Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = fluorenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2897 KB  
Article
Study and Modification of the Polycyclic Aromatic Hydrocarbon Degradation Gene Cluster in Burkholderia sp. FM-2
by Jiajun Ma, Ying Zhai, Yumeng Cui, Guohui Gao, Ming Ying, Yihe Zhao, Agostinho Antunes, Lei Huang and Meitong Li
Microorganisms 2025, 13(9), 2079; https://doi.org/10.3390/microorganisms13092079 - 6 Sep 2025
Viewed by 201
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants composed of two or more fused benzene rings, posing serious threats to ecological environments and human health. Biodegradation is an efficient, economical, and sustainable approach for remediating PAHs pollution. In our previous [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants composed of two or more fused benzene rings, posing serious threats to ecological environments and human health. Biodegradation is an efficient, economical, and sustainable approach for remediating PAHs pollution. In our previous work, we isolated and characterized a PAH-degrading bacterium, Burkholderia sp. FM-2. FM-2 demonstrated strong tolerance and efficient degradation capacity toward various PAHs, achieving 81.98% degradation of 2 mM phenanthrene within 3 days, and over 58% degradation of 2 mM fluorene, dibenzofuran, and dibenzothiophene under the same conditions. Through combined genomic and transcriptomic analyses, a putative PAH degradation gene cluster was identified in the FM-2 genome. Phylogenetic and domain architecture analyses were conducted on seven oxygenase genes within the cluster. Using AlphaFold 3, we predicted the three-dimensional structure of the downstream transport protein OmpW and proposed a potential transmembrane channel for PAHs uptake. To eliminate the phenanthrene degradation intermediate 1-hydroxy-2-naphthoic acid, a genetically engineered strain FM-2::nahG was constructed by heterologous expression of the salicylate hydroxylase gene (nahG). The modified strain completely abolished the accumulation of 1-hydroxy-2-naphthoic acid and achieved complete mineralization of phenanthrene. This study not only reveals the molecular basis of PAHs degradation in Burkholderia sp. FM-2 but also demonstrates the potential of metabolic engineering to enhance biodegradation ability, providing a promising microbial candidate for the bioremediation of PAH-polluted environments. Full article
Show Figures

Figure 1

17 pages, 304 KB  
Article
Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment
by Andrea Acosta-Dacal, Adrián Melián Henríquez, Juan Alberto Corbera, Ana Macías-Montes, Manuel Zumbado, Norberto Ruiz-Suárez, José Luis Martín-Barrasa, Octavio P. Luzardo and María Teresa Tejedor-Junco
Vet. Sci. 2025, 12(9), 829; https://doi.org/10.3390/vetsci12090829 - 29 Aug 2025
Viewed by 521
Abstract
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in [...] Read more.
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in dromedary camels (Camelus dromedarius) from the Canary Islands. We included 114 clinically healthy animals of different sex, age, and reproductive status. Serum samples were analyzed for essential, toxic, and potentially toxic elements using inductively coupled plasma mass spectrometry (ICP-MS). In addition, a high-throughput multi-residue method based on QuEChERS extraction followed by UHPLC-MS/MS and GC-MS/MS was used to screen for 360 organic compounds, including pesticides, veterinary drugs, human pharmaceuticals, and persistent organic pollutants. Essential elements showed biologically consistent variations according to sex, age group, and pregnancy status. Males had higher levels of selenium and copper, while calves showed elevated concentrations of manganese and zinc. Pregnant females exhibited lower iron, zinc, and selenium levels, consistent with increased fetal demand. These results provide preliminary reference values for healthy camels, stratified by physiological status. In contrast, classical toxic elements such as arsenic, mercury, lead, and cadmium were found at very low or undetectable concentrations. Several potentially toxic elements, including barium, strontium, and rare earth elements, were detected sporadically but without toxicological concern. Only 13 organic compounds (3.6%) were detected in any sample, and concentrations were consistently low. The most prevalent was the PAH acenaphthene (55.3%), followed by the fungicide procymidone and the PAH fluorene. Notably, no residues of the usually detected 4,4′-DDE or PCB congeners were found in any sample. These findings confirm the low environmental and dietary exposure of camels under low-intensity farming systems and highlight their value as sentinel species for food safety and environmental monitoring. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
19 pages, 2722 KB  
Article
Fluorene-Containing β-Diketonato Ligands and Their Rhodium(I) Complexes—A Characterization and Crystallographic Study
by Frederick Jacobus Francois Jacobs, Siyanda Khoza and Eleanor Fourie
Inorganics 2025, 13(8), 255; https://doi.org/10.3390/inorganics13080255 - 30 Jul 2025
Viewed by 482
Abstract
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized [...] Read more.
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized containing the fluorene-functional group, where the varying substituent on the β-diketone was CF3 (1), PhCF3 (2), Ph (3) and PhCH3 (4). The corresponding cyclooctadiene rhodium(I) complexes of the type [Rh(cod)((fluorene)COCHCOR)], with R = CF3 (5), PhCF3 (6), Ph (7) and PhCH3 (8) were also synthesized. A crystal structure determination of 2 and 6 was performed, highlighting important changes in the ligand structure as a result of metal complexation. The structure of 2 also showed a hydrogen interaction between the hydroxy and carboxyl groups, forming a pseudo six-membered ring that stabilizes the enol form of the compound. Cyclic voltammetry (CV) of the β-diketones 14 showed a reduction wave for the reduction of the β-diketonato backbone between −1500 mV and −2100 mV as measured against ferrocene (FcH). CVs of rhodium(I) complexes 58 showed a reduction of the β-diketonato backbone between −1800 and −2000 mV, as well as an oxidation wave for the oxidation of the rhodium(I) metal centre at approximately 300 mV. Full article
Show Figures

