Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant-Based Gyros Preparation
2.2. Proximate Composition and In Vitro Digestibility
2.3. Potato Glycoalkaloids Content
2.4. Impact of Simulated In Vitro Digestion on Antioxidants
2.4.1. Simulated In Vitro Digestion Procedure
2.4.2. Antioxidants Extraction Procedure
2.4.3. Total Phenolic Compounds and Antioxidant Activity
2.4.4. Phenolic Acids Profiling
2.5. Texture Analysis
2.6. LF NMR Relaxometry
2.6.1. Measurement of Spin-Lattice Relaxation Time (T1)
2.6.2. Measurement of Spin-Spin Relaxation Time (T2)
2.7. Consumer and Sensory Studies
2.7.1. Consumer Study
2.7.2. Sensory Evaluation Protocol
2.8. Microbiological Stability and Shelf-Life Assessment
2.8.1. Detection of Salmonella spp.
2.8.2. Detection of Listeria Monocytogenes
2.8.3. Quantitative Microbiological Analyses
2.9. Statistical Analysis
3. Results and Discussion
3.1. General Nutritional Composition
3.2. Glycoalkaloid Contents
3.3. Antioxidant Activity and Phenolic Acid Bioaccessibility
3.4. Consumer Acceptance and Sensory Attractiveness
3.5. Textural Properties
3.6. Water Behavior
3.7. Microbiological Stability
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects: The Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Hussain, M.A.; Li, L.; Kalu, A.; Wu, X.; Naumovski, N. Sustainable Food Security and Nutritional Challenges. Sustainability 2025, 17, 874. [Google Scholar] [CrossRef]
- Shrestha, S.; Mahat, J. Sustainable Food Security: How To Feed An Increasing Population? A Review. INWASCON Technol. Mag. 2022, 4, 15–18. [Google Scholar] [CrossRef]
- Kirbiš, A.; Korže, V.; Lubej, M. Predictors of Meat Reduction: The Case of Slovenia. Foods 2024, 13, 2346. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A. Willingness to reduce meat consumption among U.S. flexitarians: Sampling, segmentation, and judgmental latitudes. Food Qual. Prefer. 2024, 118, 105194. [Google Scholar] [CrossRef]
- Hansen, A.; Wethal, U.; Efstathiou, S.; Volden, J. Towards plantification: Contesting, negotiating and re-placing meaty routines. Consum. Soc. 2023, 2, 165–181. [Google Scholar] [CrossRef]
- Tipan-Torres, C. Evaluación del impacto ambiental de los sistemas intensivos de producción animal según la literatura reciente. Multidiscip. Collab. J. 2024, 2, 40–54. [Google Scholar] [CrossRef]
- Watwani, D.; Gonal, V.; Wadke, P.; Chavan, P.; Sahu, S. Prediction of Carbon Footprint Due to Meat Industry. In Proceedings of the 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), IEEE, Gorakhpur, India, 23–24 June 2023; pp. 1–5. [Google Scholar]
- Nowak, J.; Lasik, M.; Miskiewicz, T.; Czarnecki, Z. Biodegradation of high temperature wastewater from potato starch industry. In Proceedings of the Waste Management and the Environment; Lmorza, D., Brebbia, C.A., Sales, D., Popov, V., Eds.; WIT PRESS Southampton: Boston, MA, USA, 2002; pp. 655–663. [Google Scholar]
- Waglay, A.; Karboune, S. Potato Proteins. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 75–104. [Google Scholar]
- Kowalczewski, P.Ł.; Olejnik, A.; Białas, W.; Rybicka, I.; Zielińska-Dawidziak, M.; Siger, A.; Kubiak, P.; Lewandowicz, G. The Nutritional Value and Biological Activity of Concentrated Protein Fraction of Potato Juice. Nutrients 2019, 11, 1523. [Google Scholar] [CrossRef]
