Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (617)

Search Parameters:
Keywords = forest fire risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9465 KB  
Article
Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data
by Enikoe Bihari, Karen Dyson, Kayla Johnston, Daniel Marc G. dela Torre, Akkarapon Chaiyana, Karis Tenneson, Wasana Sittirin, Ate Poortinga, Veerachai Tanpipat, Kobsak Wanthongchai, Thannarot Kunlamai, Elijah Dalton, Chanarun Saisaward, Marina Tornorsam, David Ganz and David Saah
Remote Sens. 2025, 17(19), 3378; https://doi.org/10.3390/rs17193378 - 7 Oct 2025
Abstract
Seasonal fires in northern Thailand are a persistent environmental and public health concern, yet existing fire probability mapping approaches in Thailand rely heavily on subjective multi-criteria analysis (MCA) methods and temporally static data aggregation methods. To address these limitations, we present a flexible, [...] Read more.
Seasonal fires in northern Thailand are a persistent environmental and public health concern, yet existing fire probability mapping approaches in Thailand rely heavily on subjective multi-criteria analysis (MCA) methods and temporally static data aggregation methods. To address these limitations, we present a flexible, replicable, and operationally viable seasonal fire probability mapping methodology using a Random Forest (RF) machine learning model in the Google Earth Engine (GEE) platform. We trained the model on historical fire occurrence and fire predictor layers from 2016–2023 and applied it to 2024 conditions to generate a probabilistic fire prediction. Our novel approach improves upon existing operational methods and scientific literature in several ways. It uses a more representative sample design which is agnostic to the burn history of fire presences and absences, pairs fire and fire predictor data from each year to account for interannual variation in conditions, empirically refines the most influential fire predictors from a comprehensive set of predictors, and provides a reproducible and accessible framework using GEE. Predictor variables include both socioeconomic and environmental drivers of fire, such as topography, fuels, potential fire behavior, forest type, vegetation characteristics, climate, water availability, crop type, recent burn history, and human influence and accessibility. The model achieves an Area Under the Curve (AUC) of 0.841 when applied to 2016–2023 data and 0.848 when applied to 2024 data, indicating strong discriminatory power despite the additional spatial and temporal variability introduced by our sample design. The highest fire probabilities emerge in forested and agricultural areas at mid elevations and near human settlements and roads, which aligns well with the known anthropogenic drivers of fire in Thailand. Distinct areas of model uncertainty are also apparent in cropland and forests which are only burned intermittently, highlighting the importance of accounting for localized burning cycles. Variable importance analysis using the Gini Impurity Index identifies both natural and anthropogenic predictors as key and nearly equally important predictors of fire, including certain forest and crop types, vegetation characteristics, topography, climate, human influence and accessibility, water availability, and recent burn history. Our findings demonstrate the heavy influence of data preprocessing and model design choices on model results. The model outputs are provided as interpretable probability maps and the methods can be adapted to future years or augmented with local datasets. Our methodology presents a scalable advancement in wildfire probability mapping with machine learning and open-source tools, particularly for data-constrained landscapes. It will support Thailand’s fire managers in proactive fire response and planning and also inform broader regional fire risk assessment efforts. Full article
(This article belongs to the Special Issue Remote Sensing in Hazards Monitoring and Risk Assessment)
Show Figures

Figure 1

8 pages, 1515 KB  
Proceeding Paper
Spatiotemporal Analysis of Forest Fires in Cyprus Using Earth Observation and Climate Data
by Maria Prodromou, Stella Girtsou, George Leventis, Georgia Charalampous, Alexis Apostolakis, Marios Tzouvaras, Christodoulos Mettas, Giorgos Giannopoulos, Charalampos Kontoes and Diofantos Hadjimitsis
Environ. Earth Sci. Proc. 2025, 35(1), 54; https://doi.org/10.3390/eesp2025035054 - 29 Sep 2025
Abstract
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from [...] Read more.
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from 2008 to 2024 and integrating Earth observation data and anthropogenic, environmental, meteorological, topographic, and fire-related features. This study evaluates, through time series analysis, the impact of climate trends such as increased temperature in comparison with anthropogenic activities such as deliberate fires. Time series analysis reveals that although climatic conditions with increased temperature and reduced precipitation in Cyprus intensify the risk of fire, the presence of fire events is primarily due to deliberate actions. The findings of this study support national-scale fire modeling, offering a foundation for targeted prevention, early warning systems, and sustainable forest fire management strategies. Full article
Show Figures

