Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (593)

Search Parameters:
Keywords = four-point bending test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10982 KiB  
Article
Homogenization Method for Modeling and Analysis of the Honeycomb Structure—Simulation Study and Validation
by Łukasz Michalski, Tomasz Kubiak and Luigi De Mercato
Materials 2025, 18(16), 3884; https://doi.org/10.3390/ma18163884 - 19 Aug 2025
Viewed by 192
Abstract
This study presents a comprehensive approach to modeling honeycomb structures using the homogenization method, utilizing a Representative Volume Element (RVE) to derive equivalent orthotropic mechanical properties of the honeycomb structure. Three finite element models (two-dimensional and three-dimensional) were examined, considering the decreasing complexity [...] Read more.
This study presents a comprehensive approach to modeling honeycomb structures using the homogenization method, utilizing a Representative Volume Element (RVE) to derive equivalent orthotropic mechanical properties of the honeycomb structure. Three finite element models (two-dimensional and three-dimensional) were examined, considering the decreasing complexity and computational effort associated with each modeling approach. The outcomes of the analysis for each modeling approach were reported, with attention to boundary condition application and numerical singularities. Validation through four-point bending tests and an analytical approach confirmed the model’s ability to replicate the mechanical behavior of the panel. The obtained results have shown perfect agreement between the results of the numerical test employing the proposed model and the experimental test results of real structures. It was found that the proposed simplified numerical model allows for a reduction in the calculation time of c.a. 54%. Additionally, some disadvantages of using procedures included in commercial software such as a black box have been shown. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

22 pages, 3241 KiB  
Article
Flexural Behavior of R-UHTCC and Recycled Concrete Composite Beams Reinforced with Steel Bars
by Dong Wei, Zuobiao Li, Zhiqiang Gu, Danying Gao, Lin Yang and Gang Chen
Fibers 2025, 13(8), 110; https://doi.org/10.3390/fib13080110 - 18 Aug 2025
Viewed by 284
Abstract
To promote the application of recycled concrete in construction engineering, the flexural behavior of ultra-high toughness cement-based composite (UHTCC) materials and recycled concrete composite beams was investigated in this study. Recycled aggregates were used in the production of both recycled UHTCC (R-UHTCC) and [...] Read more.
To promote the application of recycled concrete in construction engineering, the flexural behavior of ultra-high toughness cement-based composite (UHTCC) materials and recycled concrete composite beams was investigated in this study. Recycled aggregates were used in the production of both recycled UHTCC (R-UHTCC) and recycled concrete. A total of 10 beams were manufactured and tested under four-point bending load. The primary design parameters included concrete strength grade, R-UHTCC layer height, stirrup spacing in the pure bending section, and tensile reinforcement ratio. The effects of these parameters on the failure mode, crack width, load-midspan deflection response, ductility, load-tensile reinforcement strain response, and flexural capacity of the beams are discussed. The results indicate that limiting the use of R-UHTCC to a specific height range within the tensile zone of the beams can yield superior flexural properties compared to using R-UHTCC across the full section. The R-UHTCC and recycled concrete composite beams demonstrated good crack resistance, load-deflection response, and ductility. Compared to the R-UHTCC layer height and stirrup spacing, the influences of concrete strength and tensile reinforcement ratio on the flexural behavior of the composite beams are more significant. The maximum increase in flexural capacity and ductility index was 18.8% and 67.3%, respectively, as the concrete strength grade increased from C30 to C70. The flexural capacity increased by 64.6% as the longitudinal reinforcement ratio increased from 0.258% to 3.68%. Furthermore, a stiffness calculation method based on the effective moment of inertia was proposed and validated through experimental results. The research findings provide a theoretical and design basis for the application of R-UHTCC and recycled concrete composite beams in engineering. Full article
Show Figures

