Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,767)

Search Parameters:
Keywords = food functionality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 1056 KB  
Review
Advancements in Microbial Applications for Sustainable Food Production
by Alane Beatriz Vermelho, Verônica da Silva Cardoso, Levy Tenório Sousa Domingos, Ingrid Teixeira Akamine, Bright Amenu, Bernard Kwaku Osei and Athayde Neves Junior
Foods 2025, 14(19), 3427; https://doi.org/10.3390/foods14193427 (registering DOI) - 5 Oct 2025
Abstract
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in [...] Read more.
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in the food industry. Additionally, it explores food preservation strategies and methods for controlling microbial contamination. These biotechnological approaches are increasingly replacing synthetic additives, contributing to enhanced food safety, nutritional functionality, and product shelf stability. Examples include bacteriocins from lactic acid bacteria, biodegradable microbial pigments, and exopolysaccharide-based biopolymers, such as pullulan and xanthan gum, which are used in edible coatings and films. A comprehensive literature search was conducted across Scopus, PubMed, ScienceDirect, and Google Scholar, covering publications from 2014 to 2025. A structured Boolean search strategy was applied, targeting core concepts in microbial fermentation, bio-based food additives, and contamination control. The initial search retrieved 5677 articles, from which 370 studies were ultimately selected after applying criteria such as duplication removal, relevance to food systems, full-text accessibility, and scientific quality. This review highlights microbial biotransformation as a route to minimize reliance on synthetic inputs, valorize agri-food byproducts, and support circular bioeconomy principles. It also discusses emerging antimicrobial delivery systems and regulatory challenges. Overall, microbial innovations offer viable and scalable pathways for enhancing food system resilience, functionality, and environmental stewardship. Full article
Show Figures

Graphical abstract

20 pages, 2313 KB  
Review
Citrus Waste Valorisation Processes from an Environmental Sustainability Perspective: A Scoping Literature Review of Life Cycle Assessment Studies
by Grazia Cinardi, Provvidenza Rita D’Urso, Giovanni Cascone and Claudia Arcidiacono
AgriEngineering 2025, 7(10), 335; https://doi.org/10.3390/agriengineering7100335 (registering DOI) - 5 Oct 2025
Abstract
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, [...] Read more.
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, driving growing scientific interest in exploring environmentally sustainable and profitable valorisation strategies. This study aimed at mapping the sustainability of post-processing citrus valorisation strategies documented in the scientific literature, through a scoping literature review based on the PRISMA-ScR model. Only peer-reviewed studies in English were selected from Scopus and Web of Science; in detail, 29 life cycle assessment studies (LCAs) focusing on the valorisation of citrus by-products have been analysed. Most of the studies were focused on essential oil extraction and energy production. Most of the biorefinery systems and valorisation aims proposed were found to be better than the business-as-usual solution. However, results are strongly influenced by the functional unit and allocation method. Economic allocation to the main product resulted in better environmental performances. The major environmental hotspot is the agrochemicals required for crop management. The analysis of LCAs facilitated the identification of valorisation strategies that deserve greater interest from the scientific community to propose sustainable bio-circular solutions in the agro-industrial and agricultural sectors. Full article
Show Figures