Figure 1

24 pages, 1246 KB  
Systematic Review
Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes
by Bojan Mihajlovski and Miglena Zhiyanski
Fire 2025, 8(10), 380; https://doi.org/10.3390/fire8100380 - 24 Sep 2025
Viewed by 65
Abstract
Forest fire risk assessment methodologies vary considerably, presenting challenges for adaptation to specific local contexts. This study provides a systematic analysis of forest fire assessment approaches across the Mediterranean basin, American, African, and Asian regions through a comprehensive review of 112 peer-reviewed studies [...] Read more.
Forest fire risk assessment methodologies vary considerably, presenting challenges for adaptation to specific local contexts. This study provides a systematic analysis of forest fire assessment approaches across the Mediterranean basin, American, African, and Asian regions through a comprehensive review of 112 peer-reviewed studies published from 2015 to 2025. Statistical significance testing (Chi-square tests, p < 0.05) confirmed significant regional variation in methodological preferences and indicator usage patterns. Key findings revealed that Multi-Criteria Decision Analysis dominates the field (44% of studies, n = 49), with Analytical Hierarchical Process being the most utilized method (39 studies). Machine learning approaches represent 25% (n = 28), with Random Forest leading significantly (22 applications). The analysis identified 67 indicators across seven major categories, with topographic factors (slope: 105 studies) and anthropogenic indicators (road networks: 92 studies) showing statistically significantly highest usage rates (p < 0.001), representing a statistically significant critical gap in vulnerability assessment (p < 0.01). Organizational factors remain severely underrepresented (a maximum of 14 studies for any factor), representing a statistically significant critical gap in risk assessments (p < 0.01). Statistical analysis revealed that while Mediterranean approaches excel in integrating historical and cultural factors, American methods emphasize advanced technology integration, while Asian approaches focus on socio-economic dynamics and land-use interactions. This study serves as a foundation for developing tailored assessment frameworks that combine remote sensing analysis, ground-based surveys, and community input while accounting for local constraints in data availability and technical capacity. The study concludes that effective forest fire risk assessment requires a balanced integration of global best practices with local environmental, social, and technical considerations, offering a roadmap for future forest fire risk assessment approaches in different regions worldwide. Full article
(This article belongs to the Topic Disaster Risk Management and Resilience)
Show Figures

Figure 1

32 pages, 5245 KB  
Article
A Methodological Approach to Address Economic Vulnerability to Wildfires in Europe
by Simone Martino, Clara Ochoa, Juan Ramon Molina and Emilio Chuvieco
Fire 2025, 8(10), 379; https://doi.org/10.3390/fire8100379 - 23 Sep 2025
Viewed by 120
Abstract
The assessment of the economic vulnerability of natural disasters is a necessary step in the evaluation of any risks. This study proposes the approach implemented under the H2020 FirEurisk project to value the economic damage of wildfires on a European scale. Economic damage [...] Read more.
The assessment of the economic vulnerability of natural disasters is a necessary step in the evaluation of any risks. This study proposes the approach implemented under the H2020 FirEurisk project to value the economic damage of wildfires on a European scale. Economic damage is assessed as the net value change in natural (agricultural and forestry resources and their ecosystem services) and manufactured assets under simulated fire intensity, taking into consideration the time necessary for natural capital to recover to the pre-damaged conditions. We show minimum, maximum, and average damage for European countries and map the critical areas. Damages to provisioning-ecosystem services are more pronounced in Central Europe because of the lower resilience of ecosystems compared to the Mediterranean, suggesting that mitigation measures (such as managing vegetation to reduce fuel; improving access to fire services; and engaging communities through education, agriculture, and forest management participation) must be enforced. We are confident that the approach proposed may stimulate further research to test the goodness of the estimates proposed and suggest where it is more appropriate to invest in fire prevention. Full article
Show Figures