- Herreman, L.C.M.; de Vos, A.M.; Cosijn, M.M.; Tjalma, L.F.; Spelbrink, R.E.J.; van der Voort Maarschalk, K.; Laus, M.C. Potato: A Sustainable Source of Functional and Nutritional Proteins. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 471–491. [Google Scholar]
- Jeżowski, P.; Polcyn, K.; Tomkowiak, A.; Rybicka, I.; Radzikowska, D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci. 2020, 15, 379–388. [Google Scholar] [CrossRef]
- Rybicka, I.; Bohdan, K.; Kowalczewski, P.Ł. Meat alternatives—Market and cunsumption. In Sustainable Food. Production and Consumption Perspectives; Pawlak-Lemańska, K., Borusiak, B., Sikorska, E., Eds.; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2024; pp. 118–131. [Google Scholar]
- Kowalczewski, P.Ł.; Smarzyński, K.; Biegalski, J.; Muzolf-Panek, M.; Cais-Sokolińska, D.; Ruszkowska, M.; Lewandowicz, J.; Miedzianka, J.; Wróbel, M.M.; Kačániová, M.; et al. Insight into the potato protein-based vegan cheese: A comprehensive study on physicochemical, mechanical and molecular properties. Food Sci. Technol. Int. 2025. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Wróbel, M.M.; Smarzyński, K.; Zembrzuska, J.; Ślachciński, M.; Jeżowski, P.; Tomczak, A.; Kulczyński, B.; Zielińska-Dawidziak, M.; Sałek, K.; et al. Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion. Foods 2024, 13, 3060. [Google Scholar] [CrossRef] [PubMed]
- Zeuschner, C.L.; Hokin, B.D.; Marsh, K.A.; Saunders, A.V.; Reid, M.A.; Ramsay, M.R. Vitamin B12 and vegetarian diets. Med. J. Aust. 2013, 199, S27–S32. [Google Scholar] [CrossRef]
- Koeder, C.; Perez-Cueto, F.J.A. Vegan nutrition: A preliminary guide for health professionals. Crit. Rev. Food Sci. Nutr. 2024, 64, 670–707. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.; Ruddy, B.; Wallace, M.R.; Shah, A.; Millstine, D.; Marks, L. How to Monitor and Advise Vegans to Ensure Adequate Nutrient Intake. J. Osteopath. Med. 2016, 116, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.; Smarzyński, K.; Kubiak, P.; Lesiecki, M.; Jeżowski, P.; Tomczak, A.; Tomkowiak, A.; Grygier, A.; Kmiecik, D. Method of Producing a Plant-Based Analogue of Gyros. Polish Patent Aplication No. P.446897, 29 November 2023. [Google Scholar]
- Zielińska-Dawidziak, M.; Staniek, H.; Król, E.; Piasecka-Kwiatkowska, D.; Twardowski, T. Legume seeds and cereal grains? Capacity to accumulate iron while sprouting in order to obtain food fortificant. Acta Sci. Pol. Technol. Aliment. 2016, 15, 333–338. [Google Scholar] [CrossRef]
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. ISO: Geneva, Switzerland, 2009.
- AOAC. AOAC Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- AACC. AACCI 32-07.01. Soluble, Insoluble, and Total Dietary Fiber in Foods and Food Products. In AACC International Approved Methods; AACC International: Rockville, MD, USA, 2009. [Google Scholar]
- AACC. Technical beta-Glucan Content of Barley and Oats—Rapid Enzymatic Procedure. In AACC International Approved Methods; AACC International: Rockville, MD, USA, 2009. [Google Scholar]
- AACC. AACC 44-19.01. Moisture—Air-Oven Method, Drying at 135 Degrees. In AACC International Approved Methods; AACC International: Rockville, MD, USA, 2009. [Google Scholar]
- ISO 763:2003; Fruit and Vegetable Products—Determination of Ash Insoluble in Hydrochloric Acid. ISO: Geneva, Switzerland, 2003.