Figure 1

17 pages, 609 KB  
Article
Portulaca oleracea as a Functional Ingredient in Organic Cooked Frankfurters: A Sustainable Approach to Shelf-Life Extension and Oxidative Stability Without Synthetic Nitrites
by Kadyrzhan Makangali, Gulnazym Ospankulova, Gulzhan Tokysheva, Aknur Muldasheva and Kalamkas Dairova
Processes 2025, 13(10), 3167; https://doi.org/10.3390/pr13103167 (registering DOI) - 5 Oct 2025
Abstract
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. [...] Read more.
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. This study investigated the application of Portulaca oleracea powder as a multifunctional ingredient to fully replace sodium nitrite in organic cooked frankfurters. Two formulations were produced: control frankfurters with sodium nitrite and experimental frankfurters with purslane powder 1.2%. Physicochemical, oxidative, proteomic, and antioxidant parameters were monitored during refrigerated storage. Purslane incorporation improved the lipid profile by increasing α-linolenic acid and lowering the ω-6/ω-3 ratio, while peroxide, thiobarbituric acid reactive substances (TBARS), and acid values remained significantly lower than in nitrite-containing controls after 10 days. Protein oxidation was also reduced, and SDS-PAGE profiles confirmed that the major structural muscle proteins remained stable, indicating that purslane addition did not disrupt the core proteome. Antioxidant assays showed strong ferric-reducing antioxidant power (FRAP) activity 13.7 mg GAE/g and enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity 22.3%, highlighting purslane’s contribution to oxidative stability. Although redness (a*) was lower than in nitrite controls, overall color stability (L*, b*) remained high. Taken together, purslane enhanced oxidative stability and quality attributes of nitrite-free organic frankfurters; microbiological validation is ongoing and will be reported separately. Full article
(This article belongs to the Special Issue Development of Innovative Processes in Food Engineering)
18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 (registering DOI) - 4 Oct 2025
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

23 pages, 1782 KB  
Review
From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health
by Lucia Bubulac, Claudia Florina Bogdan-Andreescu, Daniela Victorița Voica, Bogdan Mihai Cristea, Maria Simona Chiș and Dan Alexandru Slăvescu
Appl. Sci. 2025, 15(19), 10717; https://doi.org/10.3390/app151910717 (registering DOI) - 4 Oct 2025
Abstract
The olive tree (Olea europaea L.) has been cultivated for millennia, with olive oil representing both a cornerstone of the Mediterranean diet and a major agricultural commodity. Its composition, rich in monounsaturated fatty acids, polyphenols, tocopherols and squalene, supports well-documented cardioprotective, antioxidant [...] Read more.
The olive tree (Olea europaea L.) has been cultivated for millennia, with olive oil representing both a cornerstone of the Mediterranean diet and a major agricultural commodity. Its composition, rich in monounsaturated fatty acids, polyphenols, tocopherols and squalene, supports well-documented cardioprotective, antioxidant and anti-inflammatory benefits. Olive oil production generates substantial secondary streams, including pomace, leaves, pits and mill wastewater, which are rich in phenols, triterpenes and fibers. This review consolidates recent advances in their phytochemical characterization, innovative extraction technologies and health-promoting effects, while highlighting the economic and regulatory prospects for industrial adoption. Comparative analysis shows that olive leaves can produce up to 16,674.0–50,594.3 mg/kg total phenolics; oleuropein 4570.0–27,547.7 mg/kg, pomace retains 2.24 g GAE/100 g dried matrix (DM)total phenolics; oil 13.66% DM; protein 6.64% DM, and wastewater contains high concentration of phenolics content of olives. Innovative extraction techniques, such as ultrasound and microwave-assisted methods, allow for a recovery, while reducing solvent use and energy input. The analysis highlights opportunities for integrating these by-products into circular bioeconomy models, supporting the development of functional foods, nutraceutical applications and sustainable waste management. Future research should address techno-economic feasibility, regulatory harmonization and large-scale clinical validation to accelerate market translation. Full article
Show Figures

Figure 1

13 pages, 1117 KB  
Review
Mediterranean Diet as a Nutraceutical and Sustainable Model for Health and Environmental Wellbeing
by Eduardo Costa-Camilo, Fátima Cardoso, Isabel Duarte, Graça P. Carvalho, João M. G. C. F. de Almeida, Rita G. Sobral and Carla Pinheiro
Gastronomy 2025, 3(4), 17; https://doi.org/10.3390/gastronomy3040017 (registering DOI) - 4 Oct 2025
Abstract
The Mediterranean Diet (MD) has emerged as a comprehensive model for promoting human health and environmental sustainability. This review proposes reconceptualization of the traditional MD pyramid, highlighting its functional food components and their relevance to modern health challenges. Rooted in a rich cultural [...] Read more.
The Mediterranean Diet (MD) has emerged as a comprehensive model for promoting human health and environmental sustainability. This review proposes reconceptualization of the traditional MD pyramid, highlighting its functional food components and their relevance to modern health challenges. Rooted in a rich cultural and gastronomic heritage, the MD extends beyond nutritional adequacy. It offers substantial nutraceutical benefits due to its high content of bioactive compounds such as polyphenols, carotenoids, omega-3 fatty acids, and phytosterols. These compounds contribute to the prevention and management of chronic non-communicable diseases through antioxidant and anti-inflammatory mechanisms. Simultaneously, the MD aligns with sustainable food system principles: it is predominantly plant-based; it promotes seasonal and local food sourcing; and it supports minimal food waste. In addition, this dietary pattern has been associated with a significantly lower ecological footprint compared to Western diets, thus supporting broader environmental goals. Ultimately, the MD stands as a scientifically grounded, culturally embedded, and ecologically viable approach to foster both individual and planetary wellbeing (One Health concept). Full article
Show Figures