Graphical abstract

20 pages, 2063 KB  
Article
Chemometric Evaluation of 16 Priority PAHs in Soil and Roots of Syringa vulgaris and Ficus carica from the Bor Region (Serbia): An Insight into the Natural Plant Potential for Soil Phytomonitoring and Phytoremediation
by Aleksandra D. Papludis, Slađana Č. Alagić, Snežana M. Milić, Jelena S. Nikolić, Snežana Č. Jevtović, Vesna P. Stankov Jovanović and Gordana S. Stojanović
Environments 2025, 12(8), 256; https://doi.org/10.3390/environments12080256 - 28 Jul 2025
Viewed by 479
Abstract
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location [...] Read more.
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location in the Bor region. PAHs in roots and the corresponding soils were analyzed using the QuEChERS (Quick, Effective, Cheap, Easy, Rugged, Safe) method with some new modifications, gas chromatography/mass spectrometry, Pearson’s correlation study, hierarchical cluster analysis, and BCFs. Several central conclusions are as follows: Each plant species developed its own specific capability for PAH management, and root concentrations ranged from not detected (for several compounds) to 5592 μg/kg (for fluorene in S. vulgaris). In some cases, especially regarding benzo(a)pyrene and chrysene, both plants had a similar tactic—the total avoidance of assimilation (probably due to their high toxicity). Both plants retained significant quantities of different PAHs in their roots (many calculated BCFs were higher than 1 or were even extremely high), which recommends them for PAH phytostabilization (especially fluorene, benzo(b)fluoranthene, and benzo(k)fluoranthene). In soil monitoring, neither of the plants are helpful because their roots do not reflect the actual situation found in soil. Finally, the analysis of the corresponding soils provided useful monitoring information. Full article
Show Figures