- Wang, X.-S.; Tang, C.-H.; Yang, X.-Q.; Gao, W.-R. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Matusiewicz, H.; Ślachciński, M. A Comparison of ETV and LA for the Determination of Trace Elements in Solid Samples by MIP OES. Ecol. Chem. Eng. 2019, 26, 429–441. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Zembrzuska, J.; Drożdżyńska, A.; Smarzyński, K.; Radzikowska, D.; Kieliszek, M.; Jeżowski, P.; Sawinska, Z. Influence of potato variety on polyphenol profile composition and glycoalcaloid contents of potato juice. Open Chem. 2021, 19, 1225–1232. [Google Scholar] [CrossRef]
- Olejnik, A.; Rychlik, J.; Kidoń, M.; Czapski, J.; Kowalska, K.; Juzwa, W.; Olkowicz, M.; Dembczyński, R.; Moyer, M.P. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem. 2016, 190, 1069–1077. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Olejnik, A.; Wieczorek, M.N.; Zembrzuska, J.; Kowalska, K.; Lewandowicz, J.; Lewandowicz, G. Bioactive Substances of Potato Juice Reveal Synergy in Cytotoxic Activity against Cancer Cells of Digestive System Studied In Vitro. Nutrients 2023, 15, 114. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Cybulska, I.; Zembrzuska, J.; Brudecki, G.; Hedegaard Thomsen, M. Optimizing methods to characterize caffeic, ferulic, and chlorogenic acids in Salicornia sinus-persica and Salicornia bigelovii extracts by tandem mass spectrometry (LC-MS/MS). BioResources 2021, 16, 5508–5523. [Google Scholar] [CrossRef]
- Węglarz, W.P.; Harańczyk, H. Two-dimensional analysis of the nuclear relaxation function in the time domain: The program CracSpin. J. Phys. D. Appl. Phys. 2000, 33, 1909–1920. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016.
- PN-EN ISO 6579-1:2017-04; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. (ISO 6579-1:2017). Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 11290-1:2017-07; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method (ISO 11290-1:2017). Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 4833-1:2013-12; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 degrees C by the Pour Plate Technique (ISO 4833-1:2013). Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-EN ISO 21528-2:2017-08; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique (ISO 21528-2:2017). Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 15213-2:2024-05; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Clostridium spp.—Part 2: Enumeration of Clostridium perfringens by Colony-Count Technique (ISO 15213-2:2023). Polish Committee for Standardization: Warsaw, Poland, 2023.
- PN-EN ISO 11290-2:2017-07; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method (ISO 11290-2:2017). Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 6888-1:2022-03; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other species)—Part 1: Method Using Baird-Parker Agar Medium (ISO 6888-1:2021). Polish Committee for Standardization: Warsaw, Poland, 2022.
