Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,838)

Search Parameters:
Keywords = food by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 902 KB  
Article
Gastronomic Valorisation of a Sparkling Wine By-Product Through Innovative Vegan Vinaigrettes
by Catarina Flores, Tamara Ribeiro, Inês Santos, Catarina Prista and Goreti Botelho
Processes 2025, 13(9), 2736; https://doi.org/10.3390/pr13092736 - 27 Aug 2025
Abstract
Wine and food tourism has increasingly embraced the principles of the circular economy and sustainability. During the bottle-fermented production of sparkling wine, yeast encapsulated in calcium alginate beads gradually loses viability. After the secondary alcoholic fermentation, these beads are usually discarded. This pilot-scale [...] Read more.
Wine and food tourism has increasingly embraced the principles of the circular economy and sustainability. During the bottle-fermented production of sparkling wine, yeast encapsulated in calcium alginate beads gradually loses viability. After the secondary alcoholic fermentation, these beads are usually discarded. This pilot-scale study investigates how the wasted beads can be valorised by incorporating them into vegan vinaigrettes. The vegan vinaigrettes were developed on a laboratory scale with distinct flavour profiles, all containing 3.5% (w/w) calcium alginate beads: mint (V-Air), seaweed (V-Water), spicy (V-Fire) and mushroom (V-Earth). Forty untrained panellists assessed the samples on a nine-point hedonic scale and with Just-About-Right (JAR) scale. Viscosity and colour were also measured in the final samples. Vf-Fire and Vf-Earth vinaigrettes stood out in terms of overall appreciation, particularly colour and consistency, with Vf-Earth receiving the highest average score (7.10 ± 1.58). The presence of alginate beads was well appreciated, with an average score of 6.26 ± 2.14. Across all formulations, the average pH decreased from 3.75 ± 0.01 to 3.37 ± 0.01. This pH reduction benefits food safety. These vegan vinaigrettes offer a sustainable and innovative alternative for reusing sparkling winemaking waste as a by-product, with strong potential for gastronomic appeal among wine or food tourists. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

15 pages, 1150 KB  
Article
Microwave-Assisted Extraction of Phenolic Compounds from Cocoa Pod Husk: Process Optimization and Impact of Drying Temperature on Bioactive Recovery
by Pablo Gomez, Cristhopher Reyes and Jorge G. Figueroa
Molecules 2025, 30(17), 3497; https://doi.org/10.3390/molecules30173497 - 26 Aug 2025
Abstract
Cocoa pod husk (CPH), the principal by-product of cocoa processing, represents an abundant and underutilized source of bioactive phenolics with potential applications in the food and nutraceutical sectors. This study optimized the extraction of catechin, epicatechin, procyanidin B2, and clovamide from CPH (CCN-51 [...] Read more.
Cocoa pod husk (CPH), the principal by-product of cocoa processing, represents an abundant and underutilized source of bioactive phenolics with potential applications in the food and nutraceutical sectors. This study optimized the extraction of catechin, epicatechin, procyanidin B2, and clovamide from CPH (CCN-51 variety) using microwave-assisted extraction (MAE) and evaluated the influence of drying temperature on their retention. A Box–Behnken design within a response surface methodology framework was employed to evaluate the effects of ethanol concentration (0–100%), extraction temperature (50–150 °C), and extraction time (15–60 min) on compound recovery. The phenolic profile was characterized by high-performance liquid chromatography with diode-array detection and electrospray ionization ion trap tandem mass spectrometry. Optimal MAE conditions of 51% ethanol, 104 °C, and 38 min yielded maximum concentrations of clovamide, procyanidin B2, and epicatechin of 3440, 908, and 445 mg/kg dry matter of cocoa pod husk, respectively. Drying studies demonstrated that moderate hot-air temperatures (40–50 °C) preserved the highest phenolic levels. These results underscore the importance of optimizing both extraction and drying conditions to enhance the recovery of phenolic compounds from cocoa processing residues, supporting their potential valorization as antioxidant-rich functional ingredients. Full article
Show Figures