Figure 1

16 pages, 4849 KB  
Article
Applying Electrical Resistance Tomography to Diagnose Trees Damaged by Surface Fire
by Kyeong Cheol Lee, Yeonggeun Song, Wooyoung Choi, Hyoseong Ju, Won-Seok Kang, Sujung Ahn and Yu-Gyeong Jung
Forests 2025, 16(10), 1504; https://doi.org/10.3390/f16101504 - 23 Sep 2025
Viewed by 144
Abstract
The Republic of Korea, with 64% forest coverage, is increasingly vulnerable to large-scale wildfires. This study employed electrical resistance tomography (ERT) to diagnose internal damage in Pinus densiflora trees following a surface fire in spring 2023. Of the 30 monitored trees, 5 died [...] Read more.
The Republic of Korea, with 64% forest coverage, is increasingly vulnerable to large-scale wildfires. This study employed electrical resistance tomography (ERT) to diagnose internal damage in Pinus densiflora trees following a surface fire in spring 2023. Of the 30 monitored trees, 5 died in 2023 and 6 more had died by 2024. Dead trees showed a 41% higher Bark Scorch Index (BSI) and a 10%–15% lower DBH and circumference than survivors. From July, ERT detected significant increases in high- (ERTR) and medium-resistance (ERTY) areas, while low-resistance (ERTB) regions declined. By September, ERTR and ERTY were 2.2 and 1.9 times higher in dead trees. Maximum resistivity (Rsmax) rose 6.1-fold to 3724 Ωm. One year post-fire, healthy areas in dead trees dropped below 18%. These findings indicate that internal defects develop gradually and accelerate in summer and winter, correlating with thermal and freeze–thaw stress. Early diagnosis within two months post-fire was unreliable, while post-summer assessments better distinguished trees at mortality risk. This study demonstrates ERT’s utility as a non-destructive tool for tracking post-fire damage and guiding forest restoration under increasing wildfire threats. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 4329 KB  
Article
Climatic and Forest Drivers of Wildfires in South Korea (1980–2024): Trends, Predictions, and the Role of the Wildland–Urban Interface
by Jinchan Park, Jihoon Suh and Minho Baek
Forests 2025, 16(9), 1476; https://doi.org/10.3390/f16091476 - 17 Sep 2025
Viewed by 608
Abstract
Wildfire activity is intensifying globally as climate change amplifies heat waves, droughts and wind extremes, threatening biodiversity. South Korea (63% forested) has experienced a sharp rise in large fires. We analysed 905 wildfires ≥ 5 ha from 1980–2024, linking burned area to maximum [...] Read more.
Wildfire activity is intensifying globally as climate change amplifies heat waves, droughts and wind extremes, threatening biodiversity. South Korea (63% forested) has experienced a sharp rise in large fires. We analysed 905 wildfires ≥ 5 ha from 1980–2024, linking burned area to maximum wind speed, relative humidity, temperature and forest structure (conifer, broadleaf and mature–stand ratios, forest cover). Pearson correlations, HC3-corrected regression, a 1000-tree Random Forest and five-fold validated XGBoost interpreted with SHAP captured linear and nonlinear effects; WUI influences were examined qualitatively. Each 1 m s−1 increase in peak wind expanded burned area by ~8.5 ha, whereas a 1% rise in humidity reduced area by ~3 ha (p < 0.01). Broadleaf prevalence restrained spread, while high conifer and mature–stand proportions enlarged it. Machine learning raised explanatory power from R2 = 0.62 to 0.66 and showed that very dry air, strong winds and conifer cover above half the landscape coincided with the largest events. Burned area during 2020–2024 reached 29,905 ha—sevenfold that of 2015–2019. These results imply that extreme fire weather, flammable pine fuels and expanding WUI settlements jointly elevate risk; implementing real-time meteorological thresholds, targeted fuel treatments and stricter WUI zoning can help mitigate this risk. Full article
Show Figures