- PN-ISO 21527-1:2009; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Molds Part 1: Colony Count Technique in Products with Water Activity Greater Than 0,95 (ISO 21527-1:2008). Polish Committee for Standardization: Warsaw, Poland, 2009.
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 12 July 2024).
- Munialo, C.D.; Vriesekoop, F. Plant-based foods as meat and fat substitutes. Food Sci. Nutr. 2023, 11, 4898–4911. [Google Scholar] [CrossRef]
- Han, X.; Luo, R.; Ye, N.; Hu, Y.; Fu, C.; Gao, R.; Fu, S.; Gao, F. Research progress on natural β-glucan in intestinal diseases. Int. J. Biol. Macromol. 2022, 219, 1244–1260. [Google Scholar] [CrossRef]
- McCarthy, C.; Papada, E.; Kalea, A.Z. The effects of cereal β-glucans on cardiovascular risk factors and the role of the gut microbiome. Crit. Rev. Food Sci. Nutr. 2025, 65, 2489–2505. [Google Scholar] [CrossRef]
- McGill, C.R.; Kurilich, A.C.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef]
- Furrer, A.N.; Chegeni, M.; Ferruzzi, M.G. Impact of potato processing on nutrients, phytochemicals, and human health. Crit. Rev. Food Sci. Nutr. 2018, 58, 146–168. [Google Scholar] [CrossRef]
- Xu, R. Oat fibre: Overview on their main biological properties. Eur. Food Res. Technol. 2012, 234, 563–569. [Google Scholar] [CrossRef]
- Cameron-Smith, D.; Collier, G.R.; O’dea, K. Effect of soluble dietary fibre on the viscosity of gastrointestinal contents and the acute glycaemic response in the rat. Br. J. Nutr. 1994, 71, 563–571. [Google Scholar] [CrossRef]
- Dikeman, C.L.; Murphy, M.R.; Fahey, G.C. Dietary Fibers Affect Viscosity of Solutions and Simulated Human Gastric and Small Intestinal Digesta. J. Nutr. 2006, 136, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.M.-L.; Edwards, C.H.; Mackie, A.R.; Gidley, M.J.; Butterworth, P.J.; Ellis, P.R. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 2016, 116, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M.; Twardowski, T. Preparation with Higher Plant Ferritin Content and Other Forms of Iron, Process for Preparation and the Use Thereof. Polish Patent No. PL218747, 24 June 2009. [Google Scholar]
- Li, J.; Cao, D.; Huang, Y.; Chen, B.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front. Nutr. 2022, 9, 798078. [Google Scholar] [CrossRef]
- Charkiewicz, A.E. Is Copper Still Safe for Us? What Do We Know and What Are the Latest Literature Statements? Curr. Issues Mol. Biol. 2024, 46, 8441–8463. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/SK/TXT/PDF/?uri=CELEX:32006R1881 (accessed on 4 May 2025).
- Friedman, M.; McDonald, G.M.; Filadelfi-Keszi, M. Potato Glycoalkaloids: Chemistry, Analysis, Safety, and Plant Physiology. CRC. Crit. Rev. Plant Sci. 1997, 16, 55–132. [Google Scholar] [CrossRef]
- Korpan, Y.I.; Nazarenko, E.A.; Skryshevskaya, I.V.; Martelet, C.; Jaffrezic-Renault, N.; El’skaya, A.V. Potato glycoalkaloids: True safety or false sense of security? Trends Biotechnol. 2004, 22, 147–151. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA J. 2020, 18, e06222. [Google Scholar] [CrossRef]