Figure 1

19 pages, 4348 KiB  
Article
Manufacturing of Polymer–Metal Composite by Fused Filament Fabrication: Adhesion of PLA and PETG on Aluminum
by Miguel Campos-Jurado, Óscar Rodríguez-Alabanda and Guillermo Guerrero-Vacas
Polymers 2025, 17(16), 2210; https://doi.org/10.3390/polym17162210 - 13 Aug 2025
Viewed by 464
Abstract
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over [...] Read more.
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over which a polymer primer—prepared from PLA and PETG solutions—was applied. Subsequently, test specimens were fabricated using the same polymer through material extrusion (MEX) with filaments. Adhesion strength between the printed polymer and the metal substrate was assessed through perpendicular tensile, lap shear, and three-point bending tests. The 16-condition experimental matrix combined surface treatment, primer thickness, and bed temperature and was replicated for each test. Peak tensile and shear strengths confirmed the effectiveness of the proposed strategy, with PETG consistently showing a higher interfacial performance than PLA. ANOVA analysis identifies primer layer thickness (p = 0.023) and loading type (p = 0.031) as statistically significant variables. The results suggest that either abrasive or acid pretreatment, combined with a primer thickness ≥ 80 µm and moderate bed temperatures (65 °C for PLA and 90 °C for PETG), enables the fabrication of robust metal–polymer joints, which are particularly resistant to shear stress and suitable for industrial applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 6270 KiB  
Article
Development of Formulas Predicting Bending Moments of Elastic–Plastic and Bi-Modular-Layered Particleboards
by Yan Wang, Samet Demirel, Wengang Hu, Franklin Quin, Jilei Zhang, Shunyao Sun and Xiaohong Yu
Forests 2025, 16(8), 1315; https://doi.org/10.3390/f16081315 - 12 Aug 2025
Viewed by 194
Abstract
Four mechanical models were proposed to derive formulas predicting the bending moment capacities of layered particleboard under simply supported center-loading. Experimental validation confirmed these models are effective tools for describing the bending moment development process, including proportional limit, yield, and ultimate points. With [...] Read more.
Four mechanical models were proposed to derive formulas predicting the bending moment capacities of layered particleboard under simply supported center-loading. Experimental validation confirmed these models are effective tools for describing the bending moment development process, including proportional limit, yield, and ultimate points. With predicted and experimental ratios ranging from 0.88 to 1.04, Model 4 can reasonably predict the ultimate bending moment capacity of elastic–plastic and bi-modular-layered particleboard materials. Photo-elastic testing revealed neutral axis shifting toward the compressive side, resulting from the face layer’s significantly higher mean modulus of elasticity in compression than in tension. Additionally, the core material above the centerline of PB thickness contributed to tensile resistance. The proposed mechanical models require inputs such as the tensile and compressive strengths and thickness of each layer, accounting for the asymmetric strength profile and neutral axis shifting. The main conclusion was that the bending moment resistance of the particleboard depends on the combined effect of tensile and compressive strengths of all layers. A 3D plot visualized the PB’s mechanical design space, displaying feasible tensile–compressive strength combinations of particleboard layers. This enables determination of optimal strength properties for each layer. For M2 grade particleboard, the most cost-effective design occurred when the face layer reached a 5.38 MPa tensile strength, with the compressive strength ranging between 13.00 and 18.59 MPa. Full article
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 240
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

14 pages, 3023 KiB  
Article
Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels
by Arménio N. Correia, Daniel F. O. Braga, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(15), 2084; https://doi.org/10.3390/polym17152084 - 30 Jul 2025
Viewed by 376
Abstract
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric [...] Read more.
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric analysis was carried out to assess the ability to produce friction stir buttstrap composite panels in a single processing step and assess the resulting tensile and flexural behavior. To that end, travel and rotating speeds ranging from 2150 to 2250 rpm, and 100 to 140 mm/min, respectively, were employed while keeping plunge depth and the tilt angle constant. A total of nine composite joints were successfully produced and subsequently subjected to both tensile and four-point bending tests. The tensile and flexural strength results ranged from 80 to 139 MPa, and 39 to 47 MPa, respectively. Moreover, the microstructural examination revealed that all joints exhibited a defect within the joining region and its size and shape had a significant effect on tensile strength, whereas the flexural strength was less affected with more uniform results. The joining region was also characterized by a decrease in hardness, particularly in the pin-affected region on the aluminum end of the joint, exhibiting a W-shaped pattern. Contrarily, on the polymeric end of the joining region, no significant change in hardness was observed. Full article
Show Figures