Graphical abstract

14 pages, 3068 KB  
Article
Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model
by Torlarp Kamyo, Punchaporn Kamyo, Kanyakorn Panthong, Itsaree Howpinjai, Ratchaneewan Kamton and Lamthai Asanok
Geographies 2025, 5(3), 51; https://doi.org/10.3390/geographies5030051 - 17 Sep 2025
Viewed by 929
Abstract
This study aimed to investigate the physical factors influencing the occurrence of forest fires and to create a fire risk map of Phrae Province. Remote sensing and geographic information system (GIS) technology were applied for the analysis, focusing on seven factors: the digital [...] Read more.
This study aimed to investigate the physical factors influencing the occurrence of forest fires and to create a fire risk map of Phrae Province. Remote sensing and geographic information system (GIS) technology were applied for the analysis, focusing on seven factors: the digital elevation model (DEM); slope; Normalized Difference Vegetation Index (NDVI); aspect; and distances from people, water, and roads. All of these geographical factors can affect forest fires. This resulted in a MaxEnt (Maximum Entropy) model with an AUC (area under the curve) of 0.849, indicating its great prediction ability. The findings revealed that the variables influencing forest fire incidence were the DEM, NDVI, slope, distance from roads, distance from water, distance from communities, and aspect, in that order. Subsequently, a fire risk map for wildfires was developed by reclassifying the data into five levels—very low risk, low risk, medium risk, high risk, and very high risk—accounting for 341,395.54, 88,132.64, 76,162.41, 81,157.55, and 57,384.10 hectares or 52.99, 13.68, 11.82, 12.60, and 8.91% of the total area, respectively. The areas classified as very high risk, high risk, medium risk, and low risk included the Song, Long, and Rong Kwang Districts. The area with the lowest risk was Nong Muang Khai District. Full article
Show Figures

Figure 1

19 pages, 6457 KB  
Article
A Technology of Forest Fire Smoke Detection Using Dual-Polarization Weather Radar
by Mengfei Jiang, Miao Bai, Zhonghua He, Gaofeng Fan, Minghao Tang and Zhuoran Liang
Forests 2025, 16(9), 1471; https://doi.org/10.3390/f16091471 - 16 Sep 2025
Viewed by 317
Abstract
Forest fire risk is rising with climate warming, highlighting the need for timely monitoring and early warning. Satellite-based monitoring, currently a primary tool in remote sensing for fire detection, suffers from spatiotemporal gaps due to limited resolution and cloud cover. This study developed [...] Read more.
Forest fire risk is rising with climate warming, highlighting the need for timely monitoring and early warning. Satellite-based monitoring, currently a primary tool in remote sensing for fire detection, suffers from spatiotemporal gaps due to limited resolution and cloud cover. This study developed a novel smoke detection technology using operational S-band dual-polarization weather radar. By analyzing six forest fire cases in Zhejiang Province, China (2023), we established a filtering method using dual-polarization parameters, with thresholds set to a differential reflectivity (ZDR) ≥ 3 dB and a cross-correlation coefficient (ρHV) ≤ 0.7. This method effectively isolates fire-related echoes and, compared with geostationary satellites, enables more continuous monitoring; it also detects small and early-stage fires. Furthermore, radar-derived fire perimeters closely match satellite imagery, demonstrating its potential for real-time fire-spread tracking. The high spatiotemporal resolution and multi-parameter advantages of dual-polarization radar can complement satellite observations, offering vital support for early warning and real-time decision-making in fire management. Full article
(This article belongs to the Special Issue Advanced Technologies for Forest Fire Detection and Monitoring)
Show Figures

Graphical abstract

16 pages, 1227 KB  
Article
Examining Perceived Air Quality and Perceived Air Pollution Contributors in Merced and Stanislaus County
by David Veloz, Ricardo Cisneros, Paul Brown, Sulin Gonzalez, Hamed Gharibi, Rudiel Fabian and Gilda Zarate-Gonzalez
Air 2025, 3(3), 25; https://doi.org/10.3390/air3030025 - 16 Sep 2025
Viewed by 268
Abstract
This study examines the perceived air quality and contributors to air pollution among residents of Merced and Stanislaus Counties in California’s San Joaquin Valley (SJV), one of the most polluted regions in the United States. A survey was conducted during the summer of [...] Read more.
This study examines the perceived air quality and contributors to air pollution among residents of Merced and Stanislaus Counties in California’s San Joaquin Valley (SJV), one of the most polluted regions in the United States. A survey was conducted during the summer of 2017, gathering responses from 176 participants to assess their perceptions of air quality, sources of pollution, and behaviors related to air pollution awareness. Findings indicate that only 3.5% of participants perceived the air quality in their city as good, while 57.9% categorized it as unhealthy or unhealthy for sensitive groups. Participants identified cars and trucks as the primary sources of air pollution, followed by forest fires and factories. Seasonal differences in perception were also observed, with summer months being viewed as the most polluted. Additionally, participants living near major roadways reported higher concerns regarding air pollution’s impact on health. Multivariate regression analysis revealed that education was significantly associated with perceived air quality, while proximity to highways influenced perceptions of health risks. This study underscores the need for targeted interventions to raise awareness and promote self-protective behaviors, especially for vulnerable populations living near highways. These findings highlight the importance of localized public health strategies to address air quality concerns in SJV communities. Full article
Show Figures