- Rayburn, J.R.; Friedman, M.; Bantle, J.A. Synergistic interaction of glycoalkaloids α-chaconine and α-solanine on developmental toxicity in xenopus embryos. Food Chem. Toxicol. 1995, 33, 1013–1019. [Google Scholar] [CrossRef]
- Marinea, M.; Ellis, A.; Golding, M.; Loveday, S.M. Delivering Phenolic Acids in Soy Protein Gels: Noncovalent Interactions Control Gastrointestinal Bioaccessibility. Food Biophys. 2023, 18, 218–227. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Z.; Wu, G.; Cao, X.; Zhang, R.; Dong, L.; Huang, F.; Zhang, M.; Su, D. In vitro simulated digestion and colonic fermentation of lychee pulp phenolics and their impact on metabolic pathways based on fecal metabolomics of mice. Food Funct. 2021, 12, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Aalim, H.; Hashim, S.B.H.; Zhou, C.; Zou, X.; Luo, Z. Matrix characteristics modulate black rice phenolic compounds bioaccessibility and antioxidant activity during simulated gastrointestinal digestion. Food Biosci. 2024, 58, 103628. [Google Scholar] [CrossRef]
- Domingues, Y.O.; Lemes, G.A.; de Oliveira, F.L.; de Souza, T.R.; Silva, B.; Bento, J.A.C.; Caldeira Morzelle, M. In vitro simulated gastrointestinal digestion and bioaccessibility of phenolic compounds and antioxidants of soursop (Annona muricata L.) peel and pulp. LWT 2024, 208, 116694. [Google Scholar] [CrossRef]
- Nadjamuddin, M.; Auliah, N.; Mulyadin; Tajuddin, Z.; Andriawan, R. Test the Antioxidant Effectiveness of Oyster Mushroom (Pleurotus ostreatus) Ethyl Acetate Fraction Cream Formula using FRAP (Ferric Reducing Antioxidant Power) and ABTS (2,2′-azino-bis (3-3) ethylbenzothiazoline-6-sulphonic acid) Methods). J. Penelit. Pendidik. IPA 2023, 9, 10985–10990. [Google Scholar] [CrossRef]
- Nilsson, J.; Pillai, D.; Önning, G.; Persson, C.; Nilsson, Å.; Åkesson, B. Comparison of the 2,2′-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid (ABTS) and ferric reducing anti-oxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Mol. Nutr. Food Res. 2005, 49, 239–246. [Google Scholar] [CrossRef]
- Miao, M.; Xiang, L. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 2020, 87, 71–88. [Google Scholar]
- Clifford, M.N.; Kerimi, A.; Williamson, G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1299–1352. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Chen, Y.; Teng, W.; Wang, J.; Wang, Y.; Zhang, Y.; Cao, J. The intestinal delivery systems of ferulic acid: Absorption, metabolism, influencing factors, and potential applications. Food Front. 2024, 5, 1126–1144. [Google Scholar] [CrossRef]
- Lee, C.-W.; Kim, T.-K.; Hwang, K.-E.; Kim, H.-W.; Kim, Y.-B.; Kim, C.-J.; Choi, Y.-S. Combined Effects of Wheat Sprout and Isolated Soy Protein on Quality Properties of Breakfast Sausage. Korean J. Food Sci. Anim. Resour. 2017, 37, 52–61. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.-W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci. Food 2024, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Geng, X.; Zhao, N.; Song, X.; Wu, J.; Zhu, Q.; Wu, T.; Chen, H.; Zhang, M. Fabrication and Characterization of Konjac Glucomannan/Oat β-Glucan Composite Hydrogel: Microstructure, Physicochemical Properties and Gelation Mechanism Studies. Molecules 2022, 27, 8494. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Xu, J.; Lee, S. Pasting and Rheological Properties of β-Glucan-Enriched Hydrocolloids from Oat Bran Concentrate*. J. Food Process. Preserv. 2013, 37, 792–798. [Google Scholar] [CrossRef]
