Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = focused beam reflectance measurement (FBRM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1589 KB  
Article
Structural Analysis of Aggregates in Clayey Tailings Treated with Coagulant and Flocculant
by Steven Nieto, Eder Piceros, Elter Reyes, Jahir Ramos, Pedro Robles and Ricardo Jeldres
Minerals 2025, 15(6), 627; https://doi.org/10.3390/min15060627 - 10 Jun 2025
Viewed by 779
Abstract
This study evaluated the combined effect of a cationic coagulant (Magnafloc 1727®) and a high molecular weight anionic flocculant (SNF 604®) on the settling properties, aggregate structure, and rheological behavior of synthetic tailings suspensions composed of kaolinite and quartz [...] Read more.
This study evaluated the combined effect of a cationic coagulant (Magnafloc 1727®) and a high molecular weight anionic flocculant (SNF 604®) on the settling properties, aggregate structure, and rheological behavior of synthetic tailings suspensions composed of kaolinite and quartz in industrial water at pH 11. Settling tests, focused beam reflectance measurement (FBRM), zeta potential measurement, and rheological characterization were used to analyze the system’s performance under different coagulant dosages (0–150 g/t), while keeping the flocculant dosage constant (20 g/t). The results indicated that the coagulant favored surface charge neutralization, shifting the zeta potential from −13.2 mV to +4.0 mV. This resulted in larger, more efficient flocs capturing fines, with a 46% turbidity reduction. FBRM analysis revealed a significant increase in aggregate size and a slight decrease in fractal dimension (from 2.35 to 2.20), consistent with larger volume structures and lower bulk density. Rheologically, a substantial increase in yield stress was observed, especially in 50 wt% suspensions, suggesting the development of a continuous flocculated network with greater mechanical strength. These findings highlight the importance of sequential chemical conditioning in clayey tailings and its impact on clarification efficiency and water recovery under alkaline conditions representative of industrial mining processes. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 2346 KB  
Article
Structure–Performance Relationship of Anionic Polyacrylamide in Pyrite-Containing Tailings: Insights into Flocculation Efficiency
by Steven Nieto, Eder Piceros, Gonzalo R. Quezada, Pedro Robles and Ricardo I. Jeldres
Polymers 2025, 17(8), 1055; https://doi.org/10.3390/polym17081055 - 14 Apr 2025
Cited by 1 | Viewed by 1189
Abstract
Functional polymeric materials play a critical role in optimizing flocculation and sedimentation processes in mining tailings, where complex interactions with mineral surfaces govern polymer performance. This study examines the structure–performance relationship, which describes how the internal structure of aggregates (e.g., compactness, porosity and [...] Read more.
Functional polymeric materials play a critical role in optimizing flocculation and sedimentation processes in mining tailings, where complex interactions with mineral surfaces govern polymer performance. This study examines the structure–performance relationship, which describes how the internal structure of aggregates (e.g., compactness, porosity and fractal dimension) influences sedimentation behavior, specifically for anionic polyacrylamide (SNF 704) in kaolin-quartz-pyrite suspensions at a pH of 10.5. Using focused beam reflectance measurement (FBRM) and static sedimentation tests, we demonstrate that pyrite exhibits the highest flocculant adsorption capacity, inducing a train-like polymer conformation on its surface. This reduces the formation of effective polymeric bridges, resulting in less compact and more porous aggregates that negatively impact sedimentation rates. Increasing the flocculant dosage improves the capture of fine particles; however, at high pyrite concentrations, rapid saturation of adsorption sites limits flocculation efficiency. Additionally, the fractal dimension of the aggregates decreases with increasing pyrite content, revealing more open structures that hinder consolidation. These findings underscore the importance of optimizing polymer dosage and tailoring flocculant design to the mineralogical composition, thereby enhancing water recovery and sustainability in mining operations. This study highlights the role of structure–property relationships in polymeric flocculants and their potential for next-generation tailings management solutions. Full article
Show Figures