Figure 1

6 pages, 1722 KB  
Proceeding Paper
Future Changes Based on Climate Risk Indicators Across the Troodos Mountains in Cyprus
by Nadia Politi, Iason Markantonis, Athanasios Sfetsos, Diamando Vlachogiannis and Louisa M. Shakou
Environ. Earth Sci. Proc. 2025, 35(1), 14; https://doi.org/10.3390/eesp2025035014 - 10 Sep 2025
Viewed by 235
Abstract
The future climate is anticipated to affect economic activities, the unique natural and forest ecosystems, agriculture, buildings, and communities in the region of the Troodos Mountains in Cyprus. The current study, as part of the European project Regions4Climate (R4C), aimed to develop a [...] Read more.
The future climate is anticipated to affect economic activities, the unique natural and forest ecosystems, agriculture, buildings, and communities in the region of the Troodos Mountains in Cyprus. The current study, as part of the European project Regions4Climate (R4C), aimed to develop a sustainable tourism model for this specific region to ensure the climate resilience of the Troodos communities while preserving its traditional products and ecosystems for future generations. Tangible key risk climate indicators were calculated using the CORDEX climate surface datasets to estimate the spatial changes under two climate scenarios, RCP4.5 and RCP8.5. The climate indicators were specifically selected to identify several known regional hazards, such as drought, heatwaves, forest fires, etc., that are linked to impacts on socio-economic activities like tourism, ecosystems, agriculture, energy, and water resources. Full article
Show Figures

Figure 1

17 pages, 6224 KB  
Article
Assessing Umbellularia californica Basal Resprouting Response Post-Wildfire Using Field Measurements and Ground-Based LiDAR Scanning
by Dawson Bell, Michelle Halbur, Francisco Elias, Nancy Pearson, Daniel E. Crocker and Lisa Patrick Bentley
Remote Sens. 2025, 17(17), 3101; https://doi.org/10.3390/rs17173101 - 5 Sep 2025
Viewed by 745
Abstract
In many hardwood forests, resprouting is a common response to disturbance and basal resprouts may represent a substantial component of the forest understory, especially post-wildfire. Despite this, resprouts are often overlooked in biomass assessments and drivers of resprouting responses in certain species are [...] Read more.
In many hardwood forests, resprouting is a common response to disturbance and basal resprouts may represent a substantial component of the forest understory, especially post-wildfire. Despite this, resprouts are often overlooked in biomass assessments and drivers of resprouting responses in certain species are still unknown. These knowledge gaps are problematic as the contribution of resprouts to understory fuel loads are needed for wildfire risk modeling and effective forest stewardship. Here, we validated the handheld mobile laser scanning (HMLS) of basal resprout volume and field measurements of stem count and clump height as methods to estimate the mass of California Bay Laurel (Umbellularia californica) basal resprouts at Pepperwood and Saddle Mountain Preserves, Sonoma County, California. In addition, we examined the role of tree size and wildfire severity in predicting post-wildfire resprouting response. Both field measurements (clump height and stem count) and remote sensing (HMLS-derived volume) effectively estimated dry mass (total, leaf and wood) of U. californica resprouts, but underestimated dry mass for a large resprout. Tree size was a significant factor determining post-wildfire resprouting response at Pepperwood Preserve, while wildfire severity significantly predicted post-wildfire resprout size at Saddle Mountain. These site differences in post-wildfire basal resprouting predictors may be related to the interactions between fire severity, tree size, tree crown topkill, and carbohydrate mobilization and point to the need for additional demographic and physiological research. Monitoring post-wildfire changes in U. californica will deepen our understanding of resprouting dynamics and help provide insights for effective forest stewardship and wildfire risk assessment in fire-prone northern California forests. Full article
Show Figures