- Brosio, E.; Gianferri, R.R. Low-resolution NMR—An analytical tool in foods characterization and traceability. In Basic NMR in Foods Characterization; Brosio, E., Ed.; Research Signpost: Kerala, India, 2009; pp. 9–37. ISBN 978-81-308-0303-6. [Google Scholar]
- Fundo, J.F.; Silva, C.L.M. Microstructure, composition and their relationship with molecular mobility, food quality and stability. In Food Microstructure and Its Relationship with Quality and Stability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 29–41. [Google Scholar]
- Cornillon, P.; Salim, L.C. Characterization of water mobility and distribution in low- and intermediate-moisture food systems. Magn. Reson. Imaging 2000, 18, 335–341. [Google Scholar] [CrossRef]
- Rousta, N.; Larsson, K.; Fristedt, R.; Undeland, I.; Agnihotri, S.; Taherzadeh, M.J. Production of fungal biomass from oat flour for the use as a nutritious food source. NFS J. 2022, 29, 8–15. [Google Scholar] [CrossRef]
- Thamilnesan, M.; Cheng, L.-H. Advancements in oat processing technologies and their impact on nutritional and functional properties: A review. Nutr. Food Sci. 2025, 55, 783–800. [Google Scholar] [CrossRef]
Ingredient | PBG 1 | PBG 2 | PBG 3 | PBG 4 |
---|---|---|---|---|
Protein base | 40.00 | 40.00 | 40.00 | 40.00 |
Coconut oil | 5.00 | 5.00 | 5.00 | 5.00 |
Vegetable-oil blend | 6.00 | 6.00 | 6.00 | 6.00 |
Potato starch | 4.00 | 4.00 | 4.00 | 4.00 |
Corn starch | 2.00 | 2.00 | 2.00 | 2.00 |
Yeast flakes + vit. B12 | 4.00 | 4.00 | 4.00 | 4.00 |
Oat flakes | 4.00 | 4.00 | 4.00 | 4.00 |
Methylcellulose | 2.00 | 2.00 | 2.00 | 2.00 |
Carrageenan | 2.00 | 2.00 | 2.00 | 2.00 |
Natural flavor | 2.00 | 2.00 | 2.00 | 2.00 |
Dried beetroot juice | 0.75 | 0.75 | 0.75 | 0.75 |
Salt | 0.50 | 0.50 | 0.50 | 0.50 |
Vinegar | 0.50 | 0.50 | 0.50 | 0.50 |
Potato fiber | 2.00 | — | 2.00 | — |
Oat fiber | — | 2.00 | — | 2.00 |
Ferritin-rich sprout powder | 1.50 | 1.50 | — | — |
Ferrous sulfate | — | — | 0.007 | 0.007 |
Water * | 23.75 | 23.75 | 25.243 | 25.243 |
Parameter | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
Protein content (g/100 g) | 20.849 ± 0.233 a | 21.573 ± 0.479 a | 21.859 ± 0.243 a | 21.031 ± 0.063 a |
Fat content (g/100 g) | 14.983 ± 0.645 a | 14.343 ± 0.833 a | 13.813 ± 0.723 a | 14.172 ± 0.662 a |
Fiber content (g/100 g) | 7.911 ± 0.338 b | 8.294 ± 0.388 a | 7.762 ± 0.269 b | 8.263 ± 0.365 a |
Insoluble dietary fiber (g/100 g) | 7.055 ± 0.308 b | 7.363 ± 0.351 a | 6.963 ± 0.245 b | 7.349 ± 0.385 a |
Soluble dietary fiber (g/100 g) | 0.855 ± 0.038 b | 0.931 ± 0.050 a | 0.799 ± 0.023 b | 0.914 ± 0.020 a |
β-glucan content (g/100 g) | 0.571 ± 0.049 a | 0.906 ± 0.062 b | 0.535 ± 0.054 a | 0.872 ± 0.072 b |