Figure 1

22 pages, 2754 KB  
Article
Purification, Identification, and In Silico Analysis of Anti-Obesity and Antidiabetic Peptides from the Red Seaweed Palmaria palmata
by Sakhi Ghelichi, Mona Hajfathalian, Seyed Hossein Helalat, Birte Svensson and Charlotte Jacobsen
Mar. Drugs 2025, 23(10), 392; https://doi.org/10.3390/md23100392 - 3 Oct 2025
Abstract
This study investigates the anti-obesity and antidiabetic potential of P. palmata extracts produced through sequential enzymatic and alkaline treatments. Among the treatment groups, the extract treated solely with Alcalase® (Alc) demonstrated the highest protein content (10.11 ± 0.15%) and degree of hydrolysis [...] Read more.
This study investigates the anti-obesity and antidiabetic potential of P. palmata extracts produced through sequential enzymatic and alkaline treatments. Among the treatment groups, the extract treated solely with Alcalase® (Alc) demonstrated the highest protein content (10.11 ± 0.15%) and degree of hydrolysis (30.36 ± 0.77%), significantly outperforming other treatments (p < 0.05). The Alc extract also exhibited superior inhibitory activity against porcine pancreatic lipase and α-amylase, achieving the lowest IC50 for lipase (2.29 ± 0.87 mg.mL−1) and showing significant enzyme inhibition across all tested concentrations (p < 0.05). Ultrafiltration of the Alc extract revealed that peptide fractions < 1 kDa and 1–3 kDa were most effective in enzyme inhibition, with IC50 values of 3.25–3.55 mg.mL−1 for both lipase and α-amylase. Peptides were identified via LC-MS/MS analysis and database searching using SequestHT, resulting in 536 sequences, of which bioinformatic screening yielded 51 non-toxic, non-allergenic candidates (PeptideRanker score > 0.6); four of these contained known inhibitory motifs for lipase and α-amylase. Molecular docking confirmed strong binding affinities between these peptides and their respective enzymes, supporting their potential as natural enzyme inhibitors. These findings indicate the functional food potential of Alcalase®-derived P. palmata peptides for managing obesity and type 2 diabetes. Full article
(This article belongs to the Special Issue Marine Algae as Functional Foods)
Show Figures