Figure 1

25 pages, 8260 KB  
Article
A Novel Approach for Inverting Forest Fuel Moisture Content Utilizing Multi-Source Remote Sensing and Deep Learning
by Wenjun Wang, Cui Zhou, Junxiang Zhang, Yuanzong Li, Zhenyu Chen and Yongfeng Luo
Forests 2025, 16(9), 1423; https://doi.org/10.3390/f16091423 - 5 Sep 2025
Viewed by 665
Abstract
Fuel Moisture Content (FMC) is a critical indicator for assessing forest fire risk and formulating early warning strategies, as its spatiotemporal dynamics directly influence the accuracy of fire danger rating. To improve the accuracy of forest FMC estimation, this study proposes an innovative [...] Read more.
Fuel Moisture Content (FMC) is a critical indicator for assessing forest fire risk and formulating early warning strategies, as its spatiotemporal dynamics directly influence the accuracy of fire danger rating. To improve the accuracy of forest FMC estimation, this study proposes an innovative deep learning method integrating multi-source remote sensing data. By combining the global feature extraction capability of the Transformer architecture with the local temporal modeling advantages of Gated Recurrent Units (GRU) (referred to as the Transformer-GRU model), a high-precision FMC estimation framework is established. The study focuses on forested areas in California, USA, utilizing ground-measured FMC data alongside multi-source remote sensing datasets from MODIS, Sentinel-1, and Sentinel-2. A systematic comparison was conducted among Transformer-GRU model, standalone Transformer models, single GRU models, and two classical machine learning models (Random Forest, RF, and Support Vector Regression, SVR). Additionally, forward feature selection was employed to evaluate the performance of different models and feature combinations. The results demonstrate that (1) All models effectively utilize the derived features from multi-source remote sensing data, confirming the significant enhancement of multi-source data fusion for forest FMC estimation; (2) The Transformer-GRU model outperforms other models in capturing the nonlinear relationship between FMC and remote sensing data, achieving superior estimation accuracy (R2 = 0.79, MAE = 8.70%, RMSE = 11.44%, rRMSE = 12.60%); (3) The spatiotemporal distribution patterns of forest FMC in California generated by the Transformer-GRU model align well with regional geographic characteristics and climatic variability, while exhibiting a strong relationship with historical wildfire occurrences. The proposed Transformer-GRU model provides a novel approach for high-precision FMC estimation, offering reliable technical support for dynamic forest fire risk early warning and resource management. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

37 pages, 4865 KB  
Article
Coupling Deep Abstract Networks and Metaheuristic Optimization Algorithms for a Multi-Hazard Assessment of Wildfire and Drought
by Jinping Liu, Qingfeng Hu, Panxing He, Lei Huang and Yanqun Ren
Remote Sens. 2025, 17(17), 3090; https://doi.org/10.3390/rs17173090 - 4 Sep 2025
Viewed by 783
Abstract
This study employed Deep Abstract Networks (DANets), independently and in combination with the Whale Optimization Algorithm (WOA), to generate high-resolution susceptibility maps for drought and wildfire hazards in the Oroqen Autonomous Banner in Inner Mongolia. Presence samples included 309 wildfire points from MODIS [...] Read more.
This study employed Deep Abstract Networks (DANets), independently and in combination with the Whale Optimization Algorithm (WOA), to generate high-resolution susceptibility maps for drought and wildfire hazards in the Oroqen Autonomous Banner in Inner Mongolia. Presence samples included 309 wildfire points from MODIS active fire data and 200 drought points derived from a custom Standardized Drought Condition Index. DANets-WOA models showed clear performance improvements over their solitary counterparts. For drought susceptibility, RMSE was reduced from 0.28 to 0.21, MAE from 0.17 to 0.11, and AUC improved from 85.7% to 88.9%. Wildfire susceptibility mapping also improved, with RMSE decreasing from 0.39 to 0.36, MAE from 0.32 to 0.28, and AUC increasing from 78.9% to 85.1%. Loss function plots indicated improved convergence and reduced overfitting following optimization. A pairwise z-statistic analysis revealed significant differences (p < 0.05) in susceptibility classifications between the two modeling approaches. Notably, the overlap of drought and wildfire susceptibilities within the forest–steppe transitional zone reflects a climatically and ecologically tense corridor, where moisture stress, vegetation gradients, and human land-use converge to amplify multi-hazard risk beyond the sum of individual threats. The integration of DANets with the WOA demonstrates a robust and scalable framework for dual hazard modeling. Full article
Show Figures