Carbohydrate content (g/100 g) | 6.938 ± 0.643 c | 9.037 ± 0.643 b | 9.470 ± 1.150 b | 7.459 ± 1.256 c |
Ash content (g/100 g) | 7.059 ± 0.156 a | 6.824 ± 0.393 b | 7.196 ± 0.290 a | 6.705 ± 0.510 b |
Energy value (kcal/100 g) | 267.76 ± 4.04 b | 286.80 ± 5.13 a | 284.46 ± 2.96 a | 270.89 ± 1.85 b |
Protein digestibility (%) | 96.02 ± 2.11 a | 83.52 ± 1.64 b | 95.22 ± 1.93 a | 85.08 ± 1.98 b |
Parameter | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
Calcium, Ca (µg/g d.m.) | 1120 ± 90 a | 1110 ± 110 a | 1200 ± 110 a | 1100 ± 90 a |
Magnesium, Mg (µg/g d.m.) | 512 ± 55 a | 558 ± 39 a | 477 ± 31 b | 481 ± 38 b |
Sodium, Na (µg/g d.m.) | 15,600 ± 1250 a | 15,200 ± 1300 a | 14,700 ± 1000 a | 14,500 ± 1100 a |
Potassium, K (µg/g d.m.) | 14,500 ± 1300 a | 14,400 ± 1200 a | 12,100 ± 1000 b | 12,700 ± 1100 b |
Iron, Fe (µg/g d.m.) | 417 ± 33 a | 422 ± 29 a | 71.4 ± 5.6 b | 72.3 ± 6.1 b |
Zinc, Zn (µg/g d.m.) | 50.1 ± 3.2 b | 51.3 ± 3.4 ab | 53.7 ± 4.8 a | 53.3 ± 4.7 a |
Copper, Cu (µg/g d.m.) | 44.7 ± 4.9 a | 45.0 ± 3.8 a | 41.1 ± 3.3 b | 42.7 ± 3.8 b |
Manganese, Mn (µg/g d.m.) | 48.2 ± 2.7 a | 46.9 ± 4.4 a | 47.5 ± 4.3 a | 47.2 ± 3.7 a |
Lead, Pb (µg/g d.m.) | 88.2 ± 8.1 a | 86.7 ± 7.0 a | 78.4 ± 7.3 a | 77.9 ± 8.5 a |
Cadmium, Cd (µg/g d.m.) | 0.905 ± 0.088 b | 1.141 ± 0.155 a | 1.088 ± 0.184 ab | 1.131 ± 0.123 a |
Parameter | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
α-Solanine content (µg/g d.m.) | 32.405 ± 0.619 a | 28.047 ± 1.186 b | 32.110 ± 1.028 a | 27.971 ± 1.327 b |
α-Chaconine content (µg/g d.m.) | 12.365 ± 1.895 a | 5.264 ± 0.375 b | 12.601 ± 1.301 a | 5.418 ± 0.478 b |
Parameter | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
Prior to the in vitro digestion | ||||
TPC (mg/g d.m.) | 1.763 ± 0.077 a | 1.863 ± 0.065 a | 1.601 ± 0.079 b | 1.623 ± 0.101 b |
TEACABTS (µmol/g d.m.) | 9.915 ± 1.927 a | 6.983 ± 1.173 ab | 8.163 ± 1.054 a | 6.067 ± 0.634 b |
TEACFRAP (µmol/g d.m.) | 1.522 ± 0.147 a | 1.497 ± 0.032 b | 1.443 ± 0.099 b | 1.606 ± 0.192 a |
Gallic acid (µg/g d.m.) | 0.564 ± 0.018 a | 0.388 ± 0.159 b | 0.554 ± 0.032 a | 0.567 ± 0.035 a |
Caffeic acid (µg/g d.m.) | 0.162 ± 0.005 b | 0.188 ± 0.015 a | 0.124 ± 0.01 c | 0.199 ± 0.015 a |
Ferulic acid (µg/g d.m.) | 0.827 ± 0.016 a | 0.652 ± 0.013 c | 0.759 ± 0.02 b | 0.723 ± 0.092 bc |
Chlorogenic acid (µg/g d.m.) | 0.375 ± 0.011 c | 0.381 ± 0.063 b | 0.331 ± 0.02 d | 0.499 ± 0.025 a |
After the in vitro digestion | ||||
TPC (mg/g d.m.) | 4.276 ± 0.222 a | 3.994 ± 0.220 b | 3.876 ± 0.197 b | 4.127 ± 0.391 a |
TEACABTS (µmol/g d.m.) | 55.900 ± 7.543 b | 52.952 ± 9.377 b | 71.138 ± 13.716 a | 37.248 ± 7.393 c |
TEACFRAP (µmol/g d.m.) | 2.671 ± 0.334 a | 2.728 ± 0.336 a | 2.316 ± 0.195 a | 2.507 ± 0.474 a |
Gallic acid (µg/g d.m.) | 1.145 ± 0.045 b | 1.652 ± 0.012 a | 1.644 ± 0.091 a | 1.662 ± 0.044 a |
Caffeic acid (µg/g d.m.) | 0.150 ± 0.001 b | 0.155 ± 0.003 b | 0.161 ± 0.011 a | 0.166 ± 0.002 a |
Ferulic acid (µg/g d.m.) | 0.859 ± 0.023 a | 0.682 ± 0.026 d | 0.767 ± 0.020 b | 0.707 ± 0.001 c |
