Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections
Abstract
:1. Introduction
2. Results
2.1. Optimization of High-Throughput Screening (HTS) Assay
2.2. Identification of Active Compounds Against Mycobacteria Biofilms
2.3. The Hit Compounds Exhibited Antimicrobial Activity in Replicating Mycobacteria In Vitro
2.4. Select Hit Compounds Demonstrated Potency Against Intracellular Mycobacteria Within Phagocytic Cells
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Culture
4.2. Synthetic Cystic Fibrosis Sputum Media
4.3. Chemicals and Compound Libraries
4.4. Compound Screening
4.5. Bacterial Viability Using Resazurin Staining
4.6. Crystal Violet (CV) Staining
4.7. Compound Activity in Pre- and Post-Biofilm Formation
4.8. Assay for 50% Inhibitory Concentration (IC50)
4.9. Assay for 50% Cytotoxic Concentration (CC50)
4.10. Compound Activity in Macrophages
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.R.; Sheng, W.H.; Hung, C.C.; Yu, C.J.; Lee, L.N.; Hsueh, P.R. Mycobacterium abscessus Complex Infections in Humans. Emerg. Infect. Dis. 2015, 21, 1638–1646. [Google Scholar] [CrossRef]
- Lopeman, R.C.; Harrison, J.; Desai, M.; Cox, J.A.G. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms 2019, 7, 90. [Google Scholar] [CrossRef]
- Honda, J.R.; Virdi, R.; Chan, E.D. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front. Microbiol. 2018, 9, 2029. [Google Scholar] [CrossRef]
- Schuurbiers, M.M.F.; Bruno, M.; Zweijpfenning, S.M.H.; Magis-Escurra, C.; Boeree, M.; Netea, M.G.; van Ingen, J.; van de Veerdonk, F.; Hoefsloot, W. Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res. 2020, 6, 00590-2020. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, W.; Liu, W.; Jiang, H.; Zong, W.; Zhang, G.; Jin, P.; Wang, H. Cutaneous infections caused by rapidly growing mycobacteria: Case reports and review of clinical and laboratory aspects. Acta Derm. Venereol. 2015, 95, 985–989. [Google Scholar] [CrossRef]
- Kendall, B.A.; Winthrop, K.L. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013, 34, 87–94. [Google Scholar] [CrossRef]
- Ryan, K.; Byrd, T.F. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front. Microbiol. 2018, 9, 2642. [Google Scholar] [CrossRef] [PubMed]
- Petrini, B. Mycobacterium abscessus: An emerging rapid-growing potential pathogen. APMIS 2006, 114, 319–328. [Google Scholar] [CrossRef]
- Keefe, B.F.; Bermudez, L.E. Environment in the lung of cystic fibrosis patients stimulates the expression of biofilm phenotype in Mycobacterium abscessus. J. Med. Microbiol. 2022, 71, 001467. [Google Scholar] [CrossRef] [PubMed]
- Greendyke, R.; Byrd, T.F. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob. Agents Chemother. 2008, 52, 2019–2026. [Google Scholar] [CrossRef]
- Qvist, T.; Eickhardt, S.; Kragh, K.N.; Andersen, C.B.; Iversen, M.; Hoiby, N.; Bjarnsholt, T. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur. Respir. J. 2015, 46, 1823–1826. [Google Scholar] [CrossRef] [PubMed]
- Hunt-Serracin, A.C.; Parks, B.J.; Boll, J.; Boutte, C.C. Mycobacterium abscessus Cells Have Altered Antibiotic Tolerance and Surface Glycolipids in Artificial Cystic Fibrosis Sputum Medium. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Rojony, R.; Danelishvili, L.; Campeau, A.; Wozniak, J.M.; Gonzalez, D.J.; Bermudez, L.E. Exposure of Mycobacterium abscessus to Environmental Stress and Clinically Used Antibiotics Reveals Common Proteome Response among Pathogenic Mycobacteria. Microorganisms 2020, 8, 698. [Google Scholar] [CrossRef]