Figure 1

25 pages, 2216 KB  
Review
Sustainable Lipid Production with Cutaneotrichosporon oleaginosus: Insights into Metabolism, Feedstock Valorization and Bioprocess Development
by Marion Ringel, Michael Paper, Marieke Willing, Max Schneider, Felix Melcher, Nikolaus I. Stellner and Thomas Brück
Microorganisms 2025, 13(9), 1988; https://doi.org/10.3390/microorganisms13091988 - 26 Aug 2025
Abstract
The production of microbial lipids through single-cell oil (SCO) technologies has gained increasing attention as a sustainable alternative source of lipids for industrial applications. This development is driven by the limitations of plant-based oils, particularly their competition with food production and demand for [...] Read more.
The production of microbial lipids through single-cell oil (SCO) technologies has gained increasing attention as a sustainable alternative source of lipids for industrial applications. This development is driven by the limitations of plant-based oils, particularly their competition with food production and demand for arable land. Cutaneotrichosporon oleaginosus has been recognized as one of the most promising oleaginous microorganisms for efficient SCO production. To improve sustainability and economic viability, it is vital to understand the underlying metabolic mechanism of SCO production as well as needs and limitations in bioprocess engineering for the efficient utilization of carbon sources derived from diverse agricultural and industrial side streams. This review focuses on recent studies exploring the potential of SCO production through C. oleaginosus in a bioprocess context through the application of low-cost agro-industrial by-products as alternative carbon sources aiming to supply lipid raw materials for various industrial applications. C. oleaginosus can grow on different agro-industrial waste-derived substrates, including lignocellulosic biomass hydrolysates, biodiesel production process side streams, chitin-based by-products, cheese whey permeates, fungal biomass hydrolysates and algal biomass hydrolysates. These substrates contain various carbon sources, such as glucose, galactose, mannose, xylose, lactose, N-acetyl-glucosamine and glycerol, facilitating efficient SCO production. Additionally, the specific composition of SCO sourced from C. oleaginosus, including the presence of functional compounds like squalene and prevalent long-chain unsaturated fatty acids in its fatty acid profile, make it an ideal option to be used as a raw material in cosmetics, biofuel and food products. This comprehensive overview aims to shed light on the potential of C. oleaginosus in leveraging carbon source alternatives for sustainable SCO production for multifaceted, industrial applications of SCO. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 3rd Edition)
Show Figures

Figure 1

17 pages, 1991 KB  
Article
pH-Sensitive Cassava Starch/Onion Peel Powder Films as Colorimetric Indicators for Minced Beef Freshness Monitoring
by Assala Torche, Toufik Chouana, Ibtissem Sanah, Fairouz Djeghim, Esma Anissa Trad Khodja, Katiba Mezreb, Redouan Elboutachfaiti, Cedric Delattre, Maria D’Elia and Luca Rastrelli
Foods 2025, 14(17), 2974; https://doi.org/10.3390/foods14172974 - 26 Aug 2025
Abstract
pH-sensitive intelligent films offer a novel strategy for real-time monitoring of food freshness via visible color changes. This study valorizes onion peel powder (OPP), a polyphenol-rich agro-industrial by-product, by incorporating it into cassava starch-based films at three concentrations (1O, 2O, 3O). Increasing OPP [...] Read more.
pH-sensitive intelligent films offer a novel strategy for real-time monitoring of food freshness via visible color changes. This study valorizes onion peel powder (OPP), a polyphenol-rich agro-industrial by-product, by incorporating it into cassava starch-based films at three concentrations (1O, 2O, 3O). Increasing OPP content led to significantly higher total phenolic and flavonoid levels, enhancing the films’ antioxidant properties (p < 0.0001). While the films exhibited selective antibacterial effects, pronounced inhibition zones were observed against Pseudomonas aeruginosa and Escherichia coli, two relevant meat spoilage and pathogenic bacteria. The films displayed clear and gradual color shifts from light to dark brown across a wide pH range (1–13), confirming their suitability as pH indicators. When applied as labels in minced beef packaging stored at 4 °C, the films successfully tracked freshness over 13 days. Film color changes were strongly correlated with microbial load and pH variations, accurately flagging spoilage onset. These findings support the potential of cassava starch/OPP films as biodegradable, cost-effective intelligent packaging tools, contributing to food safety, waste reduction, and circular bioeconomy principles. The system provides a practical, non-invasive solution for meat freshness monitoring without requiring instrumentation. Full article
Show Figures