Graphical abstract

11 pages, 1373 KB  
Article
High-Performance Multilevel and Ambipolar Nonvolatile Organic Transistor Memory Using Small-Molecule SFDBAO and PS as Charge Trapping Elements
by Lingzhi Jin, Wenjuan Xu, Yangzhou Qian, Tao Ji, Kefan Wu, Liang Huang, Feng Chen, Nanchang Huang, Shu Xing, Zhen Shao, Wen Li, Yuyu Liu and Linghai Xie
Nanomaterials 2025, 15(14), 1072; https://doi.org/10.3390/nano15141072 - 10 Jul 2025
Viewed by 391
Abstract
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration [...] Read more.
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration and a donor–acceptor (D-A) structure as a molecular-scale charge storage element demonstrated significantly higher charge trapping ability than other small-molecule materials such as C60 and Alq3. The ONVM based on 10% SFDBAO/PS presents ambipolar memory behaviors with a wide memory window (146 V), a fast-switching speed (20 ms), an excellent retention time (over 5 × 104 s), and stable reversibility (36 cycles without any noticeable decay). By applying different gate voltages, the above ONVM shows reliable four-level data storage characteristics. The investigation demonstrates that the strategical bulk-heterojunction-like tunneling and trapping elements composed of small-molecule materials and polymers exhibit promising potential for high-performance ambipolar ONVMs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 3309 KB  
Article
A Study on the Effects of Solvent and Temperature on 2-Amino-7-Nitro-Fluorene (ANF) Using Synchronous Fluorescence
by Suresh Sunuwar, Miguel Rodriguez-Escalante, Priscila Blanco-Cortés and Carlos E. Manzanares
ChemEngineering 2025, 9(4), 69; https://doi.org/10.3390/chemengineering9040069 - 27 Jun 2025
Viewed by 445
Abstract
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures [...] Read more.
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures from 25 °C to 5 °C, providing a comprehensive analysis of its fluorescence characteristics in different environments and temperatures. An ANF sample dissolved in benzene at 5 °C produced a synchronous band with the largest intensity and smallest frequency shift. The results show that higher-intensity peaks are obtained at lower temperatures with solvents with a small dipole moment and dielectric constant. This suggest that the best conditions to detect ANF and similar molecules at very low concentrations are with non-polar solvents at low temperatures. Full article
Show Figures

Graphical abstract

19 pages, 2636 KB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 445
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

13 pages, 2748 KB  
Article
Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity
by Kuo Zhao, Yunbo Shi, Haodong Niu, Qinglong Chen, Jinzhou Liu, Bolun Tang and Canda Zheng
Sensors 2025, 25(13), 3948; https://doi.org/10.3390/s25133948 - 25 Jun 2025
Cited by 1 | Viewed by 492
Abstract
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we [...] Read more.
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we prepared PANI/WS2 composites via chemical oxidative polymerization and mechanical blending. A multilayer sensor structure—sequentially printed silver-paste heating electrodes, fluorene polyester insulating layer, silver interdigitated electrodes, and sensing material layer—was fabricated on a polyimide substrate via flexible microelectronic printing and systematically characterized using scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The optimized 5 wt% WS2 composite showed enhanced gas-sensing performance, with 219.1% sensitivity to 100 ppm ammonia (2.4-fold higher than that of pure PANI) and reduced response and recovery times of 24 and 91 s, respectively (compared to 81 and 436 s for pure PANI, respectively). Notably, the PANI/WS2 sensor detected an ultralow ammonia concentration (100 ppb) with 0.104% sensitivity. The structural characterization and performance analysis results were used to deduce a mechanism for the enhanced sensing capability. These findings highlight the application potential of PANI/WS2 composites in flexible gas sensors and provide fundamental insights for PANI-based sensing materials research. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 3156 KB  
Article
Adsorptive Behavior of Corn-Cob- and Straw-Derived Biochar for Polycyclic Aromatic Hydrocarbon Removal from Aqueous Systems
by Jelena Beljin, Marijana Kragulj Isakovski, Jasmina Agbaba, Maja Vujić, Snežana Maletić and Aleksandra Tubić
Processes 2025, 13(5), 1521; https://doi.org/10.3390/pr13051521 - 15 May 2025
Viewed by 1058
Abstract
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical [...] Read more.
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical properties. Adsorption experiments with naphthalene, fluorene, fluoranthene, and pyrene revealed high adsorption affinities (Log Kd = 4.35–5.69 L/kg), with Freundlich isotherm modeling indicating nonlinear behavior (n = 0.732–0.923), suggesting a combination of pore filling and chemical interactions such as π-π stacking and hydrogen bonding. Corn-cob biochar, rich in lignin, exhibited a higher surface area (111 m2/g) and greater affinity for fluorene, while wheat-straw biochar, with a higher oxygen content and more functional groups, performed better for naphthalene and pyrene. FTIR and pXRD confirmed aromatic and graphitic structures facilitating PAH interactions. These results underscore the importance of feedstock selection and pyrolysis conditions in tailoring biochar properties for specific pollutants. While both biochars compare favorably with conventional adsorbents like activated carbon, further research on long-term stability in complex matrices is needed. Overall, the findings support the development of cost-effective, scalable, and eco-friendly biochar-based technologies for water remediation. Full article
(This article belongs to the Special Issue Green Conversion Processes of Waste and Biomass Materials)
Show Figures