Figure 1

21 pages, 1693 KB  
Article
Process Analytical Technology Obtained Metastable Zone Width, Nucleation Rate and Solubility of Paracetamol in Isopropanol—Theoretical Analysis
by Mahmoud Ranjbar, Mayank Vashishtha, Gavin Walker and K. Vasanth Kumar
Pharmaceuticals 2025, 18(3), 314; https://doi.org/10.3390/ph18030314 - 24 Feb 2025
Cited by 3 | Viewed by 1555
Abstract
Background: Metastable zone width (MSZW) and solubility are crucial for developing crystallization procedures in the purification of active pharmaceutical ingredients (APIs). Traditionally, determining these properties involves labor-intensive methods that can take weeks or even months. With advancements in process analytical technologies (PAT) and [...] Read more.
Background: Metastable zone width (MSZW) and solubility are crucial for developing crystallization procedures in the purification of active pharmaceutical ingredients (APIs). Traditionally, determining these properties involves labor-intensive methods that can take weeks or even months. With advancements in process analytical technologies (PAT) and the increasing focus on quality by design (QbD) in pharmaceutical manufacturing, more efficient and reliable protocols are needed. In this study, we employ in situ Fourier Transform Infrared (FTIR) spectroscopy and Focused Beam Reflectance Measurement (FBRM) to establish protocols for measuring solubility at different temperatures and MSZW at varying cooling rates. Methods: We experimentally determined MSZW and solubility using FTIR spectroscopy and FBRM. IR spectra were analyzed to obtain solubility concentrations, while FBRM counts were used to extract MSZW and supersolubility concentrations. The collected data were assessed using four theoretical models, including a newly developed model based on classical nucleation theory. By fitting experimental MSZW data to these models, we determined nucleation kinetics and thermodynamic parameters. Results: Our novel model exhibited excellent agreement with experimental MSZW data across different cooling rates, demonstrating its robustness. The nucleation rate constant and nucleation rate ranged between 10²¹ and 10²² molecules/m³·s. The Gibbs free energy of nucleation was calculated as 3.6 kJ/mol, with surface energy values between 2.6 and 8.8 mJ/m². The estimated critical nucleus radius was in the order of 10⁻³ m. Conclusions: The protocols we developed for predicting MSZW and solubility of paracetamol using PAT can serve as a guideline for other APIs. Our theoretical model enhances the predictive accuracy of nucleation kinetics and thermodynamics, contributing to optimized crystallization processes. Full article
Show Figures

Figure 1

13 pages, 4199 KB  
Article
Utilization of Lead Nitrate to Enhance the Impact of Hydroxamic Acids on the Hydrophobic Aggregation and Flotation Behavior of Cassiterite
by Saizhen Jin, Xiaobo Liu, Yun Feng, Yanfei Chen, Mengtao Wang and Qingfei Xiao
Molecules 2024, 29(15), 3692; https://doi.org/10.3390/molecules29153692 - 4 Aug 2024
Cited by 1 | Viewed by 1584
Abstract
Lead nitrate (LN) is frequently employed as an activator in the flotation of cassiterite using hydroxamic acids as the collectors. This study investigated the effect of LN on the hydrophobic aggregation of cassiterite when benzohydroxamic acid (BHA), hexyl hydroxamate (HHA), and octyl hydroxamate [...] Read more.
Lead nitrate (LN) is frequently employed as an activator in the flotation of cassiterite using hydroxamic acids as the collectors. This study investigated the effect of LN on the hydrophobic aggregation of cassiterite when benzohydroxamic acid (BHA), hexyl hydroxamate (HHA), and octyl hydroxamate (OHA) were used as the collectors through micro-flotation, focused beam reflectance measurement (FBRM) and a particle video microscope (PVM), zeta potential, and the extended DLVO theory. Micro-flotation tests confirmed that LN activated the flotation of cassiterite using the hydroxamic acids as collectors. Focused beam reflectance measurement (FBRM) and a particle video microscope (PVM) were used to capture in situ data on the changes in size distribution and morphology of cassiterite aggregates during stirring. The FBRM and PVM image results indicated that the addition of LN could promote the formation of hydrophobic aggregates of fine cassiterite, when BHA or HHA was used as the collector, and reduce the dosage of OHA needed to induce the formation of hydrophobic aggregates of cassiterite. The extended DLVO theory interaction energies indicated that the presence of LN could decrease the electrostatic interaction energies (Vedl) and increase the hydrophobic interaction energies (Vhy) between cassiterite particles, resulting in the disappearance of the high energy barriers that existed between the particles in the absence of LN. Thus, cassiterite particles could aggregate in the presence of LN when BHA, HHA, or a low concentration of OHA was used as the collector. Full article
(This article belongs to the Special Issue Molecular Structure of Minerals)
Show Figures