Figure 1

36 pages, 11747 KiB  
Article
Numerical Study on Interaction Between the Water-Exiting Vehicle and Ice Based on FEM-SPH-SALE Coupling Algorithm
by Zhenting Diao, Dengjian Fang and Jingwen Cao
Appl. Sci. 2025, 15(15), 8318; https://doi.org/10.3390/app15158318 - 26 Jul 2025
Viewed by 228
Abstract
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and [...] Read more.
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and destruction of ice layers, a numerical model was established based on the FEM-SPH-SALE coupling algorithm to study the dynamic characteristics of the water-exiting vehicle on the icebreaking process. The FEM-SPH adaptive algorithm was used to simulate the damage performance of ice, and its feasibility was verified through the four-point bending test and vehicle breaking ice experiment. The S-ALE algorithm was used to simulate the process of fluid/structure interaction, and its accuracy was verified through the wedge-body water-entry test and simulation. On this basis, numerical simulations were performed for different ice thicknesses and initial velocities of vehicles. The results show that the motion characteristics of the vehicle undergoes a sudden change during the ice-breaking. The head and middle section of the vehicle are subject to greater stress, which is related to the transmission of stress waves and inertial effect. The velocity loss rate of the vehicle and the maximum stress increase with the thickness of ice. The higher the initial velocity of the vehicle, the larger the acceleration and maximum stress in the process of the vehicle breaking ice. The acceleration peak is sensitive to the variation in the vehicle’s initial velocity but insensitive to the thickness of the ice. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 395
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

17 pages, 2862 KiB  
Article
Crack Assessment Using Acoustic Emission in Cement-Free High-Performance Concrete Under Mechanical Stress
by Muhammad Ali Rostampour, Davood Mostofinejad, Hadi Bahmani and Hasan Mostafaei
J. Compos. Sci. 2025, 9(7), 380; https://doi.org/10.3390/jcs9070380 - 19 Jul 2025
Cited by 1 | Viewed by 447
Abstract
This study investigates the cracking behavior of high-performance calcium oxide-activated concrete incorporating basalt and synthetic macro fibers under compressive and flexural loading. Acoustic emission (AE) monitoring was employed to capture real-time crack initiation and propagation, offering insights into damage evolution mechanisms. A comprehensive [...] Read more.
This study investigates the cracking behavior of high-performance calcium oxide-activated concrete incorporating basalt and synthetic macro fibers under compressive and flexural loading. Acoustic emission (AE) monitoring was employed to capture real-time crack initiation and propagation, offering insights into damage evolution mechanisms. A comprehensive series of uniaxial compression and four-point bending tests were conducted on fiber-reinforced and plain specimens. AE parameters, including count, duration, risetime, amplitude, and signal energy, were analyzed to quantify crack intensity and classify fracture modes. The results showed that tensile cracking dominated even under compressive loading due to lateral stresses, while fiber inclusion significantly enhanced toughness by promoting distributed microcracking and reducing abrupt energy release. Basalt fibers were particularly effective under flexural loading, increasing the post-peak load-bearing capacity, whereas synthetic macro fibers excelled in minimizing tensile crack occurrence under compression. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