Figure 1

19 pages, 960 KB  
Article
Antibacterial and Immunostimulatory Effects of Raziz Date Palm Pits in Streptococcus agalactiae-Infected Red Hybrid Tilapia
by Disha Varijakzhan, Chou-Min Chong, Annie Christianus, Aisha Abushelaibi, Swee-Hua Erin Lim, Wan-Hee Cheng, Eakapol Wangkahart and Kok-Song Lai
Biology 2025, 14(10), 1356; https://doi.org/10.3390/biology14101356 - 3 Oct 2025
Abstract
Aquaculture is an important food sector, which involves the commercial production of fish for consumption. Tilapias (Oreochromis sp.) are hardy and are one of the most commonly produced fishes in the aquaculture industry. Disease outbreaks caused by Streptococcus agalactiae, however, widely [...] Read more.
Aquaculture is an important food sector, which involves the commercial production of fish for consumption. Tilapias (Oreochromis sp.) are hardy and are one of the most commonly produced fishes in the aquaculture industry. Disease outbreaks caused by Streptococcus agalactiae, however, widely affect tilapia farms, resulting in high mortality. Consequently, this may lead to the misuse of antibiotics for the prevention of disease or overuse of antibiotics when used for the treatment of fishes, contributing to antibiotic resistance. In this study, date palm pits, a waste product from the date palm industry, were tested for potential antibacterial activity against S. agalactiae and for their ability to act as an immune enhancer in vitro through the use of the head kidney and serum from healthy adult tilapias. An in vivo study was performed by dividing tilapias into two groups, consisting of infected S. agalactiae and uninfected S. agalactiae. Each group consisted of extract-fed and distilled-water-fed tilapia. Then, the serum, spleen and head kidney were isolated from both groups and tested for their respiratory burst, lysozyme and myeloperoxidase activities. The results from this study indicate that the Raziz methanol extract at a concentration of 1 g/mL inhibited the growth of S. agalactiae, and concentrations of 10 mg/mL, 2 mg/mL and 0.016 mg/mL displayed the highest respiratory burst, lysozyme and myeloperoxidase activities, respectively, in vitro. In the infected group, extract-fed tilapias showed a significant effect on respiratory burst activity and lysozyme activity compared to the distilled-water-fed tilapias, while no significant activity was observed in the uninfected group. In conclusion, the Raziz methanol extract has promising potential to act as an antibacterial agent, and it enhanced the innate immune function during active infection of S. agalactiae. Full article
Show Figures

Figure 1

22 pages, 543 KB  
Review
Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection
by Andreas Romulo, Steven Suryoprabowo, Raden Haryo Bimo Setiarto and Yahui Guo
Molecules 2025, 30(19), 3969; https://doi.org/10.3390/molecules30193969 - 3 Oct 2025
Abstract
The increasing prevalence of antimicrobial resistance and the persistent challenge of infectious diseases highlight the critical necessity for novel approaches that integrate pathogen management with swift detection methods. Carbon dots (CDs) are a versatile class of fluorescent nanomaterials that have garnered increasing attention [...] Read more.
The increasing prevalence of antimicrobial resistance and the persistent challenge of infectious diseases highlight the critical necessity for novel approaches that integrate pathogen management with swift detection methods. Carbon dots (CDs) are a versatile class of fluorescent nanomaterials that have garnered increasing attention owing to their tunable surface chemistry, strong photoluminescence, high stability, and biocompatibility. Recent studies demonstrate that CDs possess broad-spectrum antibacterial and antifungal activities via multiple mechanisms, including the generation of reactive oxygen species, disruption of membranes, inhibition of biofilms, and synergistic interactions with conventional antimicrobials. The performance is significantly affected by precursor selection, heteroatom doping, and surface functionalization, with minimum inhibitory concentrations reported to range from highly potent at the microgram level to moderate at elevated concentrations. The intrinsic fluorescence of CDs, in addition to their antimicrobial activity, facilitates their use as sensitive and selective probes for microbial detection, allowing for rapid and real-time monitoring in biomedical, food safety, and environmental settings. This review summarizes recent advancements in the antimicrobial properties of carbon dots (CDs) and their fluorescence-based applications in microbial detection. It emphasizes their theranostic potential and future prospects as multifunctional nanomaterials for combating infectious diseases and ensuring microbial safety. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

