in the Galilean transformation in order to ensure that the obtained results are valid and have physical significance. Besides expanding the toolbox of analytical methods to address high-dimensional nonlinear FDEs, the proposed method helps to better understand how fractional-order dynamics affect the nonlinear wave phenomenon. The results are compared to known methods and a discussion about their possible applications and limitations is given. The results show the effectiveness and flexibility of SSEM along with JMRLD in forming new categories of exact solutions to nonlinear fractional models. Full article
Show Figures

Figure 1

14 pages, 273 KB  
Article
Plasma Diacylglycerols Are Associated with Carotid Intima-Media Thickness Among Patients with Type 2 Diabetes: Findings from a Supercritical Fluid Chromatography/Mass Spectrometry-Based Semi-Targeted Lipidomic Analysis
by Naohiro Taya, Naoto Katakami, Kazuo Omori, Shigero Hosoe, Hirotaka Watanabe, Mitsuyoshi Takahara, Kazuyuki Miyashita, Yutaka Konya, Sachiko Obara, Ayako Hidaka, Motonao Nakao, Masatomo Takahashi, Yoshihiro Izumi, Takeshi Bamba and Iichiro Shimomura
Int. J. Mol. Sci. 2025, 26(14), 6977; https://doi.org/10.3390/ijms26146977 - 20 Jul 2025
Viewed by 540
Abstract
Abnormalities in plasma lipoproteins observed in patients with diabetes promote atherosclerosis. However, the association between various lipid species and classes and atherosclerosis remains unclear. Here, we aimed to identify the plasma lipid characteristics associated with atherosclerosis progression in patients with diabetes. We performed [...] Read more.
Abnormalities in plasma lipoproteins observed in patients with diabetes promote atherosclerosis. However, the association between various lipid species and classes and atherosclerosis remains unclear. Here, we aimed to identify the plasma lipid characteristics associated with atherosclerosis progression in patients with diabetes. We performed semi-targeted lipidomic analysis of fasting plasma samples using supercritical fluid chromatography coupled with mass spectrometry in two independent patient groups with type 2 diabetes (n = 223 and 31) and evaluated cross-sectional associations between plasma lipids and carotid intima-media thickness (CIMT). Ten plasma lipid species, including eight diacylglycerols (DGs), and total DG levels were significantly associated with CIMT in both groups. Patients of the former group were partly observed for 5 years, and we investigated associations between DGs and CIMT progression in these patients (n = 101). As a result, 22 DGs among the 26 identified DGs and total DG (β = 0.398, p < 0.001) were significantly associated with the annual change in CIMT. Furthermore, plasma DG levels improved the predictive ability for CIMT progression, with an adjusted R-squared increase of 0.105 [95% confidence interval: 0.010, 0.232] in the models. Plasma DGs are associated with CIMT progression in patients with type 2 diabetes. Measurement of total plasma DG levels may be beneficial in assessing the risk of atherosclerosis progression. Full article
21 pages, 1875 KB  
Review
Translating Exosomal microRNAs from Bench to Bedside in Parkinson’s Disease
by Oscar Arias-Carrión, María Paulina Reyes-Mata, Joaquín Zúñiga and Daniel Ortuño-Sahagún
Brain Sci. 2025, 15(7), 756; https://doi.org/10.3390/brainsci15070756 - 16 Jul 2025
Viewed by 624
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and therapeutic intervention. Exosomes facilitate intercellular communication, cross the blood–brain barrier, and protect miRNAs from degradation, rendering them suitable for non-invasive diagnostics and targeted delivery. Specific exosomal miRNAs modulate neuroinflammatory cascades, oxidative stress, and synaptic dysfunction, and their altered expression in cerebrospinal fluid and plasma correlates with disease onset, severity, and progression. Despite their translational promise, challenges persist, including methodological variability in exosome isolation, miRNA profiling, and delivery strategies. This review integrates findings from preclinical models, patient-derived samples, and systems biology to delineate the functional impact of exosomal miRNAs in PD. We propose mechanistic hypotheses linking miRNA dysregulation to molecular pathogenesis and present an interactome model highlighting therapeutic nodes. Advancing exosomal miRNA research may transform the clinical management of PD by enabling earlier diagnosis, molecular stratification, and the development of disease-modifying therapies. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Figure 1

14 pages, 2726 KB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 538
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