20 pages, 5297 KiB  
Article
The Validation and Discussion of a Comparative Method Based on Experiment to Determine the Effective Thickness of Composite Glass
by Dake Cao, Xiaogen Liu, Zhe Yang, Jiawei Huang, Ming Xu and Detian Wan
Buildings 2025, 15(14), 2542; https://doi.org/10.3390/buildings15142542 - 19 Jul 2025
Viewed by 305
Abstract
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness [...] Read more.
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness by equating the bending stress of a composite specimen to that of a reference monolithic glass specimen under identical loading and boundary conditions. Specimens with varying configurations (glass thicknesses of 5 mm, 6 mm and 8 mm) were tested using non-destructive four-point bending tests under a multi-stage loading protocol (100 N–1000 N). Strain rosettes measured maximum strains at each loading stage to calculate bending stress. Analysis of the bending stress state revealed that vacuum glazing and SGP laminated glass exhibit superior load-bearing capacity compared to PVB laminated glass. The proposed method successfully determined the effective thickness for both laminated glass and vacuum glazing. Furthermore, results demonstrate that employing a 12 mm monolithic reference glass provides the highest accuracy for effective thickness determination. Theoretical bending stress calculations using the effective thickness derived from the 12 mm reference glass showed less than 10% deviation from experimental values. Conversely, compared to established standards and empirical formulas, the proposed method offers superior accuracy, particularly for vacuum glazing. Additionally, the mechanical properties of the viscoelastic interlayers (PVB and SGP) were investigated through static tensile tests and dynamic thermomechanical analysis (DMA). Distinct tensile behaviors and differing time-dependent shear transfer capacities between the two interlayer materials are found out. Key factors influencing the reliability of the method are also discussed and analyzed. This study provides a universally practical and applicable solution for accurate and effective thickness estimation in composite glass design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

38 pages, 15401 KiB  
Article
Failure Behavior of Aluminum Solar Panel Mounting Structures Subjected to Uplift Pressure: Effects of Foundation Defects
by Sachi Furukawa, Hiroki Mikami, Takehiro Okuji and Koji Takamori
Solar 2025, 5(3), 33; https://doi.org/10.3390/solar5030033 - 15 Jul 2025
Viewed by 387
Abstract
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests [...] Read more.
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests were conducted. The results showed that when even a single column base was unanchored, structural failure occurred at approximately half the design wind pressure. Although reinforcement measures—such as the installation of uplift-resistant braces—increased the failure pressure to 1.5 times the design value, they also introduced the risk of undesirable failure modes, including panel detachment. Additionally, four-point bending tests of failed members and joints, combined with structural analysis of the frame, demonstrated that once the ultimate strength of each component is known, the likely failure location within the structure can be reasonably predicted. To prevent panel blow-off and progressive failure of column bases and piles, specific design considerations are proposed based on both experimental observations and numerical simulations. In particular, avoiding local buckling in members parallel to the short side of the panels is critical. Furthermore, a safety factor of approximately two should be applied to column bases and pile foundations to ensure structural integrity under unforeseen foundation conditions. Full article
Show Figures