25 pages, 3874 KB  
Article
Evaluation of Water Resources Carrying Capacity and Analysis of Influencing Factors in China’s Major Grain-Producing Areas Based on Machine Learning
by Kun Cheng, Xingyang Zhang and Nan Sun
Agriculture 2025, 15(19), 2074; https://doi.org/10.3390/agriculture15192074 - 2 Oct 2025
Abstract
Evaluating regional water resource carrying capacity (WRCC) helps alleviate regional water supply–demand conflicts. This study constructed a 17-indicator system for evaluating WRCC in Major Grain-Producing Areas (MGPAs) based on the “production–living–ecology” functional perspective. It employed a combined Entropy Weight–Root Mean Square Deviation–CRITIC weighting [...] Read more.
Evaluating regional water resource carrying capacity (WRCC) helps alleviate regional water supply–demand conflicts. This study constructed a 17-indicator system for evaluating WRCC in Major Grain-Producing Areas (MGPAs) based on the “production–living–ecology” functional perspective. It employed a combined Entropy Weight–Root Mean Square Deviation–CRITIC weighting approach with a BP neural network model to conduct a comprehensive assessment of WRCC across 13 MGPAs from 2004 to 2023. The results demonstrated the following: (1) Both MGPAs and the national level exhibit a “ecology dominance–living secondary–production weakness” pattern in functional weighting. (2) WRCC in MGPAs is characterized by agricultural production dominance, basic domestic needs as the core, and localized ecological protection as the focus—significantly differing from the national pattern of industrial-driven, economically interconnected, and trans-regional ecological concerns. (3) Spatiotemporally, WRCC levels across the 13 provinces have consistently increased, with a spatial distribution characterized by “higher in the north, lower in the south.” These findings reveal that water resource management in MGPAs requires strategies distinct from national approaches, emphasizing agricultural water conservation and efficiency alongside localized ecological protection. This provides precise policy tools and scientific decision support for implementing water-based production quotas and coordinating food security with water resource security in these regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
36 pages, 4146 KB  
Article
Assessment of a Functional Yogurt Enriched with Anthocyanin-Loaded Nanoliposomes: Sensory Evaluation and Physicochemical Stability During Cold Storage
by Miguel Ángel Robles-García, Carmen Lizette Del-Toro-Sánchez, Linthia Jovana Tapia-Beiza, Melesio Gutiérrez-Lomelí, María Guadalupe Avila-Novoa, Ariadna Thalía Bernal-Mercado, Francisco Javier Reynoso-Marín, Fridha Viridiana Villalpando-Vargas, Alejandra Vázquez-Aguilar, Ernesto Ramírez-Briones and Ricardo Iván González-Vega
Int. J. Mol. Sci. 2025, 26(19), 9637; https://doi.org/10.3390/ijms26199637 - 2 Oct 2025
Abstract
In the development of functional foods with therapeutic value, nanoliposomal carriers offer a promising strategy for enhancing the stability and efficacy of bioactive compounds in dairy matrices. This study evaluated the sensory acceptance and physicochemical stability of yogurt enriched with anthocyanin-loaded nanoliposomes during [...] Read more.
In the development of functional foods with therapeutic value, nanoliposomal carriers offer a promising strategy for enhancing the stability and efficacy of bioactive compounds in dairy matrices. This study evaluated the sensory acceptance and physicochemical stability of yogurt enriched with anthocyanin-loaded nanoliposomes during 21 days of refrigerated storage, assessing the impact of nanoencapsulation on compound preservation and quality. Nanoliposomes were synthesized using ultrasonic film dispersion and characterized for antioxidant and erythroprotective activities. Antioxidant capacity was assessed through DPPH, ABTS, and FRAP assays, while erythroprotective effects were evaluated via oxidative hemolysis using human erythrocytes of different ABO/RhD phenotypes. These were incorporated into artisanal yogurt, followed by physicochemical, microbiological, rheological, and sensory analyses. Anthocyanins showed strong antioxidant capacity, especially in ABTS (93.24%), DPPH (21.34%), and FRAP (1023.24 µM TE/g D.W.), reflecting their radical scavenging and reducing power. They also exhibited high erythroprotective activity, with greater antihemolytic effects in O RhD− blood and enhanced photoprotection against UVA in O RhD+ blood. Yogurt enriched with nanoliposomes showed improved color stability, reduced syneresis, and favorable rheological and sensory characteristics. These findings support nanoliposomes as molecular delivery systems in functional dairy matrices with potential nutraceutical applications targeting oxidative stress. Further work should explore molecular mechanisms and validate health-promoting effects. Full article
(This article belongs to the Special Issue Molecular Research in Nanotechnology for Natural Products)
Show Figures