Figure 1

21 pages, 5069 KB  
Article
An Investigation of the Impact of Precipitation Temperature and Filter Cake Thickness on the Physical Stability of Amorphous Solids: A Case Study
by Zunhua Li, Xu Liao, Zicheng Gong, Bowen Zhang and Asad Nawaz
Molecules 2024, 29(10), 2327; https://doi.org/10.3390/molecules29102327 - 15 May 2024
Cited by 4 | Viewed by 1948
Abstract
The purpose of this study was to resolve the issue of physical instability in amorphous solid drugs, which can result in unwanted crystallization, affecting solubility and dissolution rates. The focus was on precipitating physically stable amorphous forms of the nilotinib free base, an [...] Read more.
The purpose of this study was to resolve the issue of physical instability in amorphous solid drugs, which can result in unwanted crystallization, affecting solubility and dissolution rates. The focus was on precipitating physically stable amorphous forms of the nilotinib free base, an anticancer drug, by monitoring preparation conditions such as precipitation temperature and filter cake thickness. A comprehensive set of characterization techniques, including powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and focused beam reflectance measurement (FBRM), were used. These were supplemented by advanced data analysis methods that incorporated pair distribution function (PDF), reduced crystallization temperature (Rc), and principal component analysis (PCA) to evaluate the physical stability of the amorphous samples. Results emphasized that optimal physical stability was achieved when amorphous solids were prepared at a precipitation temperature of 10 °C and a filter cake thickness of 4 cm. Moreover, the integration of PDF analysis with Rc values was confirmed as an innovative approach for assessing physical stability, thus offering enhanced efficiency and accuracy over conventional accelerated stability testing methods. Full article
Show Figures

Figure 1

17 pages, 5649 KB  
Article
Preparation of a Lignin-Based Cationic Flocculant and Its Application in Kaolin Suspension Treatment
by Yan Li, Suling Yao, Xianshu Dong, Yuping Fan, Xiaomin Ma, Benkang Zhu and Ming Chang
Polymers 2024, 16(8), 1131; https://doi.org/10.3390/polym16081131 - 17 Apr 2024
Cited by 3 | Viewed by 2396
Abstract
The preparation of an environmentally friendly and efficient flocculant for solid-liquid separation in industrial wastewater is highly important. In this study, a novel cationic flocculant (AL-g-PAMA) was synthesized by a thermal initiation method using alkali lignin (AL) as the main chain and acrylamide [...] Read more.
The preparation of an environmentally friendly and efficient flocculant for solid-liquid separation in industrial wastewater is highly important. In this study, a novel cationic flocculant (AL-g-PAMA) was synthesized by a thermal initiation method using alkali lignin (AL) as the main chain and acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as the grafted side chains. The structure, thermal stability, and surface morphology of the copolymers were investigated by various characterization methods. The results indicated the successful synthesis of AL-g-PAMA. AL-g-PAMA was applied to improve solid-liquid separation in kaolin suspensions. The results showed that AL-g-PAMA had excellent flocculation-sedimentation and dewatering efficiency. When the dosage of AL-g-PAMA #5 was 600.0 g/t(s), the thickness of the compressed layer was 2.2 cm, the floc settling velocity was 24.1 cm/min, and the transmittance of the supernatant was 84.0%. The moisture content of the filter cake decreased from 55.0% to 43.4% after treatment with AL-g-PAMA #5. The results of zeta potential and focused beam reflectance measurement (FBRM) analysis indicated that bridging and electroneutralization were the main flocculation mechanisms. Therefore, this study extends the potential for using lignin as a bioflocculant and provides a feasible approach to efficiently purify high-turbidity wastewater. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