Figure 1

13 pages, 9869 KB  
Article
The Effect of Modifying the C9 Position of Fluorene with N-Donor Substituents on Selected Physicochemical Properties
by Paweł Kalarus, Agata Szlapa-Kula, Michał Filapek and Sławomir Kula
Molecules 2025, 30(9), 1924; https://doi.org/10.3390/molecules30091924 - 25 Apr 2025
Viewed by 880
Abstract
Fluorene has been an extremely valued building block for many chemical compounds for a number of years. As a result, it is possible to design and obtain compounds with precisely defined physicochemical properties adapted to selected applications. An extremely interesting derivative of fluorene, [...] Read more.
Fluorene has been an extremely valued building block for many chemical compounds for a number of years. As a result, it is possible to design and obtain compounds with precisely defined physicochemical properties adapted to selected applications. An extremely interesting derivative of fluorene, which has been enjoying increasing interest in recent years, is dibenzofulvene (DBF) and its further structural modifications. So far, a number of dibenzofulvene derivatives have been described in the literature. Many of the presented DBFs are extremely structurally complex, which is why the influence of substituents on the physicochemical properties of the final compounds is not easy to determine unequivocally. Therefore, in this article, an attempt was made to explain the influence of N-donor substituents on selected physicochemical properties of dibenzofulvene derivatives (A-1–A-6). Moreover, these properties were compared to the results obtained for unsubstituted fluorene. The studies conducted showed that small modifications of the fluorene structure towards dibenzofulvene derivatives significantly change the absorption and emission properties of the final compounds. Importantly, the abovementioned structural modifications strongly affect the electrochemical properties, significantly reducing the energy gap and causing the oxidation potential to decrease to 0.18–0.42 V. Moreover, the process itself becomes fully reversible. The experimentally determined values coincide with those obtained theoretically via DFT calculations. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

13 pages, 1999 KB  
Article
Production of Pitch from Coal Tar of the Coke Chemical Production “Qarmet”
by Aigul T. Ordabaeva, Zainulla M. Muldakhmetov, Mazhit G. Meiramov, Sergey V. Kim and Zhenisgul I. Sagintaeva
Molecules 2025, 30(7), 1441; https://doi.org/10.3390/molecules30071441 - 24 Mar 2025
Cited by 2 | Viewed by 542
Abstract
Medium-temperature pitch was obtained by vacuum distillation of coal tar from the Qarmet coke chemical production. To determine the composition of the organic constituent of the Qarmet coal tar, the component composition was analyzed via gas–liquid chromatography (GLC) methods. The analysis of the [...] Read more.
Medium-temperature pitch was obtained by vacuum distillation of coal tar from the Qarmet coke chemical production. To determine the composition of the organic constituent of the Qarmet coal tar, the component composition was analyzed via gas–liquid chromatography (GLC) methods. The analysis of the component composition of the organic component of coal tar showed that the content of naphthalene and its derivatives is 37.57%, acenaphthene—2.10%, dibenzofurane—3.60%, fluorene—4.63%, phenanthrene—8.63%, anthracene—2.29%, fluoranthene—4.56%, and pyrene—2.84%. It was found that in the obtained pitch sample, indicators such as the content of insoluble in toluene (41.86%), the softening temperature (85–91 °C), and the yield of volatile substances (1.5%) are more consistent with the standards for electrode pitch grade “V”. The composition of fractions in baking soda, soluble in toluene and quinoline, has been established. In the fractions of pitch soluble in toluene, 11 components were identified, the main of which re fluoranthene (11.71%), pyrene (10.13%), phenanthrene (7.31%), and benzopyrene (4.84%). Thus, based on the analyses carried out, it was found that the Qarmet resin is suitable for obtaining a V-grade electrode pitch, which can be used in the aluminum industry. Full article
Show Figures