Graphical abstract

22 pages, 437 KB  
Article
Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework
by Otilia Cristina Murariu, Florin Daniel Lipșa, Eugen Ulea, Florin Murariu, Marius-Mihai Ciobanu, Gabriela Frunză, Petru Marian Cârlescu, Florina Stoica, Nicoleta Diaconu and Gianluca Caruso
Horticulturae 2025, 11(10), 1187; https://doi.org/10.3390/horticulturae11101187 - 2 Oct 2025
Abstract
The addition of sea buckthorn(Hippophae rhamnoides L.) fruits as well as their extracted juice or, even more interestingly, related by-products into chocolate results in manufacturing an innovative functional food rich in bioactive substances. Thirteen treatments derived from the factorial combination of three [...] Read more.
The addition of sea buckthorn(Hippophae rhamnoides L.) fruits as well as their extracted juice or, even more interestingly, related by-products into chocolate results in manufacturing an innovative functional food rich in bioactive substances. Thirteen treatments derived from the factorial combination of three types of H. rhamnoides materials (total fruit powder; fruit by-product powder; and fruit juice) and four concentrations (10%, 15%, 20% and 25%), plus an untreated control, were compared in terms of texture, quality, colour, antioxidant, mineral and sensorial properties of white chocolate. The untreated control showed the highest values of most of the texture parameters, as well as of pH, dry matter, soluble solids and colour component ‘L’. The colour component ‘b’ was best influenced by the 10% by-product addition to chocolate, whereas mineral substances, ash and colour component ‘a’ augmented with the increasing concentration of added H. rhamnoides materials. Compared to the untreated control, protein and fat contents in chocolate decreased with the rising added concentration of sea buckthorn fruit juice but showed the opposite trend under the integration of the whole fruit and its by-products. The antioxidant compounds and activity increased from the untreated chocolate to the highest concentration of added sea buckthorn materials. The juice addition to the chocolate best affected vitamin C, total carotenoids, β-carotene and lycopene, whereas the whole fruit integration led to the top levels of flavonoids, polyphenols and antioxidant activity. Potassium and zinc contents decreased from the untreated control to the highest H. rhamnoides material addition, whereas opposite trends were shown by calcium, magnesium, sodium and phosphorus. The integration of H. rhamnoides fruit materials into chocolate presents a valuable strategy to produce innovative health beneficial functional food. Full article
(This article belongs to the Section Processed Horticultural Products)
Show Figures

Figure 1

15 pages, 2058 KB  
Article
Screening of 31 Lactic Acid Bacteria Strains Identified Levilactobacillus brevis NCTC 13768 as a High-Yield GABA Producer
by Desislava Teneva, Daniela Pencheva, Tsvetanka Teneva-Angelova, Svetla Danova, Nikoleta Atanasova, Lili Dobreva, Manol Ognyanov, Ani Petrova, Aleksandar Slavchev, Vasil Georgiev and Petko Denev
Appl. Sci. 2025, 15(19), 10670; https://doi.org/10.3390/app151910670 - 2 Oct 2025
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system, known for its role in promoting sleep, reducing anxiety, regulating blood pressure, and modulating stress, cognition, and behavior. Microbial fermentation offers an effective method for GABA production, with certain [...] Read more.
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system, known for its role in promoting sleep, reducing anxiety, regulating blood pressure, and modulating stress, cognition, and behavior. Microbial fermentation offers an effective method for GABA production, with certain lactic acid bacteria (LAB) strains recognized as efficient producers. This study assessed the GABA-producing potential of 31 LAB strains, including isolates from traditional Bulgarian foods and plants. The strains were cultivated in an MRS medium supplemented with 1% monosodium glutamate (MSG), and GABA production was quantified using HPLC after derivatization with dansyl chloride. Most strains produced between 200 and 300 mg/L of GABA. However, Levilactobacillus brevis NCTC 13768 showed much higher productivity, reaching 3830.7 mg/L. To further evaluate its capacity, L. brevis NCTC 13768 was cultivated for 168 h in MRS medium with and without MSG. Without MSG, GABA production peaked at 371.0 mg/L during the late exponential phase. In contrast with MSG, GABA levels steadily increased, reaching 3333.6 mg/L after 168 h. RT-qPCR analyses of the glutamic acid decarboxylase (GAD) system showed that the genes of glutamate decarboxylase (gadB), glutamate-GABA antiporter (gadC), and transcriptional regulator (gadR) are significantly overexpressed when the culture reaches the late stationary phase of growth (96 h after the beginning of cultivation). These results identify L. brevis NCTC 13768 as a high-yield GABA producer, with potential applications in the production of fermented functional foods and beverages. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production, 2nd Edition)
Show Figures