Figure 1

23 pages, 3855 KiB  
Article
Influence of Steel Fiber Content on the Fractal Evolution of Bending Cracks in Alkali-Activated Slag Concrete Beams
by Xiaohui Yuan, Ziyu Cui and Gege Chen
Buildings 2025, 15(14), 2444; https://doi.org/10.3390/buildings15142444 - 11 Jul 2025
Viewed by 243
Abstract
This study systematically investigates the effect of steel fiber content on the fractal evolution characteristics of bending cracks in alkali-activated slag concrete (AASC) beams. A four-point bending test on simply supported beams, combined with digital image correlation (DIC) technology, was employed to quantitatively [...] Read more.
This study systematically investigates the effect of steel fiber content on the fractal evolution characteristics of bending cracks in alkali-activated slag concrete (AASC) beams. A four-point bending test on simply supported beams, combined with digital image correlation (DIC) technology, was employed to quantitatively analyze the fractal dimension of crack propagation paths in AASC beams with steel fiber contents ranging from 0% to 1.4%, using the box-counting method. The relationship between fracture energy and fractal dimension was examined, along with the fractal control mechanisms of mid-span deflection, crack width, and the fractal evolution of fracture toughness parameters. The results revealed that as the steel fiber content increased, the crack fractal dimension decreased from 1.287 to 1.155, while the critical fracture energy of AASC beams increased by approximately 75%. Both mid-span deflection and maximum crack width were positively correlated with the crack fractal dimension, whereas the fractal dimension showed a negative correlation with critical cracking stress and fracture toughness and a positive correlation with the energy release rate. When the steel fiber content exceeded 1.2%, the performance gains began to diminish due to fiber agglomeration effects. Overall, the findings suggest that an optimal steel fiber content range of 1.0% to 1.2% provides the best crack control and mechanical performance, offering a theoretical basis for the design of AASC structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Next-Generation Sustainable Composites with Flax Fibre and Biobased Vitrimer Epoxy Polymer Matrix
by Hoang Thanh Tuyen Tran, Johannes Baur, Racim Radjef, Mostafa Nikzad, Robert Bjekovic, Stefan Carosella, Peter Middendorf and Bronwyn Fox
Polymers 2025, 17(14), 1891; https://doi.org/10.3390/polym17141891 - 8 Jul 2025
Viewed by 612
Abstract
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer [...] Read more.
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer epoxy flax composites were characterised using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical four-point bending tests, alongside studies of solvent resistance and chemical recyclability. Both the VER1-1-FFRC (degradation temperature Tdeg of 377.0 °C) and VER1-2-FFRC (Tdeg of 395.9 °C) exhibited relatively high thermal stability, which is comparable to the reference ER-FFRC (Tdeg of 396.7 °C). The VER1-1-FFRC, VER1-2-FFRC, and ER-FFRC demonstrated glass transition temperatures Tg of 54.1 °C, 68.8 °C, and 83.4 °C, respectively. The low Tg of the vitrimer composite is due to the low crosslink density in the vitrimer epoxy resin. Particularly, the crosslinked density of the VER1-1-FFRC was measured to be 319.5 mol·m−3, which is lower than that obtained from the VER1-2-FFRC (434.7 mol·m−3) and ER-FFRC (442.9 mol·m−3). Furthermore, the mechanical properties of these composites are also affected by the low crosslink density. Indeed, the flexural strength of the VER1-1-FFRC was found to be 76.7 MPa, which was significantly lower than the VER1-2-FFRC (116.2 MPa) and the ER-FFRC (138.3 MPa). Despite their lower thermal and mechanical performance, these vitrimer composites offer promising recyclability and contribute to advancing sustainable composite materials. Full article
Show Figures

Graphical abstract

14 pages, 8098 KiB  
Article
A Comparative Study on the Flexural Behavior of UHPC Beams Reinforced with NPR and Conventional Steel Rebars
by Jin-Ben Gu, Yu-Han Chen, Yi Tao, Jun-Yan Wang and Shao-Xiong Zhang
Buildings 2025, 15(13), 2358; https://doi.org/10.3390/buildings15132358 - 5 Jul 2025
Viewed by 319
Abstract
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior [...] Read more.
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior of UHPC beams reinforced with various types of longitudinal reinforcement was conducted. The types of longitudinal reinforcement mainly encompassed HRB 400, HRB 600, and NPR steel rebars. The test results revealed that the UHPC beams reinforced with the three types of longitudinal steel rebar exhibited distinctly different failure modes. Compared to the single dominant crack failure typical of UHPC beams reinforced with HRB 400 steel rebars, the beams using HRB 600 rebars exhibited a tendency under balanced failure conditions to develop fewer main cracks (typically two or three). Conversely, the UHPC beams incorporating NPR steel rebars exhibited significantly more cracking within the pure bending zone, characterized by six to eight uniformly distributed main cracks. Meanwhile, the HRB 600 and NPR steel rebars effectively upgraded the flexural load-bearing capacity and deformation ability compared to the HRB 400 steel rebars. By integrating the findings from the direct tensile tests on reinforced UHPC, aided by acoustic emission source location, this research specifically highlights the damage mechanisms associated with each rebar type. Full article
(This article belongs to the Special Issue Key Technologies and Innovative Applications of 3D Concrete Printing)
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 341
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

Back to TopTop