Figure 1

21 pages, 3294 KB  
Article
The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis
by Da Li, Jiaqi Zhang, Yining Sun, Chongchong Chai, Fengzhong Wang, Bei Fan, Long Li, Shuqi Gao, Hui Wang, Chunmei Yang and Jing Sun
Metabolites 2025, 15(9), 569; https://doi.org/10.3390/metabo15090569 - 25 Aug 2025
Abstract
Background: Lonicerae japonicae flos (LJF), a traditional food and medicine with a history spanning thousands of years, undergoes drying as a critical processing step in modern applications after regular processing. While the by-products of this process are typically discarded as waste, the [...] Read more.
Background: Lonicerae japonicae flos (LJF), a traditional food and medicine with a history spanning thousands of years, undergoes drying as a critical processing step in modern applications after regular processing. While the by-products of this process are typically discarded as waste, the potential value of LJF condensate water (JYHC) remains largely unexplored. To address this gap and investigate its potential utilization, this study conducted widely targeted metabolome and volatile metabolomics profiling analyses of ‘JYHC’. Methods: This study analyzed the differential metabolites of ‘JYHC’ and dried Lonicerae japonicae flos (JYHG) based on widely targeted metabolomics using UPLC-MS/MS. Additionally, the metabolic differences between fresh Lonicerae japonicae flos (JYHX) and ‘JYHC’ based on GC-MS volatile metabolomics were comprehensively analyzed. Results: A total of 1651 secondary metabolites and 909 volatile metabolites were identified in this study. Among these, flavonoids and terpenoids were the predominant secondary metabolites, while esters and terpenoids dominated the volatile fraction. Further comparison of the ‘JYHC’ and ‘JYHG’ groups revealed that 58 differential metabolites with potential biological activities were significantly up-regulated, with the types being terpenoids, phenolic acids, and alkaloids, which included nootkatone, mandelic acid, sochlorogenic acid B, allantoin, etc. Notably, a total of 186 novel compounds were detected in ‘JYHC’ that had not been previously reported in LJF such as isoborneol, hinokitiol, agarospirol, 5-hydroxymethylfurfural, α-cadinol, etc. Conclusions: This study’s findings highlight the metabolic diversity of ‘JYHC’, offering new theoretical insights into the study of LJF and its by-products. Moreover, this research provides valuable evidence supporting the potential utilization of drying by-products from LJF processing, paving the way for further exploration of their pharmaceutical and industrial applications. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

21 pages, 918 KB  
Article
Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment
by Krzysztof Smarzyński, Przemysław Łukasz Kowalczewski, Aneta Tomczak, Joanna Zembrzuska, Mariusz Ślachciński, Grażyna Neunert, Millena Ruszkowska, Michał Świątek, Marcin Nowicki and Hanna Maria Baranowska
Sustainability 2025, 17(17), 7626; https://doi.org/10.3390/su17177626 - 23 Aug 2025
Viewed by 206
Abstract
The growing demand for sustainable, nutritionally adequate plant-based foods has driven innovation in meat analogues. This study presents a novel approach to upcycling potato juice protein—a by-product of starch production—into plant-based gyros (PBG) enriched with iron and dietary fiber. Four formulations (PBG1–PBG4) were [...] Read more.
The growing demand for sustainable, nutritionally adequate plant-based foods has driven innovation in meat analogues. This study presents a novel approach to upcycling potato juice protein—a by-product of starch production—into plant-based gyros (PBG) enriched with iron and dietary fiber. Four formulations (PBG1–PBG4) were developed using a blend of potato, rice, wheat, and pea proteins, and fortified with either ferritin-rich sprout powder or ferrous sulfate. Comprehensive analyses were conducted to assess nutritional composition, mineral content, glycoalkaloid safety, antioxidant activity, texture, water mobility, sensory appeal, and microbiological stability. All variants met high-protein labeling criteria and exhibited favorable fiber and mineral profiles. In vitro digestion significantly enhanced antioxidant bioaccessibility, particularly phenolic acids. Sensory evaluations favored ferritin-enriched variants, which also demonstrated superior texture and consumer acceptance. Microbiological assessments confirmed safety for up to 10 days under refrigeration. These findings highlight the potential of potato juice protein as a sustainable, functional ingredient in next-generation plant-based meat analogues. Full article
Show Figures