Figure 1

17 pages, 1782 KB  
Review
Quinoa and Colonic Health: A Review of Bioactive Components and Mechanistic Insights
by Yan Pan, Jimin Zheng, Zhixuan Wang, Shaohua Lin, Hongliang Jia, Hairun Pei and Ronghui Ju
Curr. Issues Mol. Biol. 2025, 47(10), 815; https://doi.org/10.3390/cimb47100815 - 2 Oct 2025
Abstract
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), [...] Read more.
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and celiac disease continues to rise, the therapeutic potential of quinoa has garnered increasing scientific attention. This review systematically examines the role of quinoa, with focus on quinoa polysaccharides (QPs), in maintaining and improving colonic health. It summarizes the molecular structure, functional properties, and gut microbiota-modulating effects of QPs, alongside emerging findings on their anti-inflammatory, antioxidant, immunomodulatory, and anticancer activities. Furthermore, the review explores quinoa’s auxiliary effects in mitigating CRC progression and chemotherapy resistance, alleviating intestinal inflammation, and supporting gastrointestinal integrity in celiac patients. By integrating evidence from multi-omics technologies, cell and animal models, and limited clinical studies with mechanistic insights, this review provides a focused synthesis of quinoa bioactive compounds in relation to colonic health. It highlights how precision nutrition and multi-omics approaches could guide future applications of quinoa as a novel functional food-based intervention for colonic diseases. Full article
Show Figures

Figure 1

15 pages, 1243 KB  
Article
Missense Variants in Nutrition-Related Genes: A Computational Study
by Giovanni Maria De Filippis, Maria Monticelli, Bruno Hay Mele and Viola Calabrò
Int. J. Mol. Sci. 2025, 26(19), 9619; https://doi.org/10.3390/ijms26199619 - 2 Oct 2025
Abstract
Genetic variants in nutrition-related genes exhibit variable functional consequences; however, systematic characterization across different nutritional domains remains limited. This highlights the need for detailed exploration of variant distribution and functional effects across nutritional gene categories. Therefore, the main objective of this computational study [...] Read more.
Genetic variants in nutrition-related genes exhibit variable functional consequences; however, systematic characterization across different nutritional domains remains limited. This highlights the need for detailed exploration of variant distribution and functional effects across nutritional gene categories. Therefore, the main objective of this computational study is to delve deeper into the distribution and functional impact of missense variants in nutrition-related genes. We analyzed Genetic polymoRphism variants using Personalized Medicine (GRPM) dataset, focusing on ten groups of nutrition-related genes. Missense variants were characterized using ProtVar for functional/structural impact, Pharos for functional classification, network analysis for pathway identification, and Gene Ontology enrichment for biological process annotation. The analysis of 63,581 Single Nucleotide Polymorphisms (SNP) revealed 27,683 missense variants across 1589 genes. Food intolerance (0.23) and food allergy (0.15) groups showed the highest missense/SNP ratio, while obesity-related genes showed the lowest (0.04). Enzymes predominated in xenobiotic and vitamin metabolism groups, while G-protein-coupled receptors were enriched in eating behavior genes. The vitamin metabolism group had the highest proportion of pathogenic variants. Network analysis identified apolipoproteins as central hubs in metabolic groups and inflammatory proteins in allergy-related groups. These findings offer insights into personalized nutrition approaches and underscore the utility of computational variant analysis in elucidating gene-diet interactions. Full article
Show Figures

Figure 1

Back to TopTop