- Rojony, R.; Martin, M.; Campeau, A.; Wozniak, J.M.; Gonzalez, D.J.; Jaiswal, P.; Danelishvili, L.; Bermudez, L.E. Quantitative analysis of Mycobacterium avium subsp. hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin. Proteomics 2019, 16, 39. [Google Scholar] [CrossRef]
- Kurbatfinski, N.; Hill, P.J.; Tobin, N.; Kramer, C.N.; Wickham, J.; Goodman, S.D.; Hall-Stoodley, L.; Bakaletz, L.O. Disruption of nontuberculous mycobacteria biofilms induces a highly vulnerable to antibiotic killing phenotype. Biofilm 2023, 6, 100166. [Google Scholar] [CrossRef]
- Chakraborty, P.; Kumar, A. The extracellular matrix of mycobacterial biofilms: Could we shorten the treatment of mycobacterial infections? Microb. Cell 2019, 6, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.J.; Bermudez, L.E. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection. Infect. Immun. 2014, 82, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Danelishvili, L.; Wu, M.; Hidaka, E.; Katsuyama, T.; Stang, B.; Petrofsky, M.; Bildfell, R.; Bermudez, L.E. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol. 2006, 8, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Babrak, L.; Danelishvili, L.; Rose, S.J.; Kornberg, T.; Bermudez, L.E. The environment of “Mycobacterium avium subsp. hominissuis” microaggregates induces synthesis of small proteins associated with efficient infection of respiratory epithelial cells. Infect. Immun. 2015, 83, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Uruen, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.T.; Yam, J.K.; Lin, S.; Salleh, S.M.; Givskov, M.; Liu, S.; Lwin, N.C.; Yang, L.; Beuerman, R.W. Biofilms of Pathogenic Nontuberculous Mycobacteria Targeted by New Therapeutic Approaches. Antimicrob. Agents Chemother. 2016, 60, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.C.M.; Ferreira, R.B.R.; Buckner, M.M.C.; Finlay, B.B. Quorum sensing in bacterial virulence. Microbiology 2010, 156, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Boopathi, S.; Ramasamy, S.; Haridevamuthu, B.; Murugan, R.; Veerabadhran, M.; Jia, A.Q.; Arockiaraj, J. Intercellular communication and social behaviors in mycobacteria. Front. Microbiol. 2022, 13, 943278. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed]
- Hawas, S.; Verderosa, A.D.; Totsika, M. Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies. Front. Cell Infect. Microbiol. 2022, 12, 850030. [Google Scholar] [CrossRef]
- Mitra, A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf. 2024, 12, 100133. [Google Scholar] [CrossRef]
- Tursi, S.A.; Puligedda, R.D.; Szabo, P.; Nicastro, L.K.; Miller, A.L.; Qiu, C.; Gallucci, S.; Relkin, N.R.; Buttaro, B.A.; Dessain, S.K.; et al. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 2020, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Cegelski, L.; Pinkner, J.S.; Hammer, N.D.; Cusumano, C.K.; Hung, C.S.; Chorell, E.; Aberg, V.; Walker, J.N.; Seed, P.C.; Almqvist, F.; et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 2009, 5, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Rojony, R.; Bermudez, L.E.; Danelishvili, L. Short-Chain Fatty Acids Promote Mycobacterium avium subsp. hominissuis Growth in Nutrient-Limited Environments and Influence Susceptibility to Antibiotics. Pathogens 2020, 9, 700. [Google Scholar] [CrossRef]