Graphical abstract

20 pages, 2195 KB  
Article
Biofertilizer and Bioherbicide Potential of Microalgae-Based Wastewater and Diplotaxis harra Boiss for Sustainable Barley Production
by Ghofrane Jmii, Chema Keffala, Jesús G. Zorrilla, Fouad Zouhir, Hugues Jupsin, Ameni Mokhtar and Bernard Tychon
Agronomy 2025, 15(9), 2020; https://doi.org/10.3390/agronomy15092020 - 22 Aug 2025
Viewed by 408
Abstract
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex [...] Read more.
The dual benefit of wastewater and microalgal biomass is a major advantage of high-rate algal ponds, enabling the environmental valorization of these byproducts. This research explored the effect of treated wastewater on the agri-food species Hordeum vulgare (L.) and its associated weed, Emex spinosa (L.) Campd., along with the effects of algal biomass (primarily composed of Closterium, Chlorella, and Scenedesmus spp.) and Diplotaxis harra leaf powder. Initial pot trials applied microalgae and D. harra at 2, 4, and 6 g·kg−1 soil, also confirming that the treated wastewater met reuse standards and did not affect plant growth. The combined treatment at 4 g·kg−1 led to the highest H. vulgare increases in fresh weight (162.71%), root length (73.75%), and shoot length (72.87%), while reducing E. spinosa shoot and root lengths by 30.79% and 52.18%, and fresh weight by 68.24%. Subsequent field experiments using 1.26 t ha−1 of 0.5-cm-applied D. harra and microalgae powders enhanced H. vulgare growth, while reducing the growth of E. spinosa. The reduction in E. spinosa growth was associated with increased electrolyte leakage and malondialdehyde content. These results support the integration of high-rate algal ponds into agriculture, promoting water reuse and reducing reliance on synthetic fertilizers and herbicides in barley production. Full article
(This article belongs to the Special Issue Natural Products in Crop Diseases Control)
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Design, Production and Quality Assessment of Antioxidant-Enriched Olive Paste Dips Using Agro-Food By-Products
by Efimia Dermesonlouoglou, Athanasios Limnaios, Ioanna Bouskou, Athina Ntzimani, Maria Tsevdou and Petros Taoukis
Molecules 2025, 30(17), 3459; https://doi.org/10.3390/molecules30173459 - 22 Aug 2025
Viewed by 236
Abstract
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were [...] Read more.
This study focuses on the design, development and quality assessment of an innovative shelf-stable olive paste dip, aiming at the valorization of by-products of tomato processing and olive oil production (Product 1: OPD). Bioactive compounds (BACs), i.e., total carotenoids and phenolic components, were extracted from tomato and olive pomace, respectively. For further enrichment, BACs were incorporated in olive paste dips into a second product (OPDEnr) in encapsulated form (Product 2: OPDEnr). The total carotenoids (TC) of OPD and OPDEnr were 20.0 ± 2.0 and 30.2 ± 1.0 mg/kg, respectively. Similarly, the total phenolic content (TPC) and the antioxidant activity (AA) were 1.62 ± 0.08 and 3.05 ± 0.10 mg GAE/g, and 0.801 ± 0.075 and 0.976 ± 0.032 mg Trolox/g, respectively. The quality of the developed olive paste dip product prototypes was assessed using the Accelerated Shelf Life Testing (ASLT) methodology at a temperature range of 20–40 °C. Both OPDEnr and OPD were microbiologically stable during storage (i.e., not exceeding 4 logCFU/g for total mesophilic counts), and no lipid oxidation evolution was observed (Peroxide Value, PV did not exceed 4 meq O2/kg), while TC, TPC and AA values remained stable. The shelf life of OPDEnr and OPD was determined based on the overall sensory quality and was found to be 120 and 211 d at 25 °C, respectively. OPDEnr and OPD were characterized by a high quality (color and texture), with an overall sensory score of 8.0/9.0 and 9.0/9.0, respectively, in the acceptability–hedonic scale 1 (dislike extremely)-9 (like extremely), and they could potentially be consumed as an antioxidant-enriched olive paste dip. Full article
Show Figures