Figure 1

16 pages, 2781 KB  
Article
Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective
by Michele Orza, Andrea Zerbini and Fabrizia Negri
Chemistry 2025, 7(2), 47; https://doi.org/10.3390/chemistry7020047 - 19 Mar 2025
Viewed by 691
Abstract
In this work, we have considered the family of indenofluorene (IF) and its longitudinally elongated variants fluorenofluorene and diindenoanthracene and investigated their low-lying excited states and optical properties via quantum-chemical studies at the density functional theory (DFT) level. Singlet ground-state diradicals exhibit distinct [...] Read more.
In this work, we have considered the family of indenofluorene (IF) and its longitudinally elongated variants fluorenofluorene and diindenoanthracene and investigated their low-lying excited states and optical properties via quantum-chemical studies at the density functional theory (DFT) level. Singlet ground-state diradicals exhibit distinct optical properties due to the presence of a low-lying state dominated by a doubly excited configuration (DE state), often below the lowest allowed singly excited state (SE state). IFs and their elongated derivatives, with tunable diradical character and both symmetric and nonsymmetric structures, provide an ideal platform for exploring DE state energy modulation and spectroscopic behavior. The study shows that absorption spectra simulated using time-dependent (TD) calculations based on unrestricted broken-symmetry antiparallel-spin reference configuration (TDUDFT) closely match the available experimental data. Additionally, it reveals distinct spectral behavior for symmetric and nonsymmetric derivatives, highlighting the role of lowest-lying weakly allowed excited states potentially promoting non-radiative deactivation pathways. Full article
Show Figures

Figure 1

18 pages, 1683 KB  
Article
Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages
by Alexandru Ioan Balint, Ecaterina Matei, Maria Râpă, Anca-Andreea Șăulean and Ileana Mariana Mateș
Sustainability 2025, 17(4), 1356; https://doi.org/10.3390/su17041356 - 7 Feb 2025
Viewed by 1094
Abstract
This paper focuses on identifying the human health risks as a result of the presence of polycyclic aromatic hydrocarbons (PAHs) in groundwater due to the Bucharest landfill leakages. The main subjects were neighboring areas as the main receptors. The functional landfill located near [...] Read more.
This paper focuses on identifying the human health risks as a result of the presence of polycyclic aromatic hydrocarbons (PAHs) in groundwater due to the Bucharest landfill leakages. The main subjects were neighboring areas as the main receptors. The functional landfill located near the capital of Romania was selected as a case study. Fluorene (Pf), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flu) and pyrene (Pyr) were detected using gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. The health risks for receptors via ingestion and dermal exposure scenarios were developed considering dermal contact once per day during showering for 20 min and regular ingestion of the groundwater most contaminated with PAHs at a rate of 2 L per day. The concentration ranges of PAHs in groundwater wer <0.0010–0.0037 μg L−1 for Pf, 0.0014–0.0065 μg L−1 for Phe, <0.0010–0.0013 μg L−1 for Ant, <0.0010–0.0011 μg L−1 for Flu, and 0.0030–0.0032 μg L−1 for Pyr. The rest of the PAHs were under the limit of detection. Both the cumulative hazard and risk quotient are well below the value of 1, which indicates a significant low risk for the ingestion of PAH-contaminated groundwater. However, the risk due to daily groundwater consumption and skin contact is minimal. Full article
Show Figures