- Danelishvili, L.; Shulzhenko, N.; Chinison, J.J.J.; Babrak, L.; Hu, J.; Morgun, A.; Burrows, G.; Bermudez, L.E. Mycobacterium tuberculosis Proteome Response to Antituberculosis Compounds Reveals Metabolic “Escape” Pathways That Prolong Bacterial Survival. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Netherton, M.; Byrd, T.F.; Rohde, K.H. Reporter-Based Assays for High-Throughput Drug Screening against Mycobacterium abscessus. Front. Microbiol. 2017, 8, 2204. [Google Scholar] [CrossRef]
- Richter, A.; Strauch, A.; Chao, J.; Ko, M.; Av-Gay, Y. Screening of Preselected Libraries Targeting Mycobacterium abscessus for Drug Discovery. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Fennelly, K.P.; Ojano-Dirain, C.; Yang, Q.; Liu, L.; Lu, L.; Progulske-Fox, A.; Wang, G.P.; Antonelli, P.; Schultz, G. Biofilm Formation by Mycobacterium abscessus in a Lung Cavity. Am. J. Respir. Crit. Care Med. 2016, 193, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Kolpen, M.; Jensen, P.O.; Qvist, T.; Kragh, K.N.; Ravnholt, C.; Fritz, B.G.; Johansen, U.R.; Bjarnsholt, T.; Hoiby, N. Biofilms of Mycobacterium abscessus Complex Can Be Sensitized to Antibiotics by Disaggregation and Oxygenation. Antimicrob. Agents Chemother. 2020, 64, e01212-19. [Google Scholar] [CrossRef]
- Nathavitharana, R.R.; Strnad, L.; Lederer, P.A.; Shah, M.; Hurtado, R.M. Top Questions in the Diagnosis and Treatment of Pulmonary M. abscessus Disease. Open Forum Infect. Dis. 2019, 6, ofz221. [Google Scholar] [CrossRef] [PubMed]
- Novosad, S.A.; Beekmann, S.E.; Polgreen, P.M.; Mackey, K.; Winthrop, K.L.; Team, M.a.S. Treatment of Mycobacterium abscessus Infection. Emerg. Infect. Dis. 2016, 22, 511–514. [Google Scholar] [CrossRef]
- Nash, K.A.; Brown-Elliott, B.A.; Wallace, R.J., Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009, 53, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Maurer, F.P.; Castelberg, C.; Quiblier, C.; Bottger, E.C.; Somoskovi, A. Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus. J. Antimicrob. Chemother. 2014, 69, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Jabri, T.; Khan, N.A.; Makhlouf, Z.; Akbar, N.; Gul, J.; Shah, M.R.; Siddiqui, R. Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites. Antibiotics 2023, 12, 755. [Google Scholar] [CrossRef]
- Bunalema, L.; Ocan, M.; Bbosa, G.S.; Lubega, A.; Lanyero, H.; Nahereza, I.T. Anti-Mycobacterial and Synergistic Activity of Synthetic Acridine-9-Carboraldehyde and 9-Hydroxy-4-Methoxy Acridine Alkaloids against Clinical Isolates of Multidrug-Resistant Mycobacterium Tuberculosis. J. Pharm. Pharmacol. Res. 2022, 6, 25–34. [Google Scholar] [CrossRef]
- Petrikaite, V.; Tarasevicius, E.; Pavilonis, A. New ethacridine derivatives as the potential antifungal and antibacterial preparations. Medicina 2007, 43, 657. [Google Scholar] [CrossRef]
- Junka, A.; Bartoszewicz, M.; Smutnicka, D.; Secewicz, A.; Szymczyk, P. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int. Wound J. 2014, 11, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, P.K. Mycobacterium tuberculosis inhibitors: Action and resistance. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2018. [Google Scholar] [CrossRef]
- Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Kristiansen, J.E. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.; Sidner, B.S.; Yu, Y.; Piepenbrink, K.H. Type IV Pilus-Mediated Inhibition of Acinetobacter baumannii Biofilm Formation by Phenothiazine Compounds. Microbiol. Spectr. 2023, 11, e0102323. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, O.; Molnar, A.; Butterworth, T.S.; Butaye, P.; Kolmos, H.J.; Christensen, J.B.; Kristiansen, J.E. In vitro activity of phenothiazine derivatives in Enterococcus faecalis and Enterococcus faecium. Basic. Clin. Pharmacol. Toxicol. 2005, 96, 33–36. [Google Scholar] [CrossRef]
- Fiallos, N.M.; Ribeiro Aguiar, A.L.; da Silva, B.N.; Pergentino, M.L.M.; Rocha, M.F.G.; Sidrim, J.J.C.; Maia, D.; Cordeiro, R.A. The Potential of Phenothiazines against Endodontic Pathogens: A Focus on Enterococcus-Candida Dual-Species Biofilm. Antibiotics 2022, 11, 1562. [Google Scholar] [CrossRef]
- Warman, A.J.; Rito, T.S.; Fisher, N.E.; Moss, D.M.; Berry, N.G.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A. Antitubercular pharmacodynamics of phenothiazines. J. Antimicrob. Chemother. 2013, 68, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.I.; El-Ganiny, A.M.; Eissa, A.G.; Noureldin, N.A.; Nazeih, S.I. Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa. J. Antibiot. 2024, 77, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.Y.; Ong, Y.M.; Chua, K.L. Synergistic interaction between phenothiazines and antimicrobial agents against Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2007, 51, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Vega, L.; Lopez-Jacome, L.E.; Franco, B.; Munoz-Carranza, S.; Vargas-Maya, N.; Franco-Cendejas, R.; Hernandez-Duran, M.; Otero-Zuniga, M.; Campo-Beleno, C.; Jimenez-Cortes, J.G.; et al. Antibacterial properties of phenothiazine derivatives against multidrug-resistant Acinetobacter baumannii strains. J. Appl. Microbiol. 2021, 131, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Vlad, I.M.; Nuta, D.C.; Ancuceanu, R.V.; Caproiou, M.T.; Dumitrascu, F.; Marinas, I.C.; Chifiriuc, M.C.; Marutescu, L.G.; Zarafu, I.; Papacocea, I.R.; et al. New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives with MI-Crobicidal and Antibiofilm Activity Enhanced by Combination with Iron Oxide Nanoparticles. Molecules 2021, 26, 3002. [Google Scholar] [CrossRef] [PubMed]
- Rezayan, A.H.; Hariri, S.; Azerang, P.; Ghavami, G.; Portugal, I.; Sardari, S. Synthesis of Novel Fluorene Bisamide Derivatives via Ugi Reaction and Evaluation their Biological Activity against Mycobacterium species. Iran. J. Pharm. Res. 2017, 16, 745–755. [Google Scholar]
- Eke, I.E.; Williams, J.T.; Haiderer, E.R.; Albrecht, V.J.; Murdoch, H.M.; Abdalla, B.J.; Abramovitch, R.B. Discovery and characterization of antimycobacterial nitro-containing compounds with distinct mechanisms of action and in vivo efficacy. Antimicrob. Agents Chemother. 2023, 67, e0047423. [Google Scholar] [CrossRef]
- Chollet, A.; Mori, G.; Menendez, C.; Rodriguez, F.; Fabing, I.; Pasca, M.R.; Madacki, J.; Kordulakova, J.; Constant, P.; Quemard, A.; et al. Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth. Eur. J. Med. Chem. 2015, 101, 218–235. [Google Scholar] [CrossRef]
- Ahmed, S.; Manning, A.; Flint, L.; Awasthi, D.; Ovechkina, Y.; Parish, T. Identification of Novel Chemical Scaffolds that Inhibit the Growth of Mycobacterium tuberculosis in Macrophages. Front. Pharmacol. 2021, 12, 790583. [Google Scholar] [CrossRef] [PubMed]
- El-Gharably, A.A.; Nassar, A.A.; El-Ganzory, N.M.; Saad-Allah, K.M.; El-Barbary, A.A. Sulfoxidation of pyrimidine thioate derivatives and study their biological activities. Sci. Rep. 2025, 15, 1024. [Google Scholar] [CrossRef]