34 pages, 12280 KB  
Review
Monitoring Aggregation Processes in Multiphase Systems: A Review
by Maria Graça Rasteiro and Antti Koponen
Powders 2024, 3(1), 77-110; https://doi.org/10.3390/powders3010007 - 14 Mar 2024
Cited by 6 | Viewed by 2660
Abstract
Particle aggregation is essential in many industrial processes, spanning the pharmaceutical and food industries, polymer production, and the environment, among others. However, aggregation can also occur, in some processes, as a non-desired side effect. Thus, to be able to monitor aggregation in industrial [...] Read more.
Particle aggregation is essential in many industrial processes, spanning the pharmaceutical and food industries, polymer production, and the environment, among others. However, aggregation can also occur, in some processes, as a non-desired side effect. Thus, to be able to monitor aggregation in industrial processes is of high importance to guarantee that the final, required product characteristics are obtained. In this paper, we present an extensive review of the different techniques available for monitoring particle characteristics in industrial processes involving particulate materials, with special emphasis on aggregation processes. These methods include both off-line and on-line techniques, based either on image acquisition techniques or different radiation scattering techniques (light-scattering and ultrasound spectroscopy). The principles behind each technique are addressed, together with their relevant applications, advantages, and disadvantages. Full article
Show Figures

Figure 1

19 pages, 3061 KB  
Article
Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids
by Zunhua Li, Zicheng Gong, Bowen Zhang and Asad Nawaz
Molecules 2024, 29(6), 1275; https://doi.org/10.3390/molecules29061275 - 13 Mar 2024
Cited by 6 | Viewed by 3078
Abstract
Amorphous solids exhibit enhanced solubility and dissolution rates relative to their crystalline counterparts. However, attaining optimal bioavailability presents a challenge, primarily due to the need to maintain the physical stability of amorphous solids. Moreover, the precise manner in which precipitation parameters, including the [...] Read more.
Amorphous solids exhibit enhanced solubility and dissolution rates relative to their crystalline counterparts. However, attaining optimal bioavailability presents a challenge, primarily due to the need to maintain the physical stability of amorphous solids. Moreover, the precise manner in which precipitation parameters, including the feeding rate of the anti-solvent, agitation speed, and aging time, influence the physical stability of amorphous solids remains incompletely understood. Consequently, this study aimed to investigate these three parameters during the precipitation process of the anticancer drug, nilotinib free base. The physical stability of the resultant samples was evaluated by employing characterization techniques including powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), focused beam reflectance measurement (FBRM), and data analysis methods such as pair distribution function (PDF), reduced crystallization temperature (Rc), and principal component analysis (PCA). This study’s findings indicated that amorphous solids exhibited the greatest physical stability under particular conditions, namely a feeding rate of 5 mL/min, an agitation speed of 500 rpm, and an aging time of 10 min. Furthermore, the physical stability of the amorphous solids was primarily influenced by particle size and distribution, molecular interactions, microstructure, surface area, and interfacial energy. Notably, the parameters involved in the anti-solvent precipitation process, including the feeding rate of the anti-solvent, agitation speed, and aging time, exerted a significant impact on these factors. Consequently, they directly affected the physical stability of amorphous solids. Hence, this study comprehensively elucidated the mechanistic influence of these operational parameters on the physical stability of amorphous solids during the anti-solvent precipitation process. Full article
Show Figures