Chlorogenic acid (µg/g d.m.) | 0.980 ± 0.039 b | 1.144 ± 0.018 a | 1.102 ± 0.105 a | 1.072 ± 0.011 ab |
Parameter | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
Firmness (N) | 3.210 ± 0.319 b | 3.107 ± 0.336 b | 3.337 ± 0.238 b | 3.833 ± 0.207 a |
Share work (Ns) | 14.72 ± 1.94 c | 15.84 ± 3.11 c | 17.35 ± 1.86 b | 19.64 ± 2.81 a |
Relaxation Time | PBG1 | PBG2 | PBG3 | PBG4 |
---|---|---|---|---|
Batters | ||||
T1 (ms) | 121.81 ± 0.44 b | 118.07 ± 0.51 b | 137.55 ± 0.58 a | 139.92 ± 0.47 a |
T21 (ms) | 31.25 ± 0.91 ab | 29.94 ± 1.02 b | 35.77 ± 1.09 a | 33.93 ± 0.93 a |
T22 (ms) | 84.66 ± 4.21 b | 85.31 ± 4.30 b | 91.06 ± 5.78 a | 90.94 ± 5.09 a |
Final products | ||||
T1 (ms) | 110.22 ± 0.51 b | 106.09 ± 0.43 c | 111.03 ± 0.46 b | 118.00 ± 0.52 a |
T21 (ms) | 22.39 ± 0.79 b | 21.73 ± 0.66 b | 23.37 ± 0.83 a | 24.06 ± 0.98 a |
T22 (ms) | 64.31 ± 5.77 c | 67.92 ± 4.58 b | 68.92 ± 3.05 b | 70.04 ± 3.66 a |
Sample | Day | Mesophilic Aerobic Microorganisms | Yeast and Mould | Enterobacteriaceae | S. aureus | C. perfringens | L. monocytogenes |
---|---|---|---|---|---|---|---|
PBG1 | 1 | 2.864 | 1.100 | <0.100 | <0.100 | <0.100 | <0.100 |
8 | 3.175 | 2.595 | <0.100 | <0.100 | <0.100 | <0.100 | |
15 | 6.359 | 3.006 | 1.65 | <0.100 | <0.100 | <0.100 | |
PBG2 | 1 | 2.473 | 1.460 | <0.100 | <0.100 | <0.100 | <0.100 |
8 | 3.474 | 2.555 | <0.100 | <0.100 | <0.100 | <0.100 | |
15 | 6.663 | 5.145 | <0.100 | <0.100 | <0.100 | <0.100 | |
PBG3 | 1 | 2.652 | 1.454 | <0.100 | <0.100 | <0.100 | <0.100 |
8 | 2.998 | 2.471 | <0.100 | <0.100 | <0.100 | <0.100 | |
15 | 8.967 | 3.983 | <0.100 | <0.100 | <0.100 | <0.100 | |
PBG4 | 1 | 2.868 | 0.774 | <0.100 | <0.100 | <0.100 | <0.100 |
8 | 3.155 | 2.988 | <0.100 | <0.100 | <0.100 | <0.100 | |
15 | 7.059 | 5.907 | <0.100 | <0.100 | <0.100 | <0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smarzyński, K.; Kowalczewski, P.Ł.; Tomczak, A.; Zembrzuska, J.; Ślachciński, M.; Neunert, G.; Ruszkowska, M.; Świątek, M.; Nowicki, M.; Baranowska, H.M. Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment. Sustainability 2025, 17, 7626. https://doi.org/10.3390/su17177626
Smarzyński K, Kowalczewski PŁ, Tomczak A, Zembrzuska J, Ślachciński M, Neunert G, Ruszkowska M, Świątek M, Nowicki M, Baranowska HM. Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment. Sustainability. 2025; 17(17):7626. https://doi.org/10.3390/su17177626
Chicago/Turabian StyleSmarzyński, Krzysztof, Przemysław Łukasz Kowalczewski, Aneta Tomczak, Joanna Zembrzuska, Mariusz Ślachciński, Grażyna Neunert, Millena Ruszkowska, Michał Świątek, Marcin Nowicki, and Hanna Maria Baranowska. 2025. "Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment" Sustainability 17, no. 17: 7626. https://doi.org/10.3390/su17177626
APA StyleSmarzyński, K., Kowalczewski, P. Ł., Tomczak, A., Zembrzuska, J., Ślachciński, M., Neunert, G., Ruszkowska, M., Świątek, M., Nowicki, M., & Baranowska, H. M. (2025). Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment. Sustainability, 17(17), 7626. https://doi.org/10.3390/su17177626