- Guo, M.J.; Hildbrand, S.; Leumann, C.J.; McLaughlin, L.W.; Waring, M.J. Inhibition of DNA polymerase reactions by pyrimidine nucleotide analogues lacking the 2-keto group. Nucleic Acids Res. 1998, 26, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Kumar, R.; Kunimoto, D.; Rayat, G.R. Anti-Mycobacterial Activity of Flavonoid and Pyrimidine Compounds. Molecules 2022, 27, 6714. [Google Scholar] [CrossRef]
- Cui, Q.; Shin, W.S.; Luo, Y.; Tian, J.; Cui, H.; Yin, D. Thymidylate kinase: An old topic brings new perspectives. Curr. Med. Chem. 2013, 20, 1286–1305. [Google Scholar] [CrossRef]
- Gjorgjieva, M.; Tomasic, T.; Kikelj, D.; Masic, L.P. Benzothiazole-based Compounds in Antibacterial Drug Discovery. Curr. Med. Chem. 2018, 25, 5218–5236. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.; Verma, S.; Gupta, P.; Narang, R.; Lal, S.; Devgun, M. Recent insights into antibacterial potential of benzothiazole derivatives. Med. Chem. Res. 2023, 32, 1543–1573. [Google Scholar] [CrossRef]
- Zha, L.; Xie, Y.; Wu, C.; Lei, M.; Lu, X.; Tang, W.; Zhang, J. Novel benzothiazole–urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur. J. Med. Chem. 2022, 236, 114333. [Google Scholar] [CrossRef]
- Carbone, A.; Parrino, B.; Cusimano, M.G.; Spano, V.; Montalbano, A.; Barraja, P.; Schillaci, D.; Cirrincione, G.; Diana, P.; Cascioferro, S. New Thiazole Nortopsentin Analogues Inhibit Bacterial Biofilm Formation. Mar. Drugs 2018, 16, 274. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Petrofsky, M.; Kolonoski, P.; Young, L.S. An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract. J. Infect. Dis. 1992, 165, 75–79. [Google Scholar] [CrossRef]
- Palmer, K.L.; Aye, L.M.; Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 2007, 189, 8079–8087. [Google Scholar] [CrossRef] [PubMed]
Compound | Structure | SMILES Molecular Formula | Name |
---|---|---|---|
1 | CCOc1ccc2nc3cc(ccc3c(c2c1)N)N C15H15N3O | Ethacridine | |
2 | CN(Cc1ccccc1)c1cc(ncn1)-c1ccccc1 C18H17N3 | N-benzyl-N-methyl-6-phenylpyrimidin-4-amine | |
3 | Fc1ccc(cc1)NC(=O)Nc1csc2ccccc12 C15H11FN2OS | N-(1-benzothiophen-3-yl)-N′-(4-fluorophenyl)urea | |
4 | OC(COc1ccc(cc1)Br)CS(=O)(=O)c1ccc(cc1)Cl C15H14BrClO4S | 1-(4-Bromophenoxy)-3-(4-chlorophenyl)sulfonylpropan-2-ol | |
5 | S=C(Nc1ccccc1)N1c2ccccc2Sc2ccccc21 C19H14N2S2 | N-phenylphenothiazine-10-carbothioamide | |
6 | [O-][N+](=O)c1cc(ccc1Oc1ccc(cc1)/C(=C/c1ccc(cc1)C(F)(F)F)C#N)C(F)(F)F C23H12F6N2O3 | (Z)-2-[4-[2-nitro-4-(trifluoromethyl)phenoxy]phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enenitrile | |
7 | Cc1ccc2oc(nc2c1)-c1cccc(c1)Cl C14H10ClNO | 2-(3-Chlorophenyl)-5-methylbenzo[d]oxazole | |
8 | Fc1cc(c(c(c1)Br)/N=C/1\SCC(=O)N1Cc1cccs1)Br C14H9Br2FN2OS2 | 2-(2,6-Dibromo-4-fluorophenyl)imino-3-(thiophen-2-ylmethyl)-1,3-thiazolidin-4-one | |
9 | FC(F)(F)c1cc(cc(c1)C(F)(F)F)Oc1ccc(cc1)NC(=S)NCC=C C18H14F6N2OS | 1-[4-[3,5-Bis(trifluoromethyl)phenoxy]phenyl]-3-prop-2-enylthiourea | |
10 | Nc1ccc(cc1)Oc1cccc(c1)Oc1ccc(cc1)N C18H16N2O2 | 1,3-Bis(4-aminophenoxy)benzene | |
11 | Cc1cc(ccc1Br)/N=C/c1ccc(cc1)[N+](=O)[O-] C14H11BrN2O2 | N-(4-bromo-3-methylphenyl)-1-(4-nitrophenyl)methanimine | |
12 | Cn1cc(c(n1)/C=C(\C#N)S(=O)(=O)c1ccccn1)Cl C12H9ClN4O2S | (E)-3-(4-chloro-1-methylpyrazol-3-yl)-2-pyridin-2-ylsulfonylprop-2-enenitrile | |
13 | O=C(NC(=S)NNc1ncccc1-n1cccc1)c1ccccc1 C17H15N5OS | Cyto10B8 | |
14 | CCN(CC)c1ccc(c(c1)C)/N=C\1/C=CC(=O)c2ccccc21 C21H22N2O | 4-((4-(Diethylamino)-2-methylphenyl)imino)naphthalen-1(4H)-one | |