Figure 1

12 pages, 2869 KB  
Review
Recent Advances in the Monitoring of Protein Crystallization Processes in Downstream Processing
by Brigitte Walla, Daniel Bischoff, Iliana Corona Viramontes, Sergio Montes Figueredo and Dirk Weuster-Botz
Crystals 2023, 13(5), 773; https://doi.org/10.3390/cryst13050773 - 6 May 2023
Cited by 10 | Viewed by 5422
Abstract
Protein crystallization is nowadays performed at the micro to macro scale in academia and industry, being particularly interesting for pharmaceutical applications. Protein crystallization offers an attractive alternative to chromatography as a downstream processing step in the biotechnology industry, but also in the food [...] Read more.
Protein crystallization is nowadays performed at the micro to macro scale in academia and industry, being particularly interesting for pharmaceutical applications. Protein crystallization offers an attractive alternative to chromatography as a downstream processing step in the biotechnology industry, but also in the food and chemical industries. Monitoring of the protein crystallization process is required to understand the crystal growth mechanism and to obtain the information necessary for efficient process control, which needs to comply with the critical quality attributes of the product. Since a wide range of monitoring techniques have already been developed and established, this review focuses on the recent advances of selected techniques in monitoring protein crystallization processes such as the focused beam reflectance method (FBRM), and machine learning-based image analysis for solid-phase monitoring, as well as the spectroscopic methods for liquid-phase monitoring, such as attenuated total reflectance Fourier transform infrared (ATR-FTIR) and UV/Vis spectroscopy. Full article
Show Figures

Figure 1

16 pages, 5348 KB  
Article
Hydrophobic Flocculation of Fine Cassiterite Using Alkyl Hydroxamic Acids with Different Carbon Chain Lengths as Collectors
by Saizhen Jin, Qing Shi and Leming Ou
Molecules 2023, 28(9), 3911; https://doi.org/10.3390/molecules28093911 - 5 May 2023
Cited by 4 | Viewed by 2325
Abstract
This work investigated the hydrophobic flocculation of cassiterite using four alkyl hydroxamic acids with varying carbon chain lengths, i.e., hexyl hydroxamate (C6), octyl hydroxamate (C8), decyl hydroxamate (C10) and dodecyl hydroxamate (C12), as collectors. Microflotation [...] Read more.
This work investigated the hydrophobic flocculation of cassiterite using four alkyl hydroxamic acids with varying carbon chain lengths, i.e., hexyl hydroxamate (C6), octyl hydroxamate (C8), decyl hydroxamate (C10) and dodecyl hydroxamate (C12), as collectors. Microflotation tests were performed to investigate the flotation behaviour of cassiterite in the presence of the four alkyl hydroxamic acids. Focused beam reflectance measurement (FBRM) and a particle video microscope (PVM) were used to analyse and monitor the real-time evolution of the particle size distribution of cassiterite and the images of flocs during flocculation. The extended DLVO theory interaction energies between the cassiterite particles were calculated on the basis of the measured contact angle and the zeta potential of cassiterite to determine the aggregation and dispersion behaviour of the cassiterite particles. The microflotation test results suggested that the floatability of cassiterite improved with the increase in the carbon chain length of hydroxamates. FBRM, PVM images and extended DLVO theory calculation results indicated that when C6 was used as the collector, the cassiterite particles could not form hydrophobic flocs because the total potential energy between them was repulsive. When C8, C10 and C12 were used as collectors, the energy barrier amongst particles decreased with increasing hydroxamate concentration. The lowest concentrations of C8, C10 and C12 that could cause the hydrophobic aggregation of cassiterite were approximately 1 × 10−3, 1 × 10−4 and 2 × 10−5 mol/L, respectively. The aggregation growth rate and apparent floc size increased with an increasing collector concentration. Hydroxamic acid with a longer carbon chain could induce the cassiterite particles to form larger flocs at a lower concentration in a shorter time. Full article
Show Figures