Figure 1

16 pages, 2172 KB  
Article
Systematic Purification of Peptides with In Vitro Antioxidant, Antihyperglycemic, Anti-Obesity, and Antidiabetic Potential Released from Sesame Byproduct Proteins
by Ulises Alan Mendoza-Barajas, Martha Elena Vázquez-Ontiveros, Jennifer Vianey Félix-Medina, Rosalio Velarde-Barraza, Jesús Christian Grimaldi-Olivas, Cesar Noe Badilla-Medina, Jesús Mateo Amillano-Cisneros and María Fernanda Quintero-Soto
Nutraceuticals 2025, 5(3), 23; https://doi.org/10.3390/nutraceuticals5030023 - 22 Aug 2025
Viewed by 340
Abstract
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These [...] Read more.
Sesame oil extraction byproduct (SOEB) contains a high percentage of protein (49.81 g/100 g), making it a suitable plant-based source for producing protein hydrolysates with nutraceutical potential. In this study, albumins, globulins, glutelins, and prolamins fractions were extracted and characterized from SOEB. These fractions were then enzymatically hydrolyzed with alcalase, yielding high soluble protein content (>90%) and hydrolysis degrees ranging from 34.66 to 45.10%. The hydrolysates were fractionated by molecular weight (<5 kDa, 3–5 kDa, 1–3 kDa, and <1 kDa). These fractions demonstrated potential for inhibiting the DPPH radical (25.19–95.79%) and the α-glucosidase enzyme (40.14–55.63%), particularly the fractions with molecular weight <1 kDa. We identified 28 peptides, with molecular weights between 332.20 and 1096.63 Da, which showed potent antioxidant activities (IC50 = 90.18 µg/mL), as well as inhibitory effects on key enzymes such as α-glucosidase (IC50 = 61.48 µg/mL), dipeptidyl peptidase IV (IC50 = 12.12 µg/mL), and pancreatic lipase (IC50 = 6.14 mg/mL). These results demonstrate the antioxidant, antihyperglycemic, antidiabetic, and anti-obesity potential of SOEB peptides, highlighting their use in the formulation of new functional foods or nutraceuticals. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

20 pages, 343 KB  
Review
Valorization of Avocado (Persea americana) Peel and Seed: Functional Potential for Food and Health Applications
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Antioxidants 2025, 14(9), 1032; https://doi.org/10.3390/antiox14091032 - 22 Aug 2025
Viewed by 253
Abstract
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, [...] Read more.
The growing emphasis on sustainability and circular economy strategies has driven increasing interest in the valorization of agro-industrial by-products. Among these, the peel and seed of avocado (Persea americana), typically discarded during processing, have emerged as promising sources of bioactive compounds, particularly phenolic constituents with recognized antioxidant capacity. This review critically examines the current scientific literature on the phytochemical composition, antioxidant activity, and potential health benefits associated with avocado peel and seed. In addition, it explores recent technological advances in extraction methods and highlights the applicability of these by-products in the formulation of functional foods, nutraceuticals, and other health-related products. Challenges related to safety, bioavailability, and regulatory aspects are also discussed. By consolidating available evidence, this work supports the potential of avocado peel and seed as valuable functional ingredients and contributes to sustainable innovation in the food and health industries. Full article
Show Figures