Graphical abstract

24 pages, 3299 KB  
Article
Resilience Assessment of Forest Fires Based on a Game-Theoretic Combination Weighting Method
by Zhengtong Lv, Junqiao Xiong, Mingfu Zhuo, Yuxian Ke and Qian Kang
Sustainability 2025, 17(17), 7907; https://doi.org/10.3390/su17177907 - 2 Sep 2025
Viewed by 556
Abstract
The increasing frequency and severity of forest fires, driven by climate change and intensified human activities, pose substantial threats to ecological security and sustainable development. However, most assessments remain centered on occurrence risk, lack a resilience-oriented perspective and comprehensive indicator systems, and therefore [...] Read more.
The increasing frequency and severity of forest fires, driven by climate change and intensified human activities, pose substantial threats to ecological security and sustainable development. However, most assessments remain centered on occurrence risk, lack a resilience-oriented perspective and comprehensive indicator systems, and therefore offer limited guidance for building system resilience. This study developed a forest fire resilience (FFR) assessment framework with 25 indicators in three levels and six domains across four resilience dimensions. Balancing expert judgment and data, we obtained indicator weights by integrating the Analytic Hierarchy Process (AHP) and the Criteria Importance Through Intercriteria Correlation (CRITIC) via a game-theoretic scheme. The analysis revealed that, among the level-2 indicators, climate factors, infrastructure, and vegetation characteristics exert the greatest influence on FFR. At the level-3 indicator scale, monthly minimum relative humidity, fine fuel load per unit area, and the deployment of smart monitoring systems were critical. Among the four resilience dimensions, absorption capacity plays the predominant role in shaping disaster response. Building on these findings, the study proposes targeted strategies to enhance FFR and applies the assessment framework to twelve administrative divisions of Baise City, China, highlighting marked spatial variability in resilience levels. The results offer valuable theoretical insights and practical guidance for strengthening FFR. Full article
Show Figures

Figure 1

16 pages, 5156 KB  
Article
Development of a GIS-Based Methodological Framework for Regional Forest Planning: A Case Study in the Bosco Della Ficuzza Nature Reserve (Sicily, Italy)
by Santo Orlando, Pietro Catania, Massimo Vincenzo Ferro, Carlo Greco, Giuseppe Modica, Michele Massimo Mammano and Mariangela Vallone
Land 2025, 14(9), 1744; https://doi.org/10.3390/land14091744 - 28 Aug 2025
Viewed by 520
Abstract
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco [...] Read more.
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve (western Sicily, Italy). The main objective is to create a multi-layered Territorial Information System (TIS) that integrates high-resolution cartographic data, a Digital Terrain Model (DTM), and GNSS-based field surveys to support adaptive, participatory, and replicable forest management. The methodology combines the following: (i) DTM generation using Kriging interpolation to model slope and aspect with ±1.2 m accuracy; (ii) road infrastructure mapping and classification, adapted from national and regional forestry survey protocols; (iii) spatial analysis of fire-risk zones and accessibility, based on slope, exposure, and road pavement conditions; (iv) the integration of demographic and land use data to assess human–forest interactions. The resulting TIS enables complex spatial queries, infrastructure prioritization, and dynamic scenario modeling. Results demonstrate that the framework overcomes the limitations of many existing GIS-based systems—fragmentation, static orientation, and limited interoperability—by ensuring continuous data integration and adaptability to evolving ecological and governance conditions. Applied to an 8500 ha Mediterranean biodiversity hotspot, the model enhances road maintenance planning, fire-risk mitigation, and stakeholder engagement, offering a scalable methodology for other protected forest areas. This research contributes an innovative approach to Mediterranean forest governance, bridging ecological monitoring with socio-economic dynamics. The framework aligns with the EU INSPIRE Directive and highlights how low-cost, interoperable geospatial tools can support climate-resilient forest management strategies across fragmented Mediterranean landscapes. Full article
Show Figures

Figure 1

Back to TopTop