Figure 1

15 pages, 7126 KB  
Article
Flocculation Behavior of Ultrafine Silica Particles in Acid Leaching Pulp by Nonionic Polymeric Flocculants
by Bao Guo, Xinlei Zhan, Kaixi Jiang, Hongzhen Xie and Rongdong Deng
Minerals 2023, 13(4), 582; https://doi.org/10.3390/min13040582 - 21 Apr 2023
Cited by 6 | Viewed by 3173
Abstract
Sedimentation of ultrafine silica particles that exist in acid leaching pulp and their separation from Pregnant Leach Solution largely determines the efficiency of a hydrometallurgical process utilizing copper oxide ore. Thickener on a larger scale can allow longer sedimentation, generating low overflow turbidity [...] Read more.
Sedimentation of ultrafine silica particles that exist in acid leaching pulp and their separation from Pregnant Leach Solution largely determines the efficiency of a hydrometallurgical process utilizing copper oxide ore. Thickener on a larger scale can allow longer sedimentation, generating low overflow turbidity but high economic input. In this paper, the flocculation behavior of quartz particles in sulfuric acid solution using nonionic flocculants polyethylene oxide (PEO) and polyacrylamide (PAM), as well as ionic cofactor montmorillonite (MMT) and nonionic cofactor tannic acid (TA), were investigated, with the dynamic size of flocs and counts of fines being monitored using an in situ particle size measurement technique, namely the focused beam reflectance measurement (FBRM), under turbulent conditions. Attention was paid to variables affecting quartz flocculation properties from both physicochemical and hydrodynamic aspects such as shear intensity. The flocculation mechanism was investigated using zeta potential and dynamic light scattering measurements. It was found that the TA promotes the bridging flocculation of PEO-quartz by forming associative complexes with larger clusters in solution, while MMT electrostatically adsorbs on the quartz surface, enhancing its bridging with PAM. Low turbidity benefited from the higher shear resistance of the compact flocs structure provided by PEO/PEO + TA/PAM + MMT. Efficient solid–liquid separation was achieved by using the synergistic flocculation of small molecule cofactors and polymer flocculants. Full article
(This article belongs to the Special Issue Advances on Fine Particles and Bubbles Flotation)
Show Figures

Figure 1

20 pages, 4413 KB  
Article
Inline Particle Size Analysis during Technical-Scale Processing of a Fermented Concentrated Milk Protein-Based Microgel Dispersion: Feasibility as a Process Control
by Anisa Heck, Stefan Nöbel and Jörg Hinrichs
Dairy 2023, 4(1), 180-199; https://doi.org/10.3390/dairy4010013 - 21 Feb 2023
Cited by 1 | Viewed by 3379
Abstract
Particle size is not only important for the sensory perception of fat-free fermented concentrated milk products, but also for processing operations because of the direct relationship with apparent viscosity. The aim of this study was to apply inline particle size analysis using focused [...] Read more.
Particle size is not only important for the sensory perception of fat-free fermented concentrated milk products, but also for processing operations because of the direct relationship with apparent viscosity. The aim of this study was to apply inline particle size analysis using focused beam reflectance measurement (FBRM) to obtain real-time information regarding the particle size of a fat-free fermented concentrated milk product, namely, fresh cheese. By comparing inline particle size data to offline particle size, apparent viscosity, protein content and processing information, the potential to use inline particle size analysis as a process monitoring and control option during fresh cheese production was assessed. Evaluation of inline particle size after fermentation and before further processing, e.g., after a buffering tank, shows promise as a means to control variance of product entering downstream processing and, thus, improve final product consistency over time. Measurement of inline particle size directly before filling could allow for precise control of final product characteristics by the use of mechanical or mixing devices placed before the inline measurement. However, attention should be given to the requirements of the inline measurement technology for accurate measurement, such as product flow rate and pressure. Full article
(This article belongs to the Special Issue Tailoring Physical Properties of Fermented Dairy Products)
Show Figures