Graphical abstract

24 pages, 2615 KB  
Review
Modulation of Enzymatic Activity by Moderate Electric Fields: Perspectives for Prebiotic Epilactose Production via Cellobiose-2-Epimerase
by Tiago Lima de Albuquerque, Ricardo N. Pereira, Sara C. Silvério and Lígia R. Rodrigues
Processes 2025, 13(9), 2671; https://doi.org/10.3390/pr13092671 - 22 Aug 2025
Viewed by 246
Abstract
Modulating enzymatic activity through physical strategies is increasingly recognized as a powerful approach to optimizing biocatalytic processes in food and biotechnology applications. Cellobiose 2-epimerase (C2E), a key enzyme for synthesizing epilactose, a non-digestible disaccharide with established prebiotic effects, is gaining relevance in functional [...] Read more.
Modulating enzymatic activity through physical strategies is increasingly recognized as a powerful approach to optimizing biocatalytic processes in food and biotechnology applications. Cellobiose 2-epimerase (C2E), a key enzyme for synthesizing epilactose, a non-digestible disaccharide with established prebiotic effects, is gaining relevance in functional foods. Emerging strategies, such as the application of moderate electric fields (MEFs), have attracted attention due to their non-thermal, non-invasive nature and their capacity to influence the structural and functional properties of proteins. This review assesses the potential of MEFs to modulate C2E activity and provides an overview of the physicochemical principles governing MEF–protein interactions and summarizes findings from various enzymatic systems, highlighting changes in activity, stability, and substrate affinity under electric field conditions. Particular attention is given to the mechanistic plausibility and processing implications of applying MEFs to C2E-catalyzed reactions. The integration of biochemical, structural, and engineering perspectives suggests that MEF-assisted modulation could overcome current bottlenecks in epilactose production. This approach may enable the sustainable valorization of lactose-rich byproducts and support the development of non-thermal, clean-label technologies for producing functional ingredients. Full article
(This article belongs to the Special Issue Advances in Organic Food Processing and Probiotic Fermentation)
Show Figures

Figure 1

13 pages, 1269 KB  
Article
High-Yield Vanillin Production Through RSM-Optimized Solid-State Fermentation Process from Brewer’s Spent Grains in a Single-Use Bag Bioreactor
by Ewa Szczepańska, Witold Pietrzak and Filip Boratyński
Molecules 2025, 30(17), 3452; https://doi.org/10.3390/molecules30173452 - 22 Aug 2025
Viewed by 219
Abstract
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically [...] Read more.
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically synthesized or lignin-derived vanillin. The application of biocatalysis for sustainable manufacturing of food ingredients, pharmaceutical intermediates, and fine chemicals is the key concept of modern industrial biotechnology. The main goal of this research was to conduct optimization procedures aimed at intensifying the microbial hydrolysis process of the lignin-rich plant raw materials and further bioconversion of the released ferulic acid to vanillin. The tests were performed in the solid-state fermentation system with strains selected during the screening stage on agri-food by-products such as brewer’s spent grain. A specially designed single-use bag bioreactor was used to carry out the process on a preparative scale with the most effective strain. The experiment was designed using the RSM, which allowed for an increase in biosynthesis efficiency from 363 mg/kg to 1413 mg/kg (an increase of 389%). The progress of the process was controlled by the use of chromatographic techniques (HPLC) by quantitative determination of vanillin content in the obtained extracts. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

17 pages, 5477 KB  
Article
Optimisation of Supercritical CO2 Extraction from Black (Ribes nigrum) and Red (Ribes rubrum) Currant Pomace
by Filip Herzyk and Małgorzata Korzeniowska
Appl. Sci. 2025, 15(16), 9222; https://doi.org/10.3390/app15169222 - 21 Aug 2025
Viewed by 206
Abstract
Fruit pomace, generated as a by-product of juice processing, is a valuable source of bioactive compounds but requires sustainable extraction approaches to enable its valorisation. Supercritical CO2 extraction (SFE-CO2) represents a promising green technology due to its efficiency, solvent-free character, [...] Read more.
Fruit pomace, generated as a by-product of juice processing, is a valuable source of bioactive compounds but requires sustainable extraction approaches to enable its valorisation. Supercritical CO2 extraction (SFE-CO2) represents a promising green technology due to its efficiency, solvent-free character, and tuneable selectivity. In this study, the response surface methodology (RSM) was applied to evaluate the effects of pressure, temperature, and time on the recovery of fat, protein, and total phenolic compounds (TPCs) from blackcurrant (Ribes nigrum) and redcurrant (Ribes rubrum) pomace subjected to conventional- and freeze-drying. The highest protein content (14.5%) was obtained in freeze-dried blackcurrant at 400 bar, 60 min, and 30 °C, while the maximum TPCs (24.60 mg GAE/g d.w.) was reached at 500 bar, 60 min, and 40 °C. The redcurrant samples consistently showed lower extractable values across all the responses. Pressure and time were identified as the most influential process variables, enhancing the solvent density and mass transfer during extraction. These results demonstrate that both the drying pre-treatment and raw material type significantly affect the SFE efficiency and confirm the potential of optimised SFE-CO2 as a viable strategy for converting fruit pomace into functional ingredients for food, nutraceutical, and cosmetic applications. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