15 | COc1ccc(cc1)NC(=S)NNC(=O)C1=Nc2ccccc2C(=O)N1 C17H15N5O3S | 1-(4-methoxyphenyl)-3-[(4-oxo-3H-quinazoline-2-carbonyl)amino]thiourea | |
16 | Oc1cc(cc2c1-c1ccc(cc1C2=O)[N+](=O)[O-])[N+](=O)[O-] C13H6N2O6 | 4-Hydroxy-2,7-dinitrofluoren-9-one | |
17 | Clc1ccc(cc1)-c1csc(n1)N1C(=O)c2ccccc2C1=O C17H9ClN2O2S | 2-(4-(4-Chlorophenyl)thiazol-2-yl)isoindoline-1,3-dione |
Compound | IC50 [μM] | |||||
---|---|---|---|---|---|---|
MAB19977 | DNA 01627 | NR49093 Strain DJO44274 | NR44273 Strain 4529 | MAH104 | MAHA5 | |
1 | 3 | 10 | 10 | 3 | 10 | 10 |
2 | 10 | 10 | 10 | 10 | 10 | 10 |
3 | 32 | 32 | 32 | 32 | 100 | 100 |
4 | 100 | 100 | 32 | 32 | - | - |
5 | 32 | 32 | 32 | 32 | 10 | 10 |
6 | 3 | 3 | 10 | 10 | 3 | 3 |
7 | 100 | 100 | 100 | 100 | 32 | 32 |
8 | 3 | 3 | 3 | 3 | 10 | 10 |
9 | 10 | - | - | - | 32 | 100 |
10 | 10 | 10 | 32 | 32 | - | - |
11 | 10 | 10 | 32 | 32 | 100 | 100 |
12 | 10 | 10 | - | - | 100 | 100 |
13 | 32 | 32 | 10 | 32 | 10 | 10 |
14 | 10 | 10 | 10 | 10 | 10 | 10 |
15 | 100 | - | - | - | 32 | 100 |
16 | 3 | 3 | 3 | 3 | 10 | 10 |
17 | 10 | - | - | - | 10 | - |
Compound | THP-1 Cytotoxicity [μM] | Intracellular Killing in THP-1 Cells | |
---|---|---|---|
MAB19977 | MAH104 | ||
1 | 32 | Yes | Yes |
5 | 100 | Yes | Yes |
7 | 100 | * | * |
11 | 32 | * | Yes |
14 | 10 | * | * |
16 | 32 | Yes | Yes |
Order | Reagent Name | Stock Solution | Volume for 1 L |
---|---|---|---|
1 | NaH2PO4 | 0.2 M | 6.5 mL |
2 | Na2HPO4 | 0.2 M | 6.25 mL |
3 | KNO3 | 1 M | 0.348 mL |
4 | NH4Cl | - | 0.122 g |
5 | KCl | - | 1.114 g |
6 | NaCl | - | 3.03 g |
7 | MOPS | 10 mM | 10 mL |
8 | DI H2O | - | 779.6 mL |
9 | l-aspartate, | 0.5 M in NaOH | 8.27 mL |
10 | l-threonine | 100mM | 10.72 mL |
11 | l-serine | 100 mM | 14.46 mL |
12 | l-glutamate·HCl | 100 mM | 15.49 mL |
13 | l-proline | 100 mM | 16.61 mL |
14 | l-glycine | 100 mM | 12.03 mL |
15 | l-alanine | 100 mM | 17.8 mL |
16 | l-cysteine·HCl | 100 mM | 1.6 mL |
17 | l-valine | 100 mM | 11.17 mL |
18 | l-methionine | 100 mM | 6.33 mL |
19 | l-isoleucine | 100 mM | 11.2 mL |
20 | l-leucine | 100 mM | 16.09 mL |
21 | l-tyrosine | 1 M in NaOH | 8.02 mL |
22 | l-phenylalanine | 100 mM | 5.3 mL |
23 | l-ornithine·HCl, | 100 mM | 6.76 mL |
24 | l-lysine·HCl, | 100 mM | 21.28 mL |
25 | l-histidine·HCl, | 100 mM | 5.19 mL |
26 | l-tryptophan | 0.2 M in NaOH | 0.13 mL |
27 | l-arginine·HCl | 100 mM | 3.06 mL |
28 | CaCl2 | 1 M | 1.754 mL |
29 | MgCl2 | 1 M | 0.606 mL |
30 | FeSO4·7H2O | 3.6 mM | 1 mL |
31 | d-glucose | 1 M | 3 mL |
32 | l-lactate | 1 M | 9.3 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzalamidze, E.; Gorzynski, M.; Vande Voorde, R.; Nelson, D.; Danelishvili, L. Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals 2025, 18, 225. https://doi.org/10.3390/ph18020225
Dzalamidze E, Gorzynski M, Vande Voorde R, Nelson D, Danelishvili L. Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals. 2025; 18(2):225. https://doi.org/10.3390/ph18020225
Chicago/Turabian StyleDzalamidze, Elizaveta, Mylene Gorzynski, Rebecca Vande Voorde, Dylan Nelson, and Lia Danelishvili. 2025. "Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections" Pharmaceuticals 18, no. 2: 225. https://doi.org/10.3390/ph18020225
APA StyleDzalamidze, E., Gorzynski, M., Vande Voorde, R., Nelson, D., & Danelishvili, L. (2025). Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals, 18(2), 225. https://doi.org/10.3390/ph18020225