17 pages, 3336 KB  
Article
Modeling and Exploration of Localized Wave Phenomena in Optical Fibers Using the Generalized Kundu–Eckhaus Equation for Femtosecond Pulse Transmission
by Ejaz Hussain, Ali H. Tedjani, Khizar Farooq and Beenish
Axioms 2025, 14(7), 513; https://doi.org/10.3390/axioms14070513 - 3 Jul 2025
Cited by 2 | Viewed by 304
Abstract
This manuscript aims to explore localized waves for the nonlinear partial differential equation referred to as the (1+1)-dimensional generalized Kundu–Eckhaus equation with an additional dispersion term that describes the propagation of the ultra-short femtosecond pulses in an optical [...] Read more.
This manuscript aims to explore localized waves for the nonlinear partial differential equation referred to as the (1+1)-dimensional generalized Kundu–Eckhaus equation with an additional dispersion term that describes the propagation of the ultra-short femtosecond pulses in an optical fiber. This research delves deep into the characteristics, behaviors, and localized waves of the (1+1)-dimensional generalized Kundu–Eckhaus equation. We utilize the multivariate generalized exponential rational integral function method (MGERIFM) to derive localized waves, examining their properties, including propagation behaviors and interactions. Motivated by the generalized exponential rational integral function method, it proves to be a powerful tool for finding solutions involving the exponential, trigonometric, and hyperbolic functions. The solutions we found using the MGERIF method have important applications in different scientific domains, including nonlinear optics, plasma physics, fluid dynamics, mathematical physics, and condensed matter physics. We apply the three-dimensional (3D) and contour plots to illuminate the physical significance of the derived solution, exploring the various parameter choices. The proposed approaches are significant and applicable to various nonlinear evolutionary equations used to model nonlinear physical systems in the field of nonlinear sciences. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

25 pages, 2524 KB  
Article
α Effect and Magnetic Diffusivity β in Helical Plasma Under Turbulence Growth
by Kiwan Park
Universe 2025, 11(7), 203; https://doi.org/10.3390/universe11070203 - 22 Jun 2025
Viewed by 212
Abstract
We investigate the transport coefficients α and β in plasma systems with varying Reynolds numbers while maintaining a unit magnetic Prandtl number (PrM). The α and β tensors parameterize the turbulent electromotive force (EMF) in terms of the large-scale magnetic [...] Read more.
We investigate the transport coefficients α and β in plasma systems with varying Reynolds numbers while maintaining a unit magnetic Prandtl number (PrM). The α and β tensors parameterize the turbulent electromotive force (EMF) in terms of the large-scale magnetic field B¯ and current density as follows: u×b=αB¯β×B¯. In astrophysical plasmas, high fluid Reynolds numbers (Re) and magnetic Reynolds numbers (ReM) drive turbulence, where Re governs flow dynamics and ReM controls magnetic field evolution. The coefficients αsemi and βsemi are obtained from large-scale magnetic field data as estimates of the α and β tensors, while βtheo is derived from turbulent kinetic energy data. The reconstructed large-scale field B¯ agrees with simulations, confirming consistency among α, β, and B¯ in weakly nonlinear regimes. This highlights the need to incorporate magnetic effects under strong nonlinearity. To clarify α and β, we introduce a field structure model, identifying α as the electrodynamic induction effect and β as the fluid-like diffusion effect. The agreement between our method and direct simulations suggests that plasma turbulence and magnetic interactions can be analyzed using fundamental physical quantities. Moreover, αsemi and βsemi, which successfully reproduce the numerically obtained magnetic field, provide a benchmark for future theoretical studies. Full article
Show Figures

Figure 1

18 pages, 7946 KB  
Article
Numerical Simulation of Streaming Discharge Characteristics of Free Metal Particles in SF6/CF4 Gas Mixtures Under Highly Heterogeneous Electric Field
by Bing Qi, Hui Wang, Chang Liu, Fuyou Teng, Daoxin Yu, Yuxuan Liang and Feihu Wang
Sensors 2025, 25(13), 3847; https://doi.org/10.3390/s25133847 - 20 Jun 2025
Viewed by 393
Abstract
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs [...] Read more.
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs a two-dimensional plasma fluid model to investigate the partial discharge phenomena induced by free metallic particles in SF6/CF4 gas mixtures, analyzing the spatiotemporal evolution characteristics of key parameters, such as the charged particle density and axial electric field, under different mixing ratios. The simulation results show that there are two kinds of positive stream discharge phenomena, “continuous and decaying”, when the gas mixture ratio is 90%CF4-10%SF6 and 40%CF4-60%SF6. The proportion of CF4 in the gas mixture will affect the spatial distribution of charged particles and the production and disappearance of electrons. When the proportion of CF4 is 90%, the content of positive ions in the discharge channel is the highest, and the electric field formed by the positive space charge of CF4+ in the stream head promotes the continuous propagation of the stream. As the concentration of CF4 decreases, the main ionization reaction at the stream head shifts from CF4 to SF6, and a negative space charge region dominated by SF6 particles is also formed near the stream head, changing the electric field distribution near the flow head. The adhesion reaction rate is greater than the ionization reaction rate, resulting in the disappearance of electrons greater than the production, and the stream phenomenon tends to decay. These simulation results are helpful to understand the dynamic process of positive stream discharge induced by free metal particles in SF6/CF4 gas mixtures, and they provide a theoretical basis for better solutions to equipment damage caused by partial discharge. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