23 pages, 8117 KB  
Article
Deep Learning Enabled Optimization and Mass Transfer Mechanism in Ultrasound-Assisted Enzymatic Extraction of Polyphenols from Tartary Buckwheat Hulls
by Yilin Shi, Yanrong Ma, Rong Li, Ruiyu Zhang, Zizhen Song, Yao Lu, Zhigang Chen, Yufu Wang and Yue Wu
Foods 2025, 14(16), 2915; https://doi.org/10.3390/foods14162915 - 21 Aug 2025
Viewed by 189
Abstract
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction [...] Read more.
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction method (207 mg/100 g), ultrasound-assisted enzymatic extraction increased the total phenolic yield by 91.3% at 50 °C. Numerical simulations based on Fick’s law indicated that enzyme pretreatment concentration positively correlated with the effective diffusion coefficient (De), which increased from 9.15 × 10−7 to 2.00 × 10−6 m2/s at 40 °C. Meanwhile, the neuro-fuzzy inference system (ANFIS) successfully predicted the extraction yield under various ultrasonic conditions (R2 > 0.98). Regarding quantitative analysis of phenolic compounds in extracts, the results revealed that catechins and epicatechins were the most abundant in Tartary buckwheat hull. Additionally, phenolic acids rapidly diffused at higher temperatures (50 °C), and flavonoids were highly sensitive to temperature and enzyme synergy. Phenolic extracts exhibit significant potential for value-added applications in food processing, particularly in improving antioxidative stability, prolonging shelf life. This study provides a theoretical basis for green, efficient phenolic extraction from plant residues. Full article
Show Figures

Figure 1

21 pages, 2383 KB  
Article
Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves
by Huanhuan Zhang, Ling Zhang, Feihu Gao, Shixiong Yang, Qian Deng, Kaixin Shi and Sheng Li
Foods 2025, 14(16), 2903; https://doi.org/10.3390/foods14162903 - 21 Aug 2025
Viewed by 257
Abstract
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. [...] Read more.
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. The results showed that NKA-II resin demonstrated the best purification effect on SPSL polyphenols among the six tested resins. The optimal enrichment procedure of NKA-II resin was as follows: loading sample pH 3.0, 4.48 mg CAE/mL concentration, and 80% ethanol (v/v) eluent. A total of 19 major compounds were characterized in PP, including 12 phenolic acids and seven flavonoids, with a polyphenol purity of 75.70%. PP pretreatment (100 and 500 μg/mL) significantly inhibited LPS-induced release of NO (by 40.62% and 68.61%), IL-1β (by 40.07% and 68.34%), IL-6 (by 40.63% and 52.41%), and TNF-α (by 52.29% and 73.76%) compared to the LPS group (p < 0.05), demonstrating potent anti-inflammatory effects. Western blot analysis revealed that PP exerted anti-inflammatory effects by inhibiting the NF-κB (via suppression of IκBα phosphorylation/degradation and blockade of p65 nuclear translocation) and MAPK (via inhibition of p38, ERK, and JNK phosphorylation) signaling pathways. These findings support the utilization of this agricultural by-product in functional food development, particularly as a source of natural anti-inflammatory compounds for dietary supplements or fortified beverages. Full article
(This article belongs to the Special Issue Health Benefits of Antioxidants in Natural Foods)
Show Figures

Figure 1

Back to TopTop