Figure 1

22 pages, 6295 KB  
Article
Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections
by Elizaveta Dzalamidze, Mylene Gorzynski, Rebecca Vande Voorde, Dylan Nelson and Lia Danelishvili
Pharmaceuticals 2025, 18(2), 225; https://doi.org/10.3390/ph18020225 - 7 Feb 2025
Cited by 1 | Viewed by 1664
Abstract
Background/Objectives: Mycobacterium abscessus (MAB) is a highly resilient pathogen that causes difficult-to-treat pulmonary infections, particularly in individuals with cystic fibrosis (CF) and other underlying conditions. Its ability to form robust biofilms within the CF lung environment is a major factor contributing to [...] Read more.
Background/Objectives: Mycobacterium abscessus (MAB) is a highly resilient pathogen that causes difficult-to-treat pulmonary infections, particularly in individuals with cystic fibrosis (CF) and other underlying conditions. Its ability to form robust biofilms within the CF lung environment is a major factor contributing to its resistance to antibiotics and evasion of the host immune response, making conventional treatments largely ineffective. These biofilms, encased in an extracellular matrix, enhance drug tolerance and facilitate metabolic adaptations in hypoxic conditions, driving the bacteria into a persistent, non-replicative state that further exacerbates antimicrobial resistance. Treatment options remain limited, with multidrug regimens showing low success rates, highlighting the urgent need for more effective therapeutic strategies. Methods: In this study, we employed artificial sputum media to simulate the CF lung environment and conducted high-throughput screening of 24,000 compounds from diverse chemical libraries to identify inhibitors of MAB biofilm formation, using the Crystal Violet (CV) assay. Results: The screen established 17 hits with ≥30% biofilm inhibitory activity in mycobacteria. Six of these compounds inhibited MAB biofilm formation by over 60%, disrupted established biofilms by ≥40%, and significantly impaired bacterial viability within the biofilms, as confirmed by reduced CFU counts. In conformational assays, select compounds showed potent inhibitory activity in biofilms formed by clinical isolates of both MAB and Mycobacterium avium subsp. hominissuis (MAH). Key compounds, including ethacridine, phenothiazine, and fluorene derivatives, demonstrated potent activity against pre- and post-biofilm conditions, enhanced antibiotic efficacy, and reduced intracellular bacterial loads in macrophages. Conclusions: This study results underscore the potential of these compounds to target biofilm-associated resistance mechanisms, making them valuable candidates for use as adjuncts to existing therapies. These findings also emphasize the need for further investigations, including the initiation of a medicinal chemistry campaign to leverage structure–activity relationship studies and optimize the biological activity of these underexplored class of compounds against nontuberculous mycobacterial (NTM) strains. Full article
(This article belongs to the Topic Challenges and Future Prospects of Antibacterial Therapy)
Show Figures

Figure 1

8 pages, 783 KB  
Communication
Intramolecular [2+2+2] Cyclotrimerization of a Model Triyne to [7]Helical Indeno[2,1-c]Fluorene with Air-Stable Ni(0) and Other Precatalysts
by Marina Degač and Martin Kotora
Catalysts 2025, 15(2), 150; https://doi.org/10.3390/catal15020150 - 5 Feb 2025
Viewed by 1006
Abstract
In this work, we demonstrated that air-stable Ni(0) complexes with phosphine ligands can effectively catalyze intramolecular cyclotrimerization of a triyne to a compound with a [7]helical indeno[2,1-c]fluorene skeleton. The obtained results are comparable to those achieved by using Rh-based catalytic systems. [...] Read more.
In this work, we demonstrated that air-stable Ni(0) complexes with phosphine ligands can effectively catalyze intramolecular cyclotrimerization of a triyne to a compound with a [7]helical indeno[2,1-c]fluorene skeleton. The obtained results are comparable to those achieved by using Rh-based catalytic systems. Screening of the reaction conditions showed that bidentate phosphine ligands with small bite angles (70–80°) gave the best results in terms of yields. The highest asymmetric induction with the investigated air-stable Ni(0) precatalyst was obtained using the PROPHOS ligand in HFIP (62% ee). Other catalytic systems, like [Rh(CH2=CH2)2Cl]2 and [CpCo(P{OEt}3)(trans-MeO2CHC=CHCO2Me)], have also been investigated, showing promising results. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

Back to TopTop