26 pages, 3160 KB  
Article
Application of Mathematical Modeling and Numerical Simulation of Blood Biomarker Transport in Paper-Based Microdevices
by Carlos E. Zambra, Diógenes Hernandez, Jorge O. Morales-Ferreiro and Diego Vasco
Mathematics 2025, 13(12), 1936; https://doi.org/10.3390/math13121936 - 10 Jun 2025
Viewed by 513
Abstract
This study introduces a novel mathematical model tailored to the unique fluid dynamics of paper-based microfluidic devices (PBMDs), focusing specifically on the transport behavior of human blood plasma, albumin, and heat. Unlike previous models that depend on generic commercial software, our custom-developed computational [...] Read more.
This study introduces a novel mathematical model tailored to the unique fluid dynamics of paper-based microfluidic devices (PBMDs), focusing specifically on the transport behavior of human blood plasma, albumin, and heat. Unlike previous models that depend on generic commercial software, our custom-developed computational incorporates the Richards equation to extend Darcy’s law for more accurately capturing capillary-driven flow and thermal transport in porous paper substrates. The model’s predictions were validated through experimental data and demonstrated high accuracy in both two- and three-dimensional simulations. Key findings include new analytical expressions for uniform paper wetting after sudden geometric expansions and the discovery that plasma and albumin preferentially migrate along paper edges—a phenomenon driven by surface tension and capillary effects that varies with paper type. Additionally, heat transfer analysis indicates that a one-minute equilibration period is necessary for the reaction zone to reach ambient temperature, an important parameter for assay timing. These insights provide a deeper physical understanding of PBMD operation and establish a robust modeling tool that bridges experimental and computational approaches, offering a foundation for the optimized design of next-generation diagnostic devices for biomedical applications. Full article
(This article belongs to the Special Issue Computation, Modeling and Simulation for Nanofluidics)
Show Figures

Figure 1

24 pages, 19628 KB  
Article
On Exact Non-Traveling Wave Solutions to the Generalized Nonlinear Kadomtsev–Petviashvili Equation in Plasma Physics and Fluid Mechanics
by Shami A. M. Alsallami
Mathematics 2025, 13(12), 1914; https://doi.org/10.3390/math13121914 - 8 Jun 2025
Viewed by 386
Abstract
The Kadomtsev–Petviashvili (KP) equation serves as a powerful model for investigating various nonlinear wave phenomena in fluid dynamics, plasma physics, optics, and engineering. In this paper, by combining the method of separation of variables with the modified generalized exponential rational function method (mGERFM), [...] Read more.
The Kadomtsev–Petviashvili (KP) equation serves as a powerful model for investigating various nonlinear wave phenomena in fluid dynamics, plasma physics, optics, and engineering. In this paper, by combining the method of separation of variables with the modified generalized exponential rational function method (mGERFM), abundant explicit exact non-traveling wave solutions for a (3+1)-dimensional generalized form of the equation are constructed. The proposed method utilizes a transformation approach to reduce the original equation to a simpler form. The derived solutions include several arbitrary functions, which enable the construction of a wide variety of exact solutions to the model. These solutions are expressed through diverse functional forms, such as exponential, trigonometric, and Jacobi elliptic functions. To the best of the author’s knowledge, these results are novel and have not been documented in prior studies. This study enhances understanding of wave dynamics in the equation and provides a practical method applicable to other related equations. Full article
Show Figures

Figure 1

19 pages, 8031 KB  
Article
Exploring Exosome Contributions to Gouty Arthritis: A Proteomics and Experimental Study
by Chengjin Lu, Xiaoxiong Yang, Xue Wang, Yu Wang, Bing Zhang and Zhijian Lin
Int. J. Mol. Sci. 2025, 26(11), 5320; https://doi.org/10.3390/ijms26115320 - 1 Jun 2025
Viewed by 858
Abstract
This study investigated the role of exosomes in the pathological processes of gouty arthritis (GA), with the aim of clarifying their mechanistic role and pathological significance in the onset and progression of GA. Using a rat model of GA established through potassium oxonate [...] Read more.
This study investigated the role of exosomes in the pathological processes of gouty arthritis (GA), with the aim of clarifying their mechanistic role and pathological significance in the onset and progression of GA. Using a rat model of GA established through potassium oxonate and yeast gavage combined with intra-articular monosodium urate (MSU) injection, we isolated and characterized plasma exosomes using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Differential exosomal protein expression was analyzed using 4D label-free proteomics technology, followed by GO and KEGG enrichment analyses, and protein–protein interaction (PPI) network construction to identify core targets. In vivo experiments measured the expression levels of CTSD in synovial tissues and joint fluid, as well as HPRT1 in renal tissues, while in vitro experiments involved co-culturing NRK cells with exosomes to validate target protein expression. The results indicated that serum uric acid levels were significantly elevated in the model group (p < 0.01), accompanied by pronounced joint swelling and inflammation. Exosome characterization confirmed their typical bilayer membrane structure and the expression of marker proteins (CD63/TSG101). Proteomic analysis identified 40 differentially expressed proteins (12 upregulated and 28 downregulated) enriched in pathways such as complement and coagulation cascades, autophagy, lysosomal function, and purine metabolism. In vivo and in vitro experiments demonstrated significantly increased CTSD expression (p < 0.05/p < 0.01) and decreased HPRT1 expression (p < 0.05/p < 0.01) in the model group, suggesting that exosomes are involved in the occurrence and development of GA by regulating purine metabolism and lysosomal dysfunction. These findings offer new insights into disease mechanisms and potential therapeutic targets. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

Back to TopTop