Figure 1

15 pages, 5399 KB  
Article
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation
by Shaoqi Zhou, Yang Li, Sabereh Nazari, Xiangning Bu, Ahmad Hassanzadeh, Chao Ni, Yaqun He and Guangyuan Xie
Minerals 2022, 12(8), 944; https://doi.org/10.3390/min12080944 - 27 Jul 2022
Cited by 28 | Viewed by 3733
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with [...] Read more.
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution. Full article
(This article belongs to the Special Issue Hydrodynamics and Gas Dispersion in Flotation)
Show Figures

Figure 1

16 pages, 3512 KB  
Article
Flocculation of Clay-Based Tailings: Differences of Kaolin and Sodium Montmorillonite in Salt Medium
by Steven Nieto, Norman Toro, Pedro Robles, Edelmira Gálvez, Sandra Gallegos and Ricardo I. Jeldres
Materials 2022, 15(3), 1156; https://doi.org/10.3390/ma15031156 - 2 Feb 2022
Cited by 16 | Viewed by 6022
Abstract
Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes [...] Read more.
Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes the phenomena involved in the water recovery stage, such as sedimentation of clay-based tailings flocculated with anionic polyelectrolyte in industrial water and seawater. Flocculation–sedimentation batch tests were performed to ascertain the aggregate size distribution, the hindered settling rate, and the structure of flocs expressed through their fractal dimension and density. The aggregates’ properties were characterized by the Focused Beam Reflectance Measurement (FBRM) and Particle Vision Microscope (PVM) techniques. The impact of the type of water depends on the type of clay that constitutes the suspension. For quartz/kaolin, the highest performance was obtained in industrial water, with bigger aggregates and faster settling rates. However, the tailings composed of quartz/Na-montmorillonite reversed this trend. The type of water impacted the efficiency of primary-particle aggregation. The trials in industrial water generated a portion of non-flocculated particles, which was observed through a bimodal distribution in the unweighted chord-length distribution. This behavior was not observed in seawater, where a perceptible fraction of non-flocculated particles was not found. The additional cationic bonds that offer seawater favor finer primary-particle agglomeration for all tailings types. Full article
(This article belongs to the Topic Recent Advances in Metallurgical Extractive Processes)
Show Figures

Figure 1

17 pages, 3961 KB  
Article
Reducing Magnesium within Seawater Used in Mineral Processing to Improve Water Recovery and Rheological Properties When Dewatering Clay-Based Tailings
by Matías Jeldres, Norman Toro, Sandra Gallegos, Pedro Robles, Iván Salazar, Phillip D. Fawell and Ricardo I. Jeldres
Polymers 2022, 14(2), 339; https://doi.org/10.3390/polym14020339 - 16 Jan 2022
Cited by 5 | Viewed by 3220
Abstract
In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at [...] Read more.
In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at a pH > 10.5, and raising the pH of seawater leads to magnesium precipitates that adversely affect subsequent tailings dewatering. Seawater pre-treatment with lime can precipitate the majority of magnesium present, with these solids then being removed by filtration. To understand how such treatment may aid tailings dewatering, treated seawater (TSw) was mixed with raw seawater (Rsw) at different ratios, analyzing the impact on the flocculated settling rate, aggregate size as measured by focused beam reflectance measurement (FBRM), and vane yield stress for two synthetic clay-based tailings. A higher proportion of Tsw (10 mg/L Mg2+) led to larger aggregates and higher settling rates at a fixed dosage, with FBRM suggesting that higher calcium concentrations in Tsw may also favor fines coagulation. The yield stress of concentrated suspensions formed after flocculation decreased with higher proportions of Tsw, a consequence of lower flocculant demand and the reduced presence of precipitates; while the latter is a minor phase by mass, their high impact on rheology reflects a small particle size. Reducing magnesium concentrations in seawater in advance of use in processing offers advantages in the water return from thickening and subsequent underflow transport. However, this may not require complete removal, with blending Tsw and Rsw an option to obtain acceptable industrial performance. Full article
(This article belongs to the Topic Recent Advances in Metallurgical Extractive Processes)
Show Figures

Figure 1